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A New Application of Quasi Monotone Sequences and Quasi Power
Increasing Sequences to Factored Infinite Series

Hüseyin Bora

aP. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, we generalize a known theorem under more weaker conditions dealing with the
generalized absolute Cesàro summability factors of infinite series by using quasi monotone sequences and
quasi power increasing sequences. This theorem also includes some new results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [2]). A sequence (dn) is
said to be δ-quasi monotone, if dn → 0, dn > 0 ultimately, and ∆dn ≥ −δn, where ∆dn = dn − dn+1 and δ=
(δn) is a sequence of positive numbers (see [3]). A positive sequence X = (Xn) is said to be a quasi-f-power
increasing sequence, if there exists a constant K = K(X, f ) ≥ 1 such that K fnXn ≥ fmXm for all n ≥ m ≥ 1,
where f = { fn(σ, γ)} = {nσ(log n)γ, γ ≥ 0, 0 < σ < 1}(see [12]). If we take γ=0, then we get a quasi-σ-power
increasing sequence. It is known that every almost increasing sequence is a quasi-σ-power increasing
sequence for any non-negative σ, but the converse is not true for σ > 0 (see [11]). Let

∑
an be a given infinite

series. We denote by tα,βn the nth Cesàro mean of order (α, β), with α + β > −1, of the sequence (nan), that is
(see [8])

tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav, (1)

where

Aα+β
n = O(nα+β), Aα+β

0 = 1 and Aα+β
−n = 0 for n > 0. (2)

Let (θα,βn ) be a sequence defined by (see [4])

θ
α,β
n =


∣∣∣∣tα,βn

∣∣∣∣ , α = 1, β > −1,

max1≤v≤n

∣∣∣∣tα,βv

∣∣∣∣ , 0 < α < 1, β > −1.
(3)
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The series
∑

an is said to be summable | C, α, β |k, k ≥ 1, if (see [9])

∞∑
n=1

1
n
| tα,βn |

k< ∞. (4)

If we take β = 0, then | C, α, β |k summability reduces to | C, α |k summability (see [10]). Also, if we take β = 0
and α = 1, then we obtain | C, 1 |k summability .

2. Known Result

The following theorem is known dealing with an application of δ-quasi monotone sequence and power
increasing sequence.
Theorem 2.1 ([5]). Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be an almost increasing sequence such
that | ∆Xn |= O(Xn/n) and let λn → 0 as n→∞. Suppose that there exists a sequence of numbers (An) such
that it is δ-quasi monotone with

∑
nδnXn < ∞,

∑
AnXn is convergent, and | ∆λn |≤ | An | for all n. If the

condition
m∑

n=1

(θα,βn )k

n
= O(Xm) as m→∞ (5)

satisfies, then the series
∑

anλn is summable | C, α, β |k, 0 < α ≤ 1, α + β > 0, and k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem A under more weaker conditions. We shall prove the
following theorem.
Theorem 3. 1 Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be a quasi-f-power increasing sequence and
λn → 0 as n → ∞. Suppose that there exists a sequence of numbers (An) such that it is δ-quasi-monotone
with ∆An ≤ δn,

∑
nδnXn < ∞,

∑
AnXn is convergent, and | ∆λn |≤ | An | for all n. If the condition

m∑
n=1

(θα,βn )k

nXn
k−1

= O(Xm) as m→∞ (6)

satisfies, then the series
∑

anλn is summable | C, α, β |k, 0 < α ≤ 1, (α + β − 1) > 0, and k ≥ 1.
Remark 3. 2 It should be noted that the condition (6) is reduced to the condition (5) when k=1. When k > 1,
condition (6) is weaker than condition (5) but the converse is not true. As in [13], we can show that if (5) is
satisfied, then we get

m∑
n=1

(θα,βn )k

nXk−1
n

= O(
1

Xk−1
1

)
m∑

n=1

(θα,βn )k

n
= O(Xm).

To show that the converse is false when k > 1, as in [6], the following example is sufficient. We can take
Xn = nσ, 0 < σ < 1, and then construct a sequence (un) such that

un =
(θα,βn )k

nXn
k−1

= Xn − Xn−1,

whence
m∑

n=1

(θα,βn )k

nXn
k−1

=

m∑
n=1

(Xn − Xn−1) = Xm = mσ,
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and so

m∑
n=1

(θα,βn )k

n
=

m∑
n=1

(Xn − Xn−1)Xk−1
n =

m∑
n=1

(nσ − (n − 1)σ)nσ(k−1)

≥ σ
m∑

n=1

nσ−1nσ(k−1) = σ
m∑

n=1

nσk−1
∼

mσk

k
as m→∞.

It follows that

1
Xm

m∑
n=1

(θα,βn )k

n
→∞ as m→∞

provided k > 1. This shows that (5) implies (6) but not conversely.
We need the following lemmas for the proof of our theorem.
Lemma 3. 3 (Abel transformation)([1]). Let (ak), (bk) be complex sequences, and write
sn = a1 + a2 + ... + an. Then

n∑
k=1

akbk =

n−1∑
k=1

sk∆bk + snbn. (7)

Lemma 3. 4 ([4]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

|

v∑
p=0

Aα−1
n−pAβ

pap |≤ max
1≤m≤v

|

m∑
p=0

Aα−1
m−pAβ

pap | . (8)

Lemma 3. 5 ([7]). Let (Xn) be a quasi-f-power increasing sequence. If (An) is a δ-quasi-monotone sequence
with ∆An ≤ δn and

∑
nδnXn < ∞, then we have the following

∞∑
n=1

nXn | ∆An |< ∞, (9)

nAnXn = O(1) as n→∞. (10)

Lemma 3. 6 ([7]). Under the conditions regarding (λn) and (Xn) of the theorem, we have

| λn | Xn = O(1) as n→∞. (11)

4. Proof of Theorem 3.1

Let (Tα,βn ) be the nth (C, α, β) mean of the sequence (nanλn). Then, by (1), we have

Tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvavλv.

First, applying Abel’s transformation and then using Lemma 3. 4, we have that

Tα,βn =
1

Aα+β
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pAβ

ppap +
λn

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav,
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| Tα,βn | ≤
1

Aα+β
n

n−1∑
v=1

| ∆λv ||

v∑
p=1

Aα−1
n−pAβ

ppap | +
| λn |

Aα+β
n

|

n∑
v=1

Aα−1
n−vAβ

vvav |

≤
1

Aα+β
n

n−1∑
v=1

A(α+β)
v θ

α,β
v | ∆λv | + | λn | θ

α,β
n = Tα,βn,1 + Tα,βn,2 .

To complete the proof of Theorem 3. 1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

1
n
| Tα,βn,r |

k< ∞, for r = 1, 2.

Firstly, using (2) and then applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1 and k > 1,
we obtain

m+1∑
n=2

1
n
| Tα,βn,1 |

k
≤

m+1∑
n=2

1
n
|

1

Aα+β
n

n−1∑
v=1

A(α+β)
v θ

α,β
v ∆λv |

k

= O(1)
m+1∑
n=2

1
n
|

1
nα+β

n−1∑
v=1

v(α+β)θ
α,β
v ∆λv |

k

= O(1)
m+1∑
n=2

1
n1+(α+β)k

n−1∑
v=1

v(α+β)k
| Av |

k(θα,βv )k

 ×
n−1∑

v=1

1


k−1

= O(1)
m∑

v=1

v(α+β)k
| Av |

k(θα,βv )k
m+1∑

n=v+1

1
n2+(α+β−1)k

= O(1)
m∑

v=1

v(α+β)k
| Av || Av |

k−1(θα,βv )k
∫
∞

v

dx
x2+(α+β−1)k

= O(1)
m∑

v=1

| Av |vk−1 (θα,βv )k

vk−1Xk−1
v

= O(1)
m∑

v=1

v| Av |
(θα,βv )k

vXk−1
v

Now, using Abel’s transformation we have

m+1∑
n=2

1
n
| Tα,βn,1 |

k = O(1)
m∑

v=1

v| Av |
(θα,βv )k

vXk−1
v

= O(1)
m−1∑
v=1

∆(v| Av |)
v∑

p=1

(θα,βp )k

pXk−1
p

+ O(1)m| Am |

m∑
v=1

(θα,βv )k

vXk−1
v

= O(1)
m−1∑
v=1

| (v + 1)∆ | Av | − | Av || Xv + O(1)m| Am |Xm

= O(1)
m−1∑
v=1

v | ∆Av | Xv + O(1)
m−1∑
v=1

| Av |Xv + O(1)m| Am |Xm

= O(1) as m→∞,

in view of hypotheses of Theorem 3. 1 and Lemma 3. 5. Again, we have

m∑
n=1

1
n
| Tα,βn,2 |

k =

m∑
n=1

| λn | | λn |
k−1 (θα,βn )k

n
= O(1)

m∑
n=1

(θα,βn )k

nXk−1
n

∞∑
v=n

| ∆λv |

= O(1)
∞∑

v=1

| ∆λv |

v∑
n=1

(θα,βn )k

nXk−1
n

= O(1)
∞∑

v=1

| ∆λv | Xv = O(1)
∞∑

v=1

| Av |Xv < ∞,
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in view of the hypotheses of Theorem 3.1 and Lemma 3. 6. This completes the proof of Theorem 3. 1.
If we take β = 0, then we get a new result for | C, α |k summability factors. Also, if we take β = 0 and
α = 1, then we obtain a result dealing with | C, 1 |k summability factors. Finally, if we take γ=0, then we get
another new result dealing with quasi-σ-power increasing sequences.
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