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Finite Dimensional Locally Convex Cones

Davood Ayaseha

aYoung Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran

Abstract. We study the locally convex cones which have finite dimension. We introduce the Euclidean
convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally
convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform
structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional
cone endowed with the Euclidean convex quasiuniform structure is identical with it’s algebraic dual.

1. Introduction

The theory of locally convex cones as developed in [5] and [7] uses an order theoretical concept or a
convex quasiuniform structure to introduce a topological structure on a cone. In this paper we use the
latter. For recent researches see [1–4].

A cone is a setP endowed with an addition and a scalar multiplication for nonnegative real numbers. The
addition is assumed to be associative and commutative, and there is a neutral element 0 ∈ P. For the scalar
multiplication the usual associative and distributive properties hold, that is α(βa) = (αβ)a, (α+β)a = αa +βa,
α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0.

Let P be a cone. A collection U of convex subsets U ⊆ P2 = P × P is called a convex quasiuniform
structure on P, if the following properties hold:
(U1) ∆ ⊆ U for every U ∈ U ( ∆ = {(a, a) : a ∈ P});
(U2) for all U,V ∈ U there is a W ∈ U such that W ⊆ U ∩ V;
(U3) λU ◦ µU ⊆ (λ + µ)U for all U ∈ U and λ, µ > 0;
(U4) αU ∈ U for all U ∈ U and α > 0.

Here, for U,V ⊆ P2, by U◦V we mean the set of all (a, b) ∈ P2 such that there is some c ∈ Pwith (a, c) ∈ U
and (c, b) ∈ V.

Let P be a cone and U be a convex quasiuniform structure on P. We shall say (P,U) is a locally convex
cone if

(U5) for each a ∈ P and U ∈ U there is some ρ > 0 such that (0, a) ∈ ρU.
We say that the convex subset E ofP2 is uniformly convex whenever E has properties (U1) and (U3). The

uniformly convex subsets play an important role in the construction of a convex quasiuniform structure.
With every collection of uniformly convex subsets we can obtain a convex quasiuniform structure (see
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[1], Proposition 2.2). With every convex quasiuniform structure U on P we associate two topologies: The
neighborhood bases for an element a in the upper and lower topologies are given by the sets

U(a) = {b ∈ P : (b, a) ∈ U}, resp. (a)U = {b ∈ P : (a, b) ∈ U}, U ∈ U.

The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood
base for a ∈ P in this topology is given by the sets

U(a)U = U(a) ∩ (a)U, U ∈ U.

LetU andW be convex quasiuniform structures onP. We say thatU is finer thanW if for every W ∈ W
there is U ∈ U such that U ⊆W.

In locally convex cone (P,U) the closure of a ∈ P is defined to be the set

a =
⋂
U∈U

U(a)

(see [5], chapter I). The locally convex cone (P,U) is called separated if a = b implies a = b for a, b ∈ P. It
is proved in [5] that the locally convex cone (P,U) is separated if and only if its symmetric topology is
Hausdorff.

The extended real number systemR = R∪ {+∞} is a cone endowed with the usual algebraic operations,
in particular a +∞ = +∞ for all a ∈ R, α.(+∞) = +∞ for all α > 0 and 0.(+∞) = 0. We set Ṽ = {ε̃ : ε > 0},
where

ε̃ = {(a, b) ∈ R
2

: a ≤ b + ε}.

Then Ṽ is a convex quasiuniform structure onR and (R, Ṽ) is a locally convex cone. For a ∈ R the intervals
(−∞, a + ε] are the upper and the intervals [a − ε,+∞] are the lower neighborhoods, while for a = +∞ the
entire cone R is the only upper neighborhood, and {+∞} is open in the lower topology. The symmetric
topology is the usual topology on R with as an isolated point +∞.

For conesP andQ, a mapping T : P → Q is called a linear operator if T(a+b) = T(a)+T(b) and T(αa) = αT(a)
hold for all a, b ∈ P and α ≥ 0. If both (P,U) and (Q,W) are locally convex cones, the operator T is called
(uniformly) continuous if for every W ∈ W one can find U ∈ U such that (T × T)(U) ⊆W.

A linear functional on P is a linear operator µ : P → R. We denote the cone all linear functional on P,
by L(P) and call it the algebraic dual of P. The dual cone P∗ of a locally convex cone (P,U) consists of all
continuous linear functionals onP. For U ∈ U, we set U◦ = {µ ∈ L(P) : µ(a) ≤ µ(b) + 1 if (a, b) ∈ U}. We have
P
∗ =

⋃
U∈UU◦.

Let (P,U) be a locally convex cone. We shall say that the subset F of P2 is u-bounded if it is absorbed
by each U ∈ U. The subset B of P is called bounded below (or above) whenever {0} × B (or B × {0}) is
u-bounded. The subset B is called bounded if it is bounded below and above. An element a ∈ P is called
bounded below (or above) whenever {a} is so.

Let (P,U) and (Q,W) be locally convex cones. The linear operator T : P → Q is called u-bounded
whenever for every u-bounded subset B of P2, (T × T)(B) is u-bounded. The locally convex cone (P,U) is
called bornological if every u-bounded linear operator from (P,U) into any locally convex cone is continuous.
The linear operator T : P → Q is called bounded below whenever for every bounded below subset A of
P, T(A) is bounded below. The locally convex cone (P,U) is called b-bornological if every bounded below
linear operator from (P,U) into any locally convex cone is continuous (see [1]). Since every u-bounded
linear operator is bounded below, every b-bornological cone is bornological.

The locally convex cone (P,U) is called a uc-cone whenever U = {αU : α > 0} for some U ∈ U (see [1]). It
is proved in [1] that the locally convex cone (P,U) is a uc-cone if and only if U has a u-bounded element.

For a subset F of P2 we denote by uch(F), the smallest uniformly convex subset of P2, which contains F
and call it the uniform convex hull of F(such a subset of P2 obviously exists, since the properties (U1) and
(U3) are preserved by arbitrary intersections).
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Bornological and b-bornological locally convex cones are studied in [1]. Firstly, we review the con-
struction of this structure briefly: Let P be a cone and U be a uniformly convex subset of P. We set
PU = {a ∈ P : ∃λ > 0 (0, a) ∈ λU} and UU = {αU : α > 0}. Then (PU,UU) is a locally convex cone (a
uc-cone). In [1] we proved that there is the finest convex quasiuniform structure Uτ (or Ubτ) on locally
convex cone (P,U) such that P2 (or P) has the same u-bounded (or bounded below) subsets under U and
Uτ(or Ubτ). The locally convex cone (P,Uτ) is the inductive limit of the uc-cones (PU,UU)U∈B, where B is
the collection of all uniformly convex and u-bounded subsets of P2. Also (P,Ubτ) is the inductive limit of
the uc-cones (PU,UU)U∈B, where B = {uch({0} × B) : B is bounded below}. The locally convex cone (P,U) is
bornological or b-bornological if and only if U is equivalent to Uτ or Ubτ, respectively.

Let P be a cone. There is the finest convex quasiuniform structure Uβ on P that makes (P,Uβ) into a
locally convex cone (see Proposition 2.2 from [1]). If B is the collection of all uniformly convex subsets of
P

2 such that for every a ∈ P and U ∈ B there is λ > 0 such that (0, a) ∈ λU, then Uβ is the coarsest convex
quasiuniform structure on P that contains B.

2. Finite Dimensional Locally Convex Cones

We define the concepts of the base and dimension for cones. On the finite dimensional cones we
introduce and investigate the concept of Euclidean convex quasiuniform structure.

Suppose P is a cone and B ⊆ P. We set

span(B) =
{ n∑

i=1

αibi : n ∈N, b1, · · · , bn ∈ B, α1, · · · , αn ≥ 0
}
.

If B = ∅, then we set span(B) = {0}. The subset B of P is called linearly independent whenever span(B) ,
span(E) for each E ( B. Obviously, for every x , 0, {x} is linearly independent.

Definition 2.1. Let P be a cone. We shall say that the subset B of P \ {0} is a base for P whenever
(1) for every a ∈ P there are n ∈ N, b1, ..., bn ∈ B and α1, ..., αn ≥ 0 such that a =

∑n
i=1 αibi, in the other words

P = span(B),
(2) B is linearly independent.

Definition 2.2. We shall say that the coneP is a n-dimensional cone wheneverP has a finite base B = {b1, b2, · · · , bn},
n ∈N, and for every base B′ for P, Card(B′) ≥ n.

Remark 2.3. Let P and Q be cones of dimension n ∈ N. Then the cones P and Q are not necessarily isomorphic.
For example the cones [0,+∞) and {0,+∞} are one dimensional, but they are not algebraically isomorphic. Also, if
the cone P is a vector space, then the dimensions of P are not equal as a vector space and as a cone. For example, R2

is 2-dimensional as a vector space and it is 3-dimensional as a cone. The set {(−1, 0), (1, 1), (1,−1)} is a base for R2 as
a cone and for every base B′ for R2, we have card(B′) ≥ 3.

The following lemma is an equivalent form of the axiom of choice.

Lemma 2.4. Let E be a set of subsets of a set E and let L be a chain contained in E. Then there is a maximal chain
M with L ⊆M ⊆ E.

Theorem 2.5. Let E be a linearly independent subset of a cone P and F be a subset of P such that E ⊆ F and
P = span(F). Then there is a base B of P such that E ⊆ B ⊆ F.

Proof. Let L = E, L = {L} and let E be the collection of all linearly independent subsets of F. By lemma 2.4,
there is a maximal chainM with L ⊆ M ⊆ E. We set B =

⋃
M∈MM. Then E ⊆ B ⊆ F. We prove that B is a

base for P. We claim that every element of F is a linear combination of elements of B. Otherwise, there is
x ∈ F such that x < span(B). Now we can add B ∪ {x} toM, and this is a contradiction with the maximality
ofM. Then P = span(F) = span(B). Now, we prove that B is linearly independent. Otherwise, there is a
subset A ( B such that span(A) = span(B). Then there is x ∈ B \ A such that x =

∑n
i αiai, for some n ∈ N,

a1, · · · , an ∈ A and α1, · · · , αn > 0. Since M is a chain, there is M′ ∈ M such that x, a1, · · · , an ∈ M′. Then
span(M′) = span(M′ \ {x}). This is a contradiction, since M′ is linearly independent.
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Corollary 2.6. Every linearly independent subset of a cone can be extended to a base.

Corollary 2.7. Every cone P has a base. In fact we can take E = ∅ and F = P, then there is a base B for P by theorem
2.5.

Let P be a cone with finite dimension and B = {b1, · · · , bn} be a base for P. We set UB = uch({0} × B) and
UB = {αUB : α > 0}. We claim that (P,UB) is a uc-cone. Let a ∈ P. There are α1, · · · , αn ≥ 0, such that
a =

∑n
i=1 αibi. Now, we have

(0, a) =

n∑
i=1

αi(0, bi) ∈
n∑

i=1

αiUB ⊆ (
n∑

i=1

αi)UB.

This shows that (P,UB) is a locally convex cone. Since UB is created by UB, we conclude that (P,UB) is a
uc-cone.

Definition 2.8. Let P be a n-dimensional cone, with the base B = {b1, b2, · · · , bn}. We call UB, the Euclidean convex
quasiuniform structure on P.

Theorem 2.9. Let P be a n-dimensional cone. If B and B′ are two bases for P, then UB and UB′ are equivalent.

Proof. Let B = {b1, · · · , bn} and B′ = {b′1, · · · , b
′
m}. Since B′ is a base for P, for every j ∈ {1, · · · ,n}, we have

b j =
∑m

i=1 αi jb′i for some α1, · · · , αm ≥ 0. We set λ j =
∑m

i=1 αi j. Then we have (0, b j) ∈ λ jUB′ . This shows that
UB = uch({0} × B) ⊆ λUB′ , where λ = max{λi : i = 1, · · · ,n}. Therefore UB is finer than UB′ . Similarly, we can
prove that UB′ is finer than UB.

Theorem 2.10. LetP a finite dimensional cone with the base B. Then UB is the finest convex quasiuniform structure
on P that makes it a locally convex cone.

Proof. Let B = {b1, · · · , bn} and U be an arbitrary convex quasiuniform structure on P that makes P into
a locally convex cone. suppose V ∈ U. There is λ ≥ 0 such that {0} × B ⊆ λV. This shows that UB =
uch({0} × B) ⊆ uch(λV) = λV. Then 1

λUB ⊆ V. Therefore UB is finer than U.

Corollary 2.11. LetP a finite dimensional cone with the base B. ThenUB is equivalent with the convex quasiuniform
structure Uβ.

We denote the convex hall of the set A by conv(A).

Lemma 2.12. Let P be a cone and A ⊆ P. Then we have

uch({0} × A) = {(b, b + a) : b ∈ P, a ∈ conv({0} ∪ A)}.

Proof. Suppose G = {(b, b + a) : b ∈ P, a ∈ conv({0} ∪ A)}. Since 0 ∈ P and A ⊆ conv({0} ∪ A), then we have
{0} × A ⊆ G. We prove that G is uniformly convex. For convexity, let t ∈ [0, 1] and (b, b + a), (b′, b′ + a′) ∈ G
for some b, b′ ∈ P and a, a′ ∈ conv({0} ∪ A). Then we have

t(b, b + a) + (1 − t)(b′, b′ + a′) = (tb + (1 − t)b′, tb + (1 − t)b′ + ta + (1 − t)a′) ∈ G,

since ta + (1 − t)a′ ∈ conv({0} ∪ A). It is clear that 4 ⊂ G. For (U3), Let (h, l) ∈ λG and (l, k) ∈ γG. Then there
are b, b′ ∈ P and a, a′ ∈ conv({0} ∪ A) such that (h, l) = (λb, λb + λa) and (l, k) = (γb′, γb′ + γa′). This shows
that γb′ = λb + λa and then (h, k) = (λb, γb′ + γa′) = (λb, λb + λa + γa′). Then

1
λ + γ

(h, k) = (
λ

λ + γ
b,

λ
λ + γ

b +
λ

λ + γ
a +

γ

λ + γ
a′) ∈ G.



D. Ayaseh / Filomat 31:16 (2017), 5111–5116 5115

Therefore (h, k) ∈ (λ + γ)G. Now, since G is uniformly convex and contains {0} × A, we conclude that
uch({0}×A) ⊆ G. On the other hand if (b, b + a) ∈ G for some b ∈ P and a ∈ conv({0}∪A), then for each n ∈N,
we have (b, b + a) = (b, b) + (0, a) ∈ 1

n 4 +uch({0} × A) ⊆ (1 + 1
n )uch({0} × A). This shows that

G ⊆
⋂
n∈N

(1 +
1
n

)uch({0} × A) = uch({0} × A).

Remark 2.13. Let P be a vector space over R, with dimension n. If G = {b1, · · · , bn} is a base for P as a vector
space, then B = G ∪ (−G) is a base for P as a cone. We prove that the symmetric topology induced on P by UB is the
Euclidean topology. We consider on P the norm is defined by

||x|| =
n∑

i=1

|αi|,

where x =
∑n

i=1 αibi and αi ∈ R for each i = 1, · · · ,n. Let T be the unit ball of P. We prove that T ⊆ UB(0)UB. If
x ∈ T, than

∑n
i=1 |αi| ≤ 1. Without loss of generality, we suppose α1, · · · , αm < 0, where m ≤ n. Now we have

(0, x) = (0,
n∑

i=1

αibi) = (0,
m∑

i=1

(−αi)(−bi) +

n∑
i=m+1

αibi)

∈

n∑
i=1

|αi|UB ⊆ (
n∑

i=1

|αi|)UB ⊆ UB.

Then x ∈ (0)UB. Also, since (x, 0) = (x, x + (−x)) and −x ∈ conv({0} ∪ B), lemma 2.12 shows that x ∈ UB(0).
Therefore x ∈ UB(0)UB. On the other hand if x ∈ UB(0), then by the lemma 2.12 there are n ∈ N and α1, · · · , αn,
with

∑n
i=1 |αi| ≤ 1 such that −x =

∑n
i=1 αibi. This shows that ‖x‖ = ‖ − x‖ =

∑n
i=1 |αi| ≤ 1. Then x ∈ T. Therefore

UB(0)UB ⊆ UB(o) ⊆ T. Then the Euclidean topology on P is equivalent with the symmetric topology induced by the
Euclidean convex quasiuniform structure.

Theorem 2.14. Let P be a n-dimensional cone with the base B. Then (P,UB) is b-bornological and bornological.

Proof. It is clear that B is bounded below in (P,UB). Now, Let (Q,W) be a locally convex cone and T be a
bounded below linear operator from (P,UB) into (Q,W). If T is not continuous, then there is W ∈ W such
that (T × T)(UB) * αW for all α > 0. Thus (T × T)({0} × B) * αW for all α > 0 (if (T × T)({0} × B) ⊆ αW, then
(T × T)(UB) = uch((T × T)({0} × B)) ⊆ uch(αW) = αW). This shows that T(B) is not bounded below. Then T is
not bounded below. This contradiction proves our claim. Since every b-bornological locally convex cone is
bornological, we conclude that (P,UB) is bornological.

Corollary 2.15. For the finite dimensional cone P, with base B, UB is equivalent with (UB)bτ and (UB)τ.

Suppose that L(P) is the algebraic dual of P. In the following theorem we show that the dual cone of any
finite dimensional cone endowed with the Euclidean convex quasiuniform structure UB is identical with
L(P).

Theorem 2.16. Let P be a finite dimensional cone with the base B. Then
(a) (P,UB)∗ = L(P),
(b) U◦B = (0 × B)◦,

Proof. For (a), we note that the Euclidean convex quasiuniform structure UB on P is equivalent with Uβ by
Corollary 2.11. Then (P,UB)∗ = (P,Uβ)∗ = L(P).
For (b), we have U◦B ⊆ (0 × B)◦, since 0 × B ⊆ UB. For the converse inclusion suppose µ ∈ (0 × B)◦. Then
µ(b) ≥ −1 for all b ∈ B. Now, let (a, b) ∈ UB. Lemma 2.12, shows that b = a +

∑n
i=1 λibi for some n ∈ N,

λ1, · · · , λn > 0 with
∑n

i=1 λi ≤ 1. Therefore µ(b) = µ(a) +
∑n

i=1 λiµ(bi) ≥ µ(a) −
∑n

i=1 λi ≥ µ(a) − 1. Therefore
µ(a) ≤ µ(b) + 1. Then µ ∈ U◦B.
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Example 2.17. The extended real number systemR is a cone with dimension 3. The subset B = {−1, 1,+∞} is a base
for R. Then the Euclidean convex quasiuniform structure on R is UB = {αUB : α > 0}, where

UB = uch({0} × B) = {(x, y) : x, y ∈ R, x − 1 ≤ y ≤ x + 1} ∪ {(x,∞) : x ∈ R}.

The Euclidean convex quasiuniform structure is strictly finer than Ṽ = {ε̃ : ε > 0}. In fact we have UB ⊂ 1̃. For
a ∈ R and UB ∈ UB, the upper, lower and symmetric neighborhoods are as follows: UB(a) = [a − 1, a + 1], (a)UB =

[a−1, a+1]∪{+∞} and UB(a)UB = [a−1, a+1]. For +∞we have UB(∞) = R, (∞)UB = {∞} and UB(∞)UB = {∞}.
The symmetric topologies induced by Ṽ and UB are equivalent.

Example 2.18. Suppose B = (−1, 1). Let Q be the collection of all sets a + ρB, where a ∈ R and ρ ≥ 0. Then Q is a
cone endowed with the usual addition and scaler multiplication. Its neutral element is {0}. Also,B = {−1+B, 1+B}} is
a base forQ. We have uch({0}×B) = {((a, b), (a−2t1, b+2t2)) : a < b, t1, t2 ≥ 0, t1 + t2 ≤ 1}. We set B̃ = uch({0}×B),
then UB = {αB̃ : α > 0} is the Euclidean convex quasiuniform structure on Q.
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