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Abstract. In this paper existence and uniqueness of fixed points for a general class of contractive and non-
expansive mappings on modular metric spaces is discussed. As an application of the theoretical results,
the existence of a solution of anti-periodic boundary value problems for nonlinear first order differential
equations of Carathéodory’s type is considered in the framework of modular metric spaces.

1. Introduction

The notions of metric modular and modular metric spaces (or metric modular spaces) have been
introduced recently by Chistyakov [7, 9]. Metric modulars generate metric spaces by providing a weaker
convergence called the modular convergence having a non-metrizable topology. Modular metric spaces are
extensions of metric spaces, metric linear spaces, and classical modular linear spaces founded by Nakano
as extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions [13, 14]. For a detailed overview
of metric modulars and modular metric spaces, see [9].

In [8], Chistyakov establishes a fixed point theorem for contractive maps in modular metric spaces. In
[12], authors also prove the existence of fixed point theorems for contraction mappings and Kannan type
contraction mappings in modular metric spaces.

In this paper, our main aim is to prove two fixed point theorems on modular metric spaces for non-
expansive mappings discussed by Bogin [3] on complete metric spaces. Bogin [3] proved the following
fixed point theorem.

Theorem 1.1. Let (X, d) be a nonempty complete metric space and T : X→ X be a mapping satisfying

d(Tx,Ty) ≤ ad(x, y) + b[d(x,Tx) + d(y,Ty)] + c[d(x,Ty) + d(y,Tx)] (1)

where a ≥ 0, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point.

Inspired by the study of Bogin, we prove a fixed point theorem for self mappings on modular metric spaces
satisfying the condition (1). We also study contractive mappings of a similar type and give some particular
cases.
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In [8, 9], Chistyakov applied his theoretical findings to an initial value problem for first order differential
equations of Carathéodory’s type. In this study, we present an application of fixed point results to modular
metric space on an anti-periodic boundary value problem for Carathéodory’s type ordinary differential
equations using a variant of a modular metric space given in the problem studied by Chistyakov in [8].
Because of their appearance on many applications, anti-periodic problems are studied extensively in the last
twenty years, see [1, 2, 4, 8–11, 15] for example. The existence and uniqueness of solutions for such problems
have received a great attention, see [5, 16, 17] and references therein. In [11], authors proved existence results
for a nonlinear Carathéodory’s type anti-periodic first order problem using a Leray-Schauder alternative.
Motivated by the studies in [8, 11], as an application of our theorems, we consider anti-periodic first order
boundary value problems of Carathéodory’s type.

The paper is organized as follows: In Section 2 basic concepts on metric modular and modular metric
space are given. Existence and uniqueness theorems for self mappings on modular metric spaces are
proved in Section 3. As an example of metric modular spaces, the metric modular space of anti-periodic
mappings of bounded generalizedϕ-variations is introduced in Section 4. Finally, the existence of solutions
of anti-periodic boundary value problem for first order differential equations of Carathéodory’s type is
investigated in Section 5.

2. Modular metric spaces essentials

In this section, we give some relevant definitions and results on modular metric spaces which will be
used in our main results. For further information, see [7, 9].

Let X be a nonempty set, λ > 0, w : (0,∞) × X × X −→ [0,∞]. We write wλ(x, y) = w(λ, x, y) for all λ > 0,
x, y ∈ X so that w = {wλ}λ>0 for which wλ : X × X −→ [0,∞].

Definition 2.1. A function w : (0,∞) × X × X −→ [0,∞] is said to be a (metric) modular on X if it satisfies the
following three conditions:

a) x = y iff wλ(x, y) = 0 for all λ > 0;

b) wλ(x, y) = wλ(y, x) for all λ > 0;

c) wλ+µ(x, z) ≤ wλ(x, y) + wµ(y, z) for all λ, µ > 0.

for all x, y, z ∈ X.

If, instead of a), the function w satisfies only

wλ(x, x) = 0 for all λ > 0 (2)

then w is said to be a pseudomodular on X.
If w satisfies (2) and given x, y ∈ X, if there exists a number λ > 0, possibly depending on x and y, such

that wλ(x, y) = 0, then x = y, the function w is called a strict modular on X.
A modular (pseudomodular, strict modular) w on X is said to be convex if, instead of c), for all λ, µ > 0,

it satisfies the inequality

wλ+µ(x, z) ≤
λ

λ + µ
wλ(x, y) +

µ

λ + µ
wµ(y, z). (3)

It is shown in [7] that a convex modular satisfies

wλ(x, y) ≤
µ

λ
wµ(x, y) ≤ wµ(x, y). (4)

for all x, y ∈ X and 0 < µ ≤ λ. Indeed, using the condition (c) of Definition 2.1 it can be seen that, a modular
(pseudomodular) w satisfies

wλ2 (x, y) ≤ wλ1 (x, y) (5)

for λ1 < λ2 and all x, y ∈ X.
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Definition 2.2. [7] Let w be a pseudomodular on X and x0 ∈ X. Then the sets

Xw = Xw(x0) = {x ∈ X : wλ(x, x0)→ 0 as λ→∞}

X∗w = X∗w(x0) = {x ∈ X : ∃λ = λ(x) > 0, such that wλ(x, x0) < ∞}

are said to be modular metric spaces (around x0).

It can be observed that, Xw ⊂ X∗w holds. If w is a metric modular on X, then the modular space Xw can be
equipped with a (nontrivial) metric generated by w given by

dw(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ}

for any x, y ∈ Xw. If w is a convex modular on X, then Xw = X∗w holds and they are endowed with the metric

d∗w(x, y) = inf{λ > 0 : wλ(x, y) ≤ 1}.

These distances are called Luxemburg distances.

Definition 2.3. [7, 8] Let Xw and X∗w be modular metric spaces.

• The sequence {xn} in Xw (or X∗w) is said to be w-convergent to x ∈ X if and only if wλ(xn, x)→ 0 as n→∞ for
some λ > 0. Then x is called the modular limit of {xn}.

• The sequence {xn} in Xw is said to be w-Cauchy if wλ(xn, xm)→ 0 as m,n→∞ for some λ > 0.

• A subset M of Xw or X∗w is said to be w-complete if any w-Cauchy sequence in M is an w-convergent sequence
and its w-limit is in M.

In [8], it is shown that, if w is a pseudomodular on X, the modular metric spaces Xw and X∗w are closed with
respect to w-convergence. In addition, if w is strict, then the modular limit is unique if it exists.

Remark 2.4. According to the definition of convergence and properties of metric modular, it is easy to see that if
limn→∞ wλ(xn, x) = 0 for some λ > 0, then limn→∞ wµ(xn, x) = 0 for all µ > λ > 0.

3. Fixed point theorems in complete modular metric spaces

In this section, we state and prove fixed point theorems for two types of mappings on modular metric
spaces. The first type is an analog of the non-expansive mapping discussed by Bogin on metric spaces
[3] and the second type is a contraction mapping with a similar structure. These theorems have various
consequences given as corollaries.

First, we state the definition of modular contractive mappings given in [8].

Definition 3.1. Let X be a nonempty set and w be a metric modular on X.

(i) A map T : X∗w −→ X∗w is said to be w-contractive provided that there exist 0 < k < 1 and λ0 > 0 depending on
k such that

wkλ(Tx,Ty) ≤ wλ(x, y)

for all 0 < λ < λ0 and x, y ∈ X∗w.

(ii) A map T : X∗w −→ X∗w is said to be strong w-contractive provided that there exist 0 < k < 1 and λ0 > 0
depending on k such that

wkλ(Tx,Ty) ≤ kwλ(x, y)

for all 0 < λ < λ0 and x, y ∈ X∗w.
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The following fixed point theorems have been proved in [8].

Theorem 3.2. Let X be a nonempty set and w be a strict convex metric modular on X. Let X∗w be a complete modular
metric space induced by w and T : X∗w → X∗w be a w-contractive self mapping.

If for every λ > 0 there exists an x = x(λ) ∈ X∗w such that wλ(x,Tx) < ∞ then T has a fixed point in X∗w .
If in addition wλ(x, y) < ∞ for all x, y ∈ X∗w and every λ > 0, then the fixed point of T is unique.

Theorem 3.3. Let X be a nonempty set and w be a strict metric modular on X. Let X∗w be a complete modular metric
space induced by w and T : X∗w → X∗w be a strong w-contractive self mapping.

If for every λ > 0 there exists an x = x(λ) ∈ X∗w such that wλ(x,Tx) < ∞ then T has a fixed point in X∗w .
If in addition wλ(x, y) < ∞ for all x, y ∈ X∗w and every λ > 0, then the fixed point of T is unique.

We start with a variant of the definitions of w-contraction and strong w-contraction.

Definition 3.4. Let w be a metric modular on X.

(i) A map T : X∗w → X∗w is said to be a Bogin-type w-contraction, if there exist 0 < k < 1 and λ0 depending on
k, such that

wkλ(Tx,Ty) ≤ awλ(x, y) + b[w2λ(x,Tx) + w2λ(y,Ty)] + c[w2λ(x,Ty) + w2λ(y,Tx)] (6)

holds for all 0 < λ < λ0, x, y ∈ X∗w and a, b, c ≥ 0 with a + 2b + 2c = 1.

(ii) A map T : X∗w → X∗w is said to be a strong Bogin-type w-contraction, if there exist 0 < k < 1, λ0 depending
on k and a, b, c ≥ 0 satisfying a + 4b + 4c = k < 1, such that the inequality (6) holds for all 0 < λ < λ0,
x, y ∈ X∗w.

In the following, we prove an auxiliary result needed in the proofs of the fixed point theorems.

Lemma 3.5. Let X be a nonempty set, w be a metric modular on X and T : X∗w → X∗w be a Bogin-type or a strong
Bogin-type w-contractive map. Suppose that for every λ > 0, there exists an x0 ∈ X∗w such that wλ(x0,Tx0) < ∞.
Then, the sequence {xn} := {Tnx0} satisfies

wkλ(xn+1, xn+2) ≤ wλ(xn, xn+1), (7)

for all λ < λ0.

Proof. Starting with x0 ∈ X∗w with wλ(x0,Tx0) < ∞, we construct the sequence {xn} ∈ X∗w as xn = Tnx0 for all
n ∈ N. Note that for all x, y ∈ X∗w the relation (5) holds. Then the inequality (6) with x = xn and y = xn+1
yields

wkλ(Txn,Txn+1) = wkλ(xn+1, xn+2)
≤ awλ(xn, xn+1) + b[w2λ(xn,Txn) + w2λ(xn+1,Txn+1)]
+ c[w2λ(xn,Txn+1) + w2λ(xn+1,Txn)]
= awλ(xn, xn+1) + b[w2λ(xn, xn+1) + w2λ(xn+1, xn+2)]
+ c[w2λ(xn, xn+2) + w2λ(xn+1, xn+1)]
≤ awλ(xn, xn+1) + b[wλ(xn, xn+1) + wλ(xn+1, xn+2)]
+ c[wλ(xn, xn+1) + wλ(xn+1, xn+2)],

(8)

for all λ < λ0. Taking into account that kλ < λ, we obtain

wkλ(xn+1, xn+2) ≤ (a + b + c)wλ(xn, xn+1) + (b + c)wλ(xn+1, xn+2)
≤ (a + b + c)wλ(xn, xn+1) + (b + c)wkλ(xn+1, xn+2),

and conclude

wkλ(xn+1, xn+2) ≤
a + b + c
1 − b − c

wλ(xn, xn+1). (9)
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If T is Bogin or strong Bogin type w-contraction, then a + 2b + 2c ≤ 1, so that
a + b + c
1 − b − c

≤ 1. Hence, the
inequality (9) becomes

wkλ(xn+1, xn+2) ≤ wλ(xn, xn+1), (10)

which completes the proof.

Our main theorem is an analog of the fixed point theorem by Bogin [3] in the framework of modular
metric spaces.

Theorem 3.6. Let w be a strict convex metric modular on X and X∗w be a w-complete modular metric space induced
by w. Assume that T : X∗w → X∗w is a Bogin-type w-contractive self mapping.

If for every λ > 0 there exists an x ∈ X∗w satisfying wλ(x,Tx) < ∞ then the mapping T has a fixed point in X∗w.
If in addition, wλ(x, y) < ∞ for all x, y ∈ X∗w, λ > 0 then the fixed point of T is unique.

Proof. Let x0 be any element in X∗w satisfying wλ(x0,Tx0) < ∞. Define the sequence {xn} ∈ X∗w as xn = Tnx0
for all n ∈N and assume that wλ(xn, xn+1) > 0 for all λ > 0 and n ∈N. Indeed, if wλ f (xn0 , xn0+1) = 0 for some
λ f > 0 and n0 ∈N, then xn0 would be a fixed point of T.

Regarding Lemma 3.5, the sequence {xn} satisfies

wkλ(xn+1, xn+2) ≤ wλ(xn, xn+1) (11)

for all 0 < λ < λ0 and n ∈N0 =N ∪ {0}. We will show that the sequence {xn} is w-Cauchy.
First, we observe that since w is convex, then for any positive integers m,n with n > m we have

wλc (xm, xn) ≤
λm

λc
wλm (xm, xm+1) +

λm+1

λc
wλm+1 (xm+1, xm+2)

+ · · · +
λn−1

λc
wλn−1 (xn−1, xn),

(12)

where λc = λm + λm+1 + · · · + λn−1. On the other hand, due to the fact that knλ < λ < λ0, the inequality (11)
gives

wkn+1λ(xn+1, xn+2) = wk(knλ)(xn+1, xn+2) ≤ wknλ(xn, xn+1),

or, inductively,

wkn+1λ(xn+1, xn+2) ≤ wλ(x0, x1) < ∞ (13)

for all n ∈N0 and 0 < λ < λ0. Let λ1 = (1 − k)λ0 < λ0. We have then

wknλ1 (xn, xn+1) ≤ wλ1 (x0, x1) < ∞ (14)

for all n ∈N0. Choose λl = klλ1 for l = m,m + 1, . . . ,n − 1 in (12) and take into account (14). This results in

wλc (xm, xn) ≤
kmλ1

λc
wkmλ1 (xm, xm+1) +

km+1λ1

λc
wkm+1λ1 (xm+1, xm+2)

+ · · · +
kn−1λ1

λc
wkn−1λ1 (xn−1, xn)

=
λ1

λc

n−1∑
l=m

klwklλ1
(xl, xl+1)

≤
λ1

λc
wλ1 (x0, x1)

n−1∑
l=m

kl

=
λ1

λc
wλ1 (x0, x1)km 1 − kn−m

1 − k
,

(15)
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whereλc =

n−1∑
l=m

klλ1 = kmλ1
1 − kn−m

1 − k
. Sinceλ1 = (1−k)λ0, thenλ0 = λ1

1−k and we haveλc = km(1−kn−m)λ0 < λ0.

Hence, the inequalities (4) and (15) imply

0 ≤ wλ0 (xm, xn) ≤
λc

λ0
wλc (xm, xn) ≤

λ1

λ0
wλ1 (x0, x1)km 1 − kn−m

1 − k
≤ kmwλ1 (x0, x1).

As a result we have
lim

m→∞
wλ0 (xm, xn) = 0.

Therefore {xn} is a w-Cauchy sequence in X∗w. Since X∗w is w-complete by the assumption, then the sequence
{xn} is w-convergent to some x ∈ X∗w, that is,

lim
n→∞

wλ0 (xn, x) = 0, (16)

and since w is a strict modular, the limit is unique.
Now, we will show that Tx = x holds. Using the third condition of metric modular and noting that

Txn = xn+1, we have

w(k+1)λ0 (Tx, x) ≤ wkλ0 (Tx,Txn) + wλ0 (xn+1, x). (17)

Since w is of Bogin-type w-contractive, we have

wkλ0 (Tx,Txn) ≤ awλ0 (x, xn) + b[w2λ0 (x,Tx) + w2λ0 (xn, xn+1)]
+c[w2λ0 (x, xn+1) + w2λ0 (xn,Tx)]

≤ awλ0 (x, xn)
+(b + c)[wλ0 (x, xn+1) + wλ0 (xn, xn+1) + wλ0 (Tx,Txn+1)]

≤ awλ0 (x, xn)
+(b + c)[wλ0 (x, xn+1) + wλ0 (xn, xn+1) + wkλ0 (Tx,Txn+1)]

which gives

(1 − b − c)wkλ0 (Tx,Txn) ≤ awλ0 (x, xn)
+(b + c)[wλ0 (x, xn+1) + wλ0 (xn, xn+1)].

Taking limit of both sides as n→∞, we obtain

lim
n→∞

wkλ0 (Txn,Tx) = 0. (18)

Thus we get w(k+1)λ0 (Tx, x) = 0. Since w is strict, Tx = x holds, i.e., x is a fixed point of T.
To show the uniqueness, we assume that x and y are two fixed points of T, i.e., x, y ∈ X∗w for which

Tx = x and Ty = y hold. Since w is convex, we have

wλ0 (x, y) ≤ kλ0
λ0

wkλ0 (x, y) = kwkλ0 (Tx,Ty)
≤ kaw2λ0 (x, y) + kb[w2λ0 (x,Tx) + w2λ0 (y,Ty)]

+kc[w2λ0 (x,Ty) + w2λ(y,Tx)]
≤ kawλ0 (x, y) + kb[wλ0 (x, x) + wλ0 (y, y)]

+kc[wλ0 (x, y) + wλ0 (y, x)]
= k(a + 2c)wλ0 (x, y).

(19)

By the assumption wλ(x, y) < ∞, we get (1− k(a + 2c))wλ0 (x, y) ≤ 0. Due to the fact that a + 2c ≤ a + 2b + 2c = 1
and 0 < k < 1, wλ0 (x, y) = 0 holds. Since w is strict, we have x = y. This completes the proof of the
theorem.
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We next prove another fixed point theorem in which the condition on the constants a, b, c is changed so
that the mapping T becomes strong Bogin-type w-contractive.

Theorem 3.7. Let w be a strict metric modular on X and X∗w be a w-complete modular metric space induced by w.
Assume that T : X∗w → X∗w is a strong Bogin-type w-contractive self mapping.

If for every λ > 0 there exists an x ∈ X∗w satisfying wλ(x,Tx) < ∞ then the mapping T has a fixed point in X∗w.
If in addition, wλ(x, y) < ∞ for all x, y ∈ X∗w, λ > 0 then the fixed point of T is unique.

Proof. Let vλ(x, y) =
wλ(x, y)
λ

for all λ > 0 and x, y ∈ X. Then v is a strict convex metric modular and the
modular metric space X∗v = X∗w is v-complete. Since T is a strong Bogin-type w-contractive self mapping, (6)
implies

kλvkλ(Tx,Ty) ≤ aλvλ(x, y)
+2bλ[v2λ(x,Tx) + v2λ(y,Ty)] + 2λc[v2λ(x,Ty) + v2λ(y,Tx)]

= λ[avλ(x, y)
+2b(v2λ(x,Tx) + v2λ(y,Ty)) + 2c(v2λ(x,Ty) + v2λ(y,Tx))]

which gives

vkλ(Tx,Ty) ≤
a
k

vλ(x, y) +
2b
k

[v2λ(x,Tx) + v2λ(y,Ty)] +
2c
k

[v2λ(x,Ty) + v2λ(y,Tx)].

Since k = a + 4b + 4c, the condition (6) holds for the strict convex metric modular v and T becomes a
Bogin-type v-contractive self mapping on X∗v. Applying Theorem 3.6 for v, we get the result.

Theorem 3.7 has various consequences. Observe that for special choices of the constants a, b, c in Theorem
3.7 we obtain w-contraction mappings of Kannan, Chatterjee, Reich and Banach types. Below we discuss
these contractions.

For a = 0 and c = 0 in (6) the mapping T becomes the so-called Kannan type contraction mapping. A
different version of this mapping is studied in [12].

Corollary 3.8. Let X be a nonempty set and w be a strict metric modular on X. Let X∗w be a complete modular metric
space induced by w and T : X∗w → X∗w be a self mapping of Kannan type, that is, for some 0 < k < 1, there exists
λ0 > 0 such that the inequality

wkλ(Tx,Ty) ≤
k
4

[w2λ(x,Tx) + w2λ(y,Ty)] (20)

holds for all x, y ∈ X∗w and all 0 < λ < λ0. If for every λ > 0 there exists an x ∈ X∗w satisfying wλ(x,Tx) < ∞ then
the mapping T has a fixed point in X∗w. If in addition wλ(x, y) < ∞ for all x, y ∈ X∗w and every λ > 0, then the fixed
point of T is unique.

Also, by taking a = 0 and b = 0 in (6) we obtain the so-called Chatterjee type contractive mapping.

Corollary 3.9. Let X be a nonempty set and w be a strict metric modular on X. Let X∗w be a complete modular metric
space induced by w and T : X∗w → X∗w be a self mapping of Chatterjee type, that is, for some 0 < k < 1, there exists
λ0 > 0 such that the inequality

wkλ(Tx,Ty) ≤
k
4

[w2λ(x,Ty) + w2λ(y,Tx)] (21)

holds for all x, y ∈ X∗w and all 0 < λ < λ0. If for every λ > 0 there exists an x ∈ X∗w satisfying wλ(x,Tx) < ∞ then
the mapping T has a fixed point in X∗w. If in addition wλ(x, y) < ∞ for all x, y ∈ X∗w and every λ > 0, then the fixed
point of T is unique.
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Another type of contraction known as Reich type contraction follows from (6) with c = 0.

Corollary 3.10. Let X be a nonempty set and w be a strict metric modular on X. Let X∗w be a complete modular
metric space induced by w and T : X∗w → X∗w be a self mapping of Reich type, that is, for some 0 < k < 1, there
exists λ0 > 0 such that the inequality

wkλ(Tx,Ty) ≤
k
5

[wλ(x, y) + w2λ(x,Tx) + w2λ(y,Ty)] (22)

holds for all x, y ∈ X∗w and all 0 < λ < λ0. If for every λ > 0 there exists an x ∈ X∗w satisfying wλ(x,Tx) < ∞ then
the mapping T has a fixed point in X∗w. If for every λ > 0 and all fixed points x, y of T we have wλ(x, y) < ∞ then the
fixed point of T is unique.

Remark 3.11. The special choices of a, b and c for a = 1, b = c = 0 and a < 1, b = c = 0 correspond to parts (i)
and (ii) of Definition 3.1, on which the self mapping T may be called as nonexpansive and Banach type mappings,
respectively. In the corresponding cases, Theorem 3.2 and Theorem 3.3 become consequences of our main results given
in Theorem 3.6 and Theorem 3.7, respectively.

4. A metric modular space of anti-periodic mappings of bounded generalizedϕ-variations

In this section, inspired by the examples in [8] (Section 4), we introduce a metric modular space of real
valued mappings defined on a finite interval and satisfying anti-periodic boundary conditions. This space
is going to be used in the application of the main results to anti-periodic boundary value problems for
nonlinear first order differential equations of Carathéodory’s type discussed in the next section.

We define a metric modular space of anti-periodic mappings of bounded generalized ϕ-variations in
few steps as follows.

Step 1.
Let ϕ : R+

−→ R+ be a given continuous, convex, nondecreasing and unbounded function satisfying
ϕ(x) = 0 iff x = 0. Let X̃ be the set of real valued functions on [0,L] for some L > 0, that is,

X̃ := {u|u : [0,L]→ R}.

Define w : (0,∞) × X̃ × X̃→ [0,∞] for all λ > 0 and u, v ∈ X as

wλ(u, v) = sup
π

n∑
i=1

ϕ

(
|[u(ti) + v(ti−1)] − [u(ti−1) + v(ti)]|

λ(ti − ti−1)

)
(ti − ti−1), (23)

where the supremum is taken over all partitions π = {ti}
n
i=0 of the interval [0,L], that is, 0 = t0 < t1 < t2 <

· · · < tn = L. Then, it is known that wλ(u, v) is a convex pseudomodular on X̃ (see [7, 8]).
Step 2.
Let u0(t) = u0 ∈ X̃ be a constant function. Define the convex pseudomodular metric space X̃∗w as

X̃∗w = X̃∗w(u0) = {u ∈ X̃ : ∃λ = λ(u) > 0, such that wλ(u,u0) < ∞}.

The space X̃∗w is denoted by GVϕ([0,L]) and is called the space of mappings of bounded generalized
ϕ-variations, see [6]. Then u ∈ X̃∗w = GVϕ([0,L]) if and only if u : [0,L] → R and there exists a constant
λ = λ(u) > 0 such that

wλ(u,u0) = sup
π

n∑
i=1

ϕ

(
|u(ti) − u(ti−1)|
λ(ti − ti−1)

)
(ti − ti−1) < ∞.

Clearly, wλ(u,u0) is independent of u0.
Step 3.
Let X be the set of anti-periodic real valued functions on [0,L] for some L > 0, that is,

X := {u|u : [0,L]→ R,u(0) = −u(L)} ⊂ X̃. (24)

Then wλ defined in (23) is a convex pseudomodular on X.
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Lemma 4.1. The mapping wλ defined in (23) is a strict convex metric modular on X.

Proof. We need to show that

wλ(u, v) = 0 =⇒ u(t) = v(t) for all u, v ∈ X and t ∈ [0,L].

It is obvious that for any s, t ∈ [0,L], with s , t,

ϕ

(
|[u(t) + v(s)] − [u(s) + v(t)]|

λ|t − s|

)
|t − s| ≤ wλ(u, v).

Since ϕ has an inverse, then

|u(t) − v(t) + v(s) − u(s)| ≤ λ|t − s|ϕ−1

(
wλ(u, v)
|t − s|

)
.

Let wλ(u, v) = 0. Then, regarding the properties of ϕ we have

|u(t) − v(t) + v(s) − u(s)| ≤ λ|t − s|ϕ−1 (0) = 0,

which implies that

u(t) − v(t) = u(s) − v(s). (25)

Solving the system resulting by taking s = 0 and s = L in (25) and using the anti-periodicity property of the
functions u and v we obtain u(t) − v(t) = 0 for any t ∈ [0,L].

Step 4.
Now we define

X∗w = X̃∗w ∩ X = GVϕ([0,L]) ∩ X = {u ∈ GVϕ([0,L])|u(0) = −u(L)}. (26)

Then, X∗w is a metric modular space. We will show that X∗w is w-complete.

Lemma 4.2. The metric modular space

X∗w = {u ∈ X : ∃λ = λ(u) > 0, such that wλ(u,u0) < ∞}

is w-complete.

Proof. Let {un} ⊂ X∗w be a w-Cauchy sequence. Then

wλ(un,um)→ 0 as m,n→∞.

for some λ = λ({un}) > 0. Therefore, for n,m ∈N, t ∈ (0,L) we have

2|un(t) − um(t)| = |2[un(t) − um(t)] − un(0) + um(0) − un(L) + um(L)|

≤ |[un(t) + um(0)] − [un(0) + um(t)]|
+|[un(t) + um(L)] − [un(L) + um(t)]|

≤ λ|t − 0|ϕ−1

(
wλ(un,um)
|t − 0|

)
+ λ|L − t|ϕ−1

(
wλ(un,um)
|L − t|

)
which implies that lim

n,m→∞
|un(t) − um(t)| = 0. Since R is complete then, the sequence {un} converges to some

u : [0,L]→ R with u(0) = −u(L), that is, for all t ∈ [0,L], limn→∞ |un(t) − u(t)| = 0 holds for u ∈ X.
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It remains to show that lim
n→∞

wλ(un(t),u(t)) = 0. From the lower semicontinuity of wλ (see [7], p.27) we
have

wλ(un,u) ≤ lim inf
m→∞

wλ(un,um)

for every n ∈N. Since {un} is w-Cauchy,

∀ε > 0,∃N(ε) ∈N such that ∀n,m ≥ N(ε) =⇒ wλ(un,um) < ε.

Hence, for all n ≥ N(ε)
lim sup

m→∞
wλ(un,um) ≤ sup

m≥N(ε)
wλ(un,um) < ε.

Then we conclude that for every ε > 0, ∃ N(ε) ∈N such that

wλ(un,u) ≤ lim inf
m→∞

wλ(un,um) ≤ lim sup
m→∞

wλ(un,um) < ε.

Then, {un} is w-convergent to u. Since X∗w is closed under the modular convergence, then u ∈ X∗w, that is X∗w
is w-complete.

Step 5.

If in addition, the function ϕ satisfies the Orlicz condition at infinity, that is,
ϕ(y)

y
→ ∞ as y → ∞, then

w1(u, 0) is called the ϕ-variation of the function u : [0,L] −→ R; the function u with w1(u, 0) < ∞ is said to
be of bounded ϕ-variation on [0,L] and

wλ(u, v) = wλ(u − v, 0) = w1

(u − v
λ

, 0
)
, λ > 0.

For the functions u : [0,L] −→ R in the space X̃∗w = GVϕ([0,L]) it is known that (see [8, 9]),

u ∈ GVϕ([0,L])⇔ wλ(u, 0) = w1(u/λ, 0) < ∞ f or some λ = λ(u) > 0

⇔ u ∈ AC[0,L],u′ ∈ L1[0,L] with wλ(u, 0) =

∫ L

0
ϕ

(
|u′(t)|
λ

)
dt < ∞,

where AC[0,L] is the space of all absolutely continuous real valued functions on [0,L] and L1[0,L] is the
space of Lebesgue integrable functions on [0,L].

5. Anti-periodic boundary value problem for nonlinear first order Carathéodory’s type ordinary differ-
ential equations

In this section, following the notations of Section 4, we will apply the fixed point result given in Theorem
3.6 to the following anti-periodic boundary value problem for Carathéodory’s type nonlinear first order
ordinary differential equations:{

u′(t) = f (t,u(t)), a.e. t ∈ [0,L]
u(0) = −u(L). (27)

Here f : [0,L] ×R −→ R is a Carathéodory’s type function which satisfies the following conditions:

C1. For every u ∈ R f (.,u) is Lebesgue measurable on [0,L] and there exists a point v0 ∈ R such that∫ L

0 ϕ
(
| f (t,v0)|
λ

)
dt < ∞ for some λ = λ( f (., v0)) > 0,

C2. For a.e. t ∈ [0,L], and all u, v ∈ R, there exists a constant K > 0 such that

| f (t,u) − f (t, v)| ≤ K|u − v|.
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where ϕ is a function satisfying the Orlicz condition at infinity and λ > 0.
For µ ∈ R, problem (27) can be written as{

u′(t) + µu(t) = f (t,u(t)) + µu(t), t ∈ [0,L]
u(0) = −u(L) (28)

which is equivalent to the integral equation

u(t) =

∫ L

0
G(t, s)[ f (s,u(s)) + µu(s)]ds, (29)

see [11], where G(t, s) is the Green function defined by

G(t, s) =


eµ(L+s−t)

eµL + 1
, 0 ≤ s ≤ t ≤ L,

−eµ(s−t)

eµL + 1
, 0 ≤ t < s ≤ L.

(30)

A function u : [0,L]→ R is a solution of (27) if u ∈ GVφ[0,L] and satisfies (27) or, equivalently (28).
Let X∗w be the modular metric space (26) generated by the metric modular (23). We will discuss the

existence of solution u(t) of (27) in the space X∗w.
For the case of µ = 1, consider the integral operator

Fu(t) =

∫ L

0
G(t, s)[ f (s,u(s)) + u(s)]ds, (31)

where u ∈ X∗w, t ∈ [0,L] and G(t, s) is the corresponding Green function given in (30). Observe that, if u ∈ X∗w
is a fixed point of F, then it becomes a solution of (27). We next prove that the operator F has a fixed point
by following the proof technique used by Chistyakov in [8, 9] for an initial value problem associated with
a differential equation of a similar type.

Theorem 5.1. If the function f satisfies the conditions (C1) and (C2), then the operator F given by (31) maps X∗w
into itself and

wMλ(Fu,Fv) ≤ wλ(u, v) (32)

where M = (K + 1)(L + 1)L, for all u, v ∈ X∗w, λ > 0.

Proof. Let u ∈ X∗w, that is, u ∈ GVϕ([0,L]) and u(0) = −u(L). Now, Fu(0) = −Fu(L) and thus Fu ∈ X = {v|v :
[0,L]→ R, v(0) = −v(L)}. Now, we will show that Fu ∈ GVϕ([0,L]), i.e.,

wλ(Fu, 0) =

∫ L

0
ϕ

(
|(Fu)′(t)|

λ

)
dt < ∞

holds, which will imply Fu ∈ X∗w.
Observe that, the condition (C2) implies

| f (t,u(t))| = | f (t,u(t)) − f (t, v0) + f (t, v0)| ≤ | f (t,u(t)) − f (t, v0)| + | f (t, v0)|
≤ K|u(t) − v0| + | f (t, v0)|.

Since u(0) = −u(L), we have u(t) = −u(L) +

∫ t

0
u′(s)ds, for a.e. t ∈ [0,L] and thus we get

| f (t,u(t))| ≤ K
∫ L

0
|u′(s)|ds + K|u(L) + v0| + | f (t, v0)|.
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Notice that, since u ∈ X∗w, i.e., u ∈ GVϕ([0,L]), there exists a constant λ1 = λ1(u) > 0 such that

wλ1 (u, 0) =

∫ L

0
ϕ

(
|u′(t)|
λ1

)
dt < ∞ (33)

and by (C1) there exists another constant λ2 = λ2( f (., v0)) > 0 such that∫ L

0
ϕ

(
| f (t, v0)|
λ2

)
dt < ∞. (34)

Since ϕ is a convex function, for λ0 = KLλ1 + λ2 + 1 so that KLλ1
λ0

+ λ2
λ0

+ 1
λ0

= 1, we obtain

ϕ

(
1
λ0

[
K

∫ L

0
|u′(t)|dt + K|u(L) + v0| + | f (t, v0)|

])
= ϕ

(
KLλ1

λ0

(
1
L

∫ L

0

|u′(t)|
λ1

dt
)

+
1
λ0

K|u(L) + v0| +
λ2

λ0

| f (t, v0)|
λ2

)
≤

KLλ1

λ0
ϕ

(
1
L

∫ L

0

|u′(t)|
λ1

dt
)

+
1
λ0
ϕ(K|u(L) + v0|) +

λ2

λ0
ϕ

(
| f (t, v0)|
λ2

)
.

Monotonicity of ϕ, Jensen’s integral inequality and estimates (33) and (34) give,∫ L

0
ϕ

(
| f (t,u(t))|

λ0

)
dt ≤

∫ L

0
ϕ

(
1
λ0

[
K

∫ L

0
|u′(t)|dt + K|u(L) + v0| + | f (t, v0)|

])
dt

≤
KLλ1

λ0

∫ L

0
ϕ

(
|u′(t)|
λ1

)
dt +

L
λ0
ϕ(K|u(L) + v0|)

+
λ2

λ0

∫ L

0
ϕ

(
| f (t, v0)|
λ2

)
dt

:= C1 < ∞.

Jensen’s inequality implies,

ϕ

(
1

Lλ0

∫ L

0
| f (t,u(t))|dt

)
≤

1
L

∫ L

0
ϕ

(
| f (t,u(t))|

λ0

)
dt ≤

C1

L

which yields∫ L

0
| f (t,u(t))|dt ≤ λ0Lϕ−1

(C1

L

)
< ∞.

Therefore f ∈ L1[0,L]. Moreover,

|Fu(t)| ≤
∫ L

0
|G(t, s)|| f (s,u(s)) + u(s)|ds

and using the above arguments and the facts that, |G(t, s)| ≤
eL

eL + 1
≤ 1 for t, s ∈ [0,L] and

∫ L

0
|G(t, s)|ds =

eL
− 1

eL + 1
≤ 1 gives∫ L

0
ϕ

(
|Fu(t)|
λ3

)
dt ≤

∫ L

0
ϕ

(
1
λ3

[∫ L

0
|G(t, s)|| f (s,u(s)) + u(s)|ds

])
≤

Lλ0

λ3

∫ L

0
ϕ

(
| f (t,u(t))|

λ0

)
dt +

L2λ1

λ3

∫ L

0
ϕ

(
|u′(t)|
λ1

)
dt +

L2

λ3
ϕ(|u(L)|)

:= C2 < ∞
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for λ3 = L(λ0 + Lλ1 + 1).
The operator Fu defined in (31) can be written as

Fu(t) = e−t
∫ t

0
es[ f (s,u(s)) + u(s)]ds −

e−L

1 + e−L e−t
∫ L

0
es[ f (s,u(s)) + u(s)]ds

from which it can be seen that the operator Fu ∈ AC[0,L] for all u ∈ X∗w, and (Fu)′(t) = f (t,u(t)) + u(t)−Fu(t).
Now we have

wλ(Fu, 0) =

∫ L

0
ϕ

(
|(Fu)′(t)|

λ

)
dt

=

∫ L

0
ϕ

(
| f (t,u(t)) + u(t) − Fu(t)|

λ

)
dt (35)

≤
λ0

λ

∫ L

0
ϕ

(
| f (t,u(t))|

λ0

)
dt +

Lλ1

λ

∫ L

0
ϕ

(
|u′(t)|
λ1

)
dt +

L
λ
ϕ(|u(L)|) (36)

+
λ3

λ

∫ L

0
ϕ

(
|Fu(t)|
λ3

)
(37)

:= C < ∞ (38)

for λ = Lλ1 + λ0 + λ3 + 1. Thus, F maps X∗w into itself.
Let u, v ∈ X∗w and λ > 0, then

w(K+1)(L+1)Lλ(Fu,Fv) = w(K+1)(L+1)Lλ(Fu − Fv, 0) =

∫ L

0
ϕ

(
|(Fu − Fv)′(t)|

(K + 1)(L + 1)Lλ

)
dt

=

∫ L

0
ϕ

(
| f (t,u(t)) − f (t, v(t)) + (u − v) + (Fu − Fv)|

(K + 1)(L + 1)Lλ

)
dt. (39)

Observe that

| f (t,u(t)) − f (t, v(t)) + (u − v) + (Fu − Fv)| ≤ (K + 1)(L + 1)|u(t) − v(t)|

≤ (K + 1)(L + 1)
∫ L

0
|(u − v)′(s)|ds

holds for a.e. t ∈ [0,L] by the condition (C2). Monotonicity of ϕ gives

ϕ

(
| f (t,u(t)) − f (t, v(t)) + (u − v) + (Fu − Fv)|

(K + 1)(L + 1)Lλ

)
≤ ϕ

(
1
L

∫ L

0

|(u − v)′(s)|
λ

ds
)

and Jensen’s inequality implies

ϕ

(
1
L

∫ L

0

|(u − v)′(s)|
λ

ds
)
≤

1
L

∫ L

0
ϕ

(
|(u − v)′(s)|

λ

)
ds =

1
L

wλ(u − v, 0) =
1
L

wλ(u, v).

Thus we get

ϕ

(
| f (t,u(t)) − f (t, v(t)) + (u − v) + (Fu − Fv)|

(K + 1)(L + 1)Lλ

)
dt ≤

1
L

wλ(u, v).

Therefore,

w(K+1)(L+1)Lλ(Fu,Fv) ≤ wλ(u, v).
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Theorem 5.2. If (K + 1)(L + 1)L < 1 holds, then the anti-periodic boundary value problem (27) has at least one
solution in GVϕ([0,L]).

Proof. The metric modular defined by (23) is a strict convex modular on X = {u|u : [0,L] −→ R,u(0) = −u(L)}
by Lemma 4.1 and the modular space (26) is w-complete by Lemma 4.2. Theorem 5.1 implies that F : X∗w →
X∗w is a self mapping satisfying the inequality w(K+1)(L+1)Lλ(Fu,Fv) ≤ wλ(u, v). If (K + 1)(L + 1)L < 1 holds,
then condition (6) is satisfied for a = 1, b = c = 0 in Theorem 3.6. Now, it remains to show that for every
λ > 0 there exists u ∈ X∗w such that wλ(u,Fu) < ∞. Clearly, for constant function u0 ∈ X∗w we have

wλ(u0,Fu0) = wλ(Fu0 − u0, 0) =

∫ L

0
ϕ

(
|(Fu0)′ − (u0)′|

λ

)
dt =

∫ L

0
ϕ

(
| f (t,u0) + u0 − Fu0|

λ

)
dt

≤
λ0

λ

∫ L

0
ϕ

(
| f (t,u0)|
λ0

)
dt +

Lλ1

λ

∫ L

0
ϕ

(
|u′0|
λ1

)
dt +

L
λ
ϕ(|u0(L)|) (40)

+
λ3

λ

∫ L

0
ϕ

(
|Fu0|

λ3

)
(41)

=
λ0

λ

∫ L

0
ϕ

(
| f (t,u0)|
λ0

)
dt +

L
λ
ϕ(|u0|) +

λ3

λ

∫ L

0
ϕ

(
|Fu0|

λ3

)
(42)

< ∞.

(43)

Here, λ0, λ1 and λ2 can be chosen so that λ = Lλ1 +λ0 +λ3 +1 with λ0 = KLλ1 +λ2 +1 and λ3 = L(λ0 +Lλ1 +1)
holds. Actually, the only constant function satisfying the anti-periodicity condition u(0) = −u(L) is the zero
function u ≡ 0. Thus, Theorem 3.6 implies that the operator F has a fixed point in X∗w, which means that,
the anti-periodic boundary value problem (27) has at least one solution in GVϕ([0,L]).
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