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Discontinuity of Control Function in the (F, ¢, 0)-Contraction
in Metric Spaces
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Abstract. In this paper, we improve very recent results of Kumrod et al. [2] with discontinuity of control
function in the (F, ¢, 0)-contraction in metric spaces. Illustrative examples and an application in nonlinear
integral equation are presented.

1. Introduction and Preliminaries on ¢-fixed points and (F, ¢)-contraction mappings

In 2014, Jleli et al. [1] introduced the concepts of ¢-fixed points, ¢-Picard mappings and weakly ¢-Picard
mappings. After that Kumrod ef al. [2] extended the concepts of (F, ¢, 0)-contraction mapping and (F, ¢, 0)-
weak contraction mapping in metric spaces and established ¢-fixed point results for such mappings. Their
results were combined with the continuous control function F.

Here we review basic definitions and theorems.

Let X be a nonempty set, ¢ : X — [0, c0) be a given function and T : X — X be a mapping. We denote
the set of all fixed points of T by

Fri={xeX:Tx=x}

and denote the set of all zeros of the function ¢ by
Zy={x e X:qp(x) =0}

Definition 1.1. Let X be a nonempty set and ¢ : X — [0, 00) be a given function. An element z € X is called ¢-fixed
point of the mapping T : X — X if and only if z is a fixed point of T and @(z) = 0.

Definition 1.2. Let (X, d) be a metric space and ¢ : X — [0, o) be a given function. A mapping T : X — X is said
to be a @-Picard mapping if and only if

o FrNZ, = {z}, wherez € X,
o T"x — zasn — oo, for each x € X.

Definition 1.3. Let (X,d) be a metric space and ¢ : X — [0, 00) be a given function. We say that the mapping
T : X — X is a weakly @-Picard mapping if and only if
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o T has at least one @-fixed point,
o the sequence {T"x} converges for each x € X, and the limit is a @-fixed point of T.

Also, Jleli et al. introduced the new concept of control function F : [0, )3 — [0, c0) satisfying the following
conditions:

(F1) max{a, b} < F(a,b,c) for alla, b, c € [0, 00);

(F2) F(0,0,0) =0;

(F3) Fis continuous.

The class of all functions satisfying the conditions (F1)-(F3) is denoted by ¥ .

Example 1.4. Let Fq,Fy, F3 : [0, 00) — [0, 00) be defined by

1. Fi(a,b,c)=a+b+c;
2. Fy(a,b,c) = max{a, b} + c;
3. Fs(a,bc)=a+a*>+b+c;

foralla,b,c € [0,c0). Then F1,F;,F3 € F.

By using the control function in F , Jleli et al. defined the new contractive conditions and proved the ¢-fixed
point results as follows:

Definition 1.5. Let (X, d) be a metric space, ¢ : X — [0, o0) be a given function and F € F. We say that the mapping
T : X — X is an (F, @) -contraction with respect to the metric d if and only if there is k € (0, 1) such that

F(d(Tx, Ty), p(Tx), p(Ty)) < kF(d(x, y), p(x), p(y)) (1)
forallx,y e X.

Definition 1.6. Let (X,d) be a metric space, ¢ : X — [0, 00) be a given function and F € ¥ . We say that the

mapping T : X — X is an (F, @) -weak contraction with respect to the metric d if and only if there is k € (0, 1) and
L > 0 such that

F(d(Tx, Ty), (Tx), p(Ty)) < kF(d(x, y), p(x), p()) + LIF(@d(y, Tx), p(y), p(Tx)) = FO, p(y), (T)N] ~ (2)
forallx,y € X.

In this paper, we introduce the concepts of (F, ¢, 0)-contraction mapping and (F, ¢, 0)-weak contraction
mapping in metric spaces and establish ¢-fixed point results for such mappings with discontinuous control
function F. Presented theorems extend the ¢-fixed point results of Kumrod et al. [1, 2]. Here are examples
of expressing highlight the validity of our results. Numerical experiments are given for approximating the
@-fixed point with examples in [2]. Finally, as an application, the fixed point results are verified from our
main results and we prove the existence and uniqueness of a solution of a nonlinear integral equation.

2. Main results

Let J be the set of all functions 0 : [0, 00) — [0, c0) satisfying the following conditions:
(j1) O 1is a nondecreasing function, i.e., t; < t, implies O(t;) < O(t2);
(j2) O is continuous;

(G3) Yopeo 0"(t) < co forall t > 0.
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Note that (j4) implies (j3).
We introduce the new concept of control function F : [0, 0)*> — [0, o0) satisfying the following conditions
without continuity:

(Fm1) max{a, b} < F(a,b,c) foralla,b,c € [0, »);

(Fm2) F(0,0,0) =0;

(Fm3) limsup,,_,  F(xu, yx,0) < F(x,y,0) when x, — xand y, — yasn — oo.
The class of all functions satisfying the conditions (F1) — (F3) is denoted by ¥ .

Remark 2.1. Let F be defined by F(a,b,c) = a+ b+ [c] or F(a, b, c) = max{a, b} + [c]. Then F satisfies (Fy3) but F
is not continuous.

Lemma 2.2. ([2, Lemma 2.1]) If 6 € ], then O(t) < t forall t > 0.
Remark 2.3. ([2, Remark 2.2]) If O € ], then 6(0) = 0.

Here we define the new contractive condition in metric spaces as follows:

Definition 2.4. Let (X, d) be a metric space, ¢ : X — [0,00) be a given function and F € Fp. The mapping
T : X — X is said to be an (F, @, 0)-contraction with respect to the metric d if and only if there is k € (0, 1) such that

F(d(Tx, Ty), p(Tx), p(Ty)) < O(F(d(x, y), p(x), p(y))) 3)
forallx,y € X.

Now we give the existence of ¢-fixed point results for (F, ¢, 0)-contraction mappings with control function
F which is not continuous.

Theorem 2.5. Let (X,d) be a metric space, ¢ : X — [0, 00) be a given function and F € Fp. Assume that the
following conditions are satisfied:

(H1) g is lower semi-continuous,
(H2) T: X — Xisan (F, ¢, 0)-contraction with respect to the metric d.
Then the following assertions hold:
(i) Fr C Zq),'
(ii) T is a @-Picard mapping.
Proof. The frame of the proof is the same in Theorem 2.5 [2]. So for arbitrary point x € X, {T"x} is Cauchy
sequence, limy, 0 d(T"x, z) = lim, e @(T"x) = 0 and @(z) = 0 for some z € X.
A(T"x, Tz) max{d(T"x, Tz), p(T"* 'x)}
F(d(T"*'x, Tz), p(T"*'x), ¢(T2))
OF(d(T"x, z), p(T"x), ¢(2)))
F(d(T"x, z), p(T"x), ¢(2)))-
Fd(T"x,z), p(T"x), 0).

AN VAN VAN VAN

Thus
lim sup d(T"'x, Tz) < lim sup F(d(T"x, z), p(T"x),0) < F(0,0,0) = 0.

n—o0 n—oo

lim d(T"x, Tz) = lim d(T"x,z) = 0,

n—oo n—oo0

So z = Tz and it is a unique fixed point of T. [
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Next, we give some examples to illustrate Theorem 2.5.

Example 2.6. Let X = [0,1] and d : X X X — R be defined by d(x,y) = |x — y| for all x,y € X. Then (X,d) is a
complete metric space.

1. Fixn € N and assume that T : X — X is defined by Tx = 5=, where k € [0, 1);

2. the function ¢ : X — [0, o0) is defined by @(x) = x for all x e X;

3. the function F : [0, 00)> — [0, c0) defined by F(a,b,c) = a + b + [c], where [c] is the integer part of ¢
4. the function 0 : [0, 00) — [0, o0) is defined by O(t) = kt for t € [0, o), where k [0,1).

Note that F € Fp, 0 € ] and further F is discontinuous.
T is an (F, @, 0)-contraction mapping, because

kx kK'x
F(d(Tx, Ty), p(Tx), p(Ty)) = — - + =S4 [ ]
_ kx ky Iﬂ 0
n n
— n—-1 . n—1 "
< k(|x yllx oty |+kx—)
n n

< k(x—yl+x+0)

= k(x—yl+x+[yl)

= k(@d(x,y)+x+[y])

= k(F@(x, y), p(x), o(v)))
= OF(d(x,y), p(x), p(1)))-

This shows that all conditions of Theorem 2.5 are satisfied and so T has a @-fixed point in X.

Example 2.7. Let X = [0,1] and d : X X X — R be defined by d(x,y) = |x — y| for all x,y € X. Then (X,d) is a
complete metric space.

1. Fixn € N and assume that T : X — X is defined by Tx = &=, where k € [0, 1);

2. the function ¢ : X — [0, o0) is defined by @(x) = x for all x € X;

3. the function F : [0, 00)> — [0, c0) defined by F(a, b, c) = max{a, b} + [c], where [c] is the integer part of ¢
4. the function 0 : [0, 00) — [0, o0) is defined by O(t) = kt for t € [0, o), where k [0,1).

Note that F € Fp, 0 € ] and further F is discontinuous.
T is an (F, @, 0)-contraction mapping, because

3 kx  ky"| kx" ky?
F@(Tx, Ty), p(T), ¢(Ty) = max{ W ,7} + [7
n k n n
= max{ l& — l , Ii} + 0
n n n

< k(max{lx — yl, x} + [y])
= k(max{d(x, y),x} + [y])
= KkE(x, y), p(x), (y))
= O(F(d(x, y), (), ())-

This shows that all conditions of Theorem 2.5 are satisfied and so T has a @-fixed point in X.

Example 2.8. Let X = [0,1] and d : X x X — IR be defined by d(x,y) = |x — y| for all x,y € X. Then (X,d) isa
complete metric space.
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1. Assume that T : X — X is defined by Tx = ksinx, where k € [0, 1);
2. the function ¢ : X — [0, o0) is defined by @(x) = x forall x € X;
3. the function F : [0, c0)® — [0, co) defined by F(a,b,c) = a + b + [c], where [c] is the integer part of ¢
4. the function 0 : [0, c0) — [0, 00) is defined by O(t) = kt for t € [0, c0), where k [0,1).
Note that F € Fp, 0 € ] and further F is discontinuous.
T is an (F, @, 0)-contraction mapping, because

F(d(Tx, Ty), p(Tx), p(Ty))

lksinx — ksiny| + ksinx + [ksin y]
klx —yl+kx+0

k(lx =yl +x + [y])

= kd(x, y) +x+[y])

= KkE(x, y), p(x), (y))

= O(F(d(x, y), (), ().

This shows that all conditions of Theorem 2.5 are satisfied and so T has a @-fixed point in X.

IA

Example 2.9. Let X = [0,3] and d : X x X — IR be defined by d(x,y) = |x — y| for all x,y € X. Then (X,d) is a
complete metric space.

1. Assume that T : X — X is defined by Tx = 0if 0 < x < 2.5and Tx = kIn 5 if 2.5 < x < 3 where k € [0,1);
2. The function ¢ : X — [0, 00) is defined by @(x) = x for all x € X;

3. the function F : [0, 00)> — [0, o0) defined by F(a,b,c) = a + b + [c] where [c] is the integer part of c;

4. the function 0 : [0, 00) — [0, 00) is defined by O(t) = 0if 0 < t < 1and O(t) = kIn(t) if t > 1, where k [0,1).

Note that F is F pq and further F is discontinuous.
When 2.5 < x, y < 3, without loss of generality, we may suppose that x > y. Then we get

F(@(Tx, Ty), (Tx), p(Ty) = |kIn > ~kn g| +kIn 2 + [k In g]

X Yy X Y
< 'klnz kln2|+kln2+kln2
3
< 2k1n(§)
= kIn225
< kln(d(x, y) +x + [y])

kIn(F(d(x, y), p(x), 9(v)))
= O(F(d(x,y), p(x), p(¥)))-

Ifx €[2.5,3] and y € [0,2.25], then

F(d(Tx, Ty), p(Tx), p(Ty)) 'k In ;ﬁ - o| +kIn ’2-‘ +[0]

2 )
kIn2.25

kIn(d(x, y) + x + [y])
kIn(F(d(x, y), p(x), 9(v))
= O(F(d(x,y), p(x), py)))-

The other cases are clear. This shows that all conditions of Theorem 2.5 are satisfied and so T has a @-fixed point in X.

A

IA

Now by ¥ C Fu, we have:
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Corollary 2.10. ([2, Theorem 1.11]) Let (X, d) be a metric space, ¢ : X — [0, o0) be a given function and F € F.
Suppose that the following conditions hold:

(H1) g is lower semi-continuous,
(H2) T : X — Xis an (F, ¢)-contraction with respect to the metric d.
Then the following assertions hold:
(i) Fr € Zy;
(ii) T is a p-Picard mapping;
(iii) if x € X and z € Fr, then

AT"%,2) < 1 Fld(, ), (T, 6(0),

1-
foralln € IN.

Corollary 2.11. ([2, Theorem 1.12]) Let (X, d) be a metric space, ¢ : X — [0, o0) be a given function and F € F.
Suppose that the following conditions hold:

(H1) ¢ is lower semi-continuous,

(H2) T : X — Xis an (F, @)-weak contraction with respect to the metric d.
Then the following assertions hold:

(i) Fr € Zy;

(ii) T is a weakly @-Picard mapping;

(iii) ifx € Xand T"x — z € Fras n — oo then

d(T"x,z) <

k‘rl
 F(d(tx, ), @(T2), (),

foralln € N.
Next we generalize the contractive condition (2) and prove the another main result in this work.

Definition 2.12. Let (X, d) be a metric space, ¢ : X — [0, ) be a given function and F € F. We say that the
mapping T : X — X is an (F, ¢, 0)-weak contraction with respect to the metric d if and only if

F(d(Tx, Ty), p(Tx), p(Ty)) < O(F(d(x, y), p(y), p(Tx))) + LIE(N(x, y), (), (Tx)) — F(0, p(y), p(Tx)))] (4)
forall x,y € X, where N(x, y) = min{d(x, Tx),d(y, Ty), d(y, Tx)} and L > 0.

Theorem 2.13. Let (X, d) be a metric space, ¢ : X — [0, o) be a given function, F € Fprand O € |. Assume that
the following conditions are satisfied:

(H1) ¢ is lower semi-continuous,
(H2) T: X — Xisan (F, @, 0)-weak contraction with respect to the metric d.
Then the following assertions hold:
(i) Fr € Zy;
(ii) T is a weakly @-Picard mapping.
Proof. The framework of the proof is the same in proof of [2, Theorem 2.9 ]. O

Remark 2.14. If we take O(t) := kt for all t € [0, 00), where k € [0,1), then by Theorems 2.5 and 2.13 we obtain
previous results in [1, 2].
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3. An application

Consider the following nonlinear integral equation:

t
x(t) = o) + f K(t,s, x(s))ds, 5)

wherea € R, x € C([a,b], R), p[a,b] = Rand K : [4,b] X [a,b] X R — R are two given functions.
Theorem 3.1. Consider the nonlinear integral equation (5). Suppose that the following condition holds:
(i) K is continuous;

(ii) thereis O € | such that
0(Ix(s) — y(s)I)

IK(t, s, x(s)) = K(t, 5, y(s))| < -

forall x,y € C([a, b], R) and for t,s € [a, b].
Then the nonlinear integral equation (5) has a unique solution.

Proof. Let X := C([a,b],R), T : X — X defined by

t
(Tx)(t) = () + j{; K(t, s, x(s))ds, VYxeX

The metric d given by d(x, ¥) = maxe, ) [X(s) — y(s)| for all x, y € X. Thus X is a complete metric space. Now
define control function F by F(a, b, c) = max{a, b} + [c] for each a,b,c € [0, o0). Also define ¢(x) = 0 for all
x e X.

Letx,y € X and t € [a,b]. therefore

Tx(t) = Ty()l

t t
fK(t,s,x(s))ds—fK(t,s,y(s))ds

t
< f|K(t,s,x(s))—K(f,S,y(S))WS
f Ox(s) — ¥y
A b-a
1 t
e
< 0(d(x, ).
So
d(Tx, Ty) < 0(d(x,y))
max{d(Tx, Ty), p(Tx)} < O(max{d(x,y), p(x)})
max{d(Tx, Ty), o(Tx)} + [p(Ty)] < 6O(max{d(x, y), p(x)} + [@(v)]),

for all x, y € X. Hence it satisfies the contraction (3).
Thus all the conditions of Theorem 2.5 are satisfied and hence T has a unique ¢-fixed point in X. This
implies that there exists a unique solution of the nonlinear integral equation (5). [
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