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Abstract. In this paper, α-Meir-Keeler and generalized α-Meir-Keeler contractions on Branciari b-metric
spaces are introduced. Existence and uniqueness of fixed points of such contractions are discussed and
related theorems are proved. Various consequences of the main results are also presented.

1. Introduction and Preliminaries

One recent generalization in metric space theory has been defined by means of combining the Branciari
(or rectangular) metric and b-metric. This new metric type is referred to as rectangular b-metric or Branciari
b-metric. Accordingly, the analogs of contraction mappings on metric spaces have been studied on the
Branciari b-metric spaces and some fixed point results have been proved [6–8, 12].

In this paper we consider the problem of existence and uniqueness of fixed points for contraction
mappings of Meir-Keeler type defined on Branciari b-metric spaces. We present results which provide the
conditions for existence and uniqueness of fixed points of such mappings.

In what follows, we describe the essentials on Branciari b-metric spaces and Meir-Keeler type contrac-
tions.

The concept of b-metric spaces have been introduced by Czerwik [5] and Bakhtin [3].

Definition 1.1. [3, 5] Let X be a nonempty set and let d : X × X → [0,∞) be a mapping satisfying the following
conditions for all x, y, z ∈ X:

(Mb1) d(x, y) = 0 if and only if x = y;

(Mb2) d(x, y) = d(y, x);

(Mb3) d(x, y) ≤ s[d(x, z) + d(z, y)] for some real number s ≥ 1.
Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space (MbS) with a constant s ≥ 1.

On the other hand, Branciari [4] proposed a generalization of the metric in which he replaced the
triangular inequality by a rectangular inequality. This new metric have been referred to by different names
such as generalized metric, rectangular metric and Branciari metric. Following the paper by Aydi et al. [2],
we will call this metric Branciari metric.
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Definition 1.2. [4] Let X be a nonempty set and let d : X × X→ [0,∞) be a function such that for all x, y ∈ X and
all distinct u, v ∈ X each of which is different from x and y, the following conditions are satisfied:
(BM1) d(x, y) = 0 if and only if x = y;
(BM2) d(x, y) = d(y, x);
(BM3) d(x, y) ≤ d(x,u) + d(u, v) + d(v, y).

Combining these two types of metric makes it possible to introduce a new metric as in the following
definition.

Definition 1.3. [6] Let X be a nonempty set and let d : X × X→ [0,∞) be a function such that for all x, y ∈ X and
all distinct u, v ∈ X each of which is different from x and y, the following conditions are satisfied:
(BMb1) d(x, y) = 0 if and only if x = y;
(BMb2) d(x, y) = d(y, x);
(BMb3) d(x, y) ≤ s[d(x,u) + d(u, v) + d(v, y)] for some real number s ≥ 1.

The map d is called a Branciari b-metric and the pair (X, d) is called a Branciari b-metric space (BMbS).

We give next an important warning concerning Branciari metric spaces and Branciari b-metric spaces.
If an open ball of radius r centered at x ∈ X is denoted and defined as

Br(x) = {y ∈ X | d(x, y) < r},

such an open ball is not necessarily an open set in Branciari metric spaces or in Branciari b-metric space.
Let T be the collection of all subsetsA of X with the following property: For each a ∈ A there exist r > 0

such that Br(a) ⊆ A. Then T defines a topology for the BMbS (X, d), which is not necessarily Hausdorff.
The next definition gives the concepts of convergent sequence, Cauchy sequence, completeness and

continuity on Branciari b-metric space.

Definition 1.4. [6] Let (X, d) be a Branciari b-metric space, {xn} be a sequence in X and x ∈ X. Then
1. A sequence {xn} ⊂ X converges to a point x ∈ X if for every ε > 0 there exists n0 ∈N such that d(xn, x) < ε for

all n > n0. The limit notation is the same as that in metric spaces, that is,

lim
n→∞

xn = x or xn → x as n→∞.

2. A sequence {xn} ⊂ X is called a Cauchy sequence if for every ε > 0 there exists n0 ∈N such that d(xn, xn+p) < ε
for all n > n0, p > 0, in other words, if limn→∞ d(xn, xn+p) = 0 for all p > 0.

3. (X, d) is called a complete Branciari b-metric space if every Cauchy sequence in X converges to some x ∈ X.
4. A mapping T : X → X is said to be continuous with respect to the Branciari b-metric d if, for any sequence
{xn} ⊂ X which converges to some x ∈ X, that is lim

n→∞
d(xn, x) = 0 we have lim

n→∞
d(Txn,Tx) = 0.

Some more warnings about the Branciari and Branciari b-metric spaces are listed below.

1. The limit of a sequence in a Branciari or a Branciari b-metric spaces is not necessarily unique.
2. A convergent sequence in a Branciari or a Branciari b-metric spaces may not be a Cauchy sequence.
3. A Branciari or a Branciari b-metric may not be continuous.

These facts can be seen in the next example inspired by [6].

Example 1.5. Let X = A ∪ B where A =
{1

n
,n ∈N

}
and B = {2, 3, 4, 5, . . . }. Let the function d : X × X → [0,∞)

satisfying d(x, y) = d(y, x) be defined as follows.

d(x, y) =


0 if x = y,
2α if x, y ∈ A,
α
2n

if x ∈ A, y ∈ {2, 3},
α otherwise .
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for some α > 0. Observe that

d(
1
2
,

1
3

) = 2α > d(
1
2
, 2) + d(2,

1
3

) =
5α
12
,

so, d is not a metric,

d(
1
2
,

1
3

) = 2α > d(
1
2
, 2) + d(2, 5) + d(5,

1
3

) =
17α
12

,

hence, d is not a Branciari metric. In addition

d(
1
m
,

1
n

) = 2α > s[d(
1
n
, 2) + d(2,

1
m

)] = 2αs
m + n
4mn

,

for n,m ∈N satisfying
4mn

m + n
> s. Therefore, d is not a b-metric.

However, it is Branciari b-metric with s = 2 because we have

d(x, y) ≤ 2[d(x,u) + d(u, v) + d(v, y)],

for all x, y,u, v ∈ X such that u, v are different from each other and from x and y.
It is easy to see that

lim
n→∞

d(
1
n
, 2) = lim

n→∞

α
2n

= 0,

and

lim
n→∞

d(
1
n
, 3) = lim

n→∞

α
2n

= 0,

that is, the sequence {
1
n
} converges to both 2 and 3. On the other hand, the sequence {

1
n
} is convergent but not Cauchy.

Indeed,

lim
n→∞

d(
1
n
,

1
n + k

) = lim
n→∞

2α , 0.

Another fact is that although the open ball Bα/2( 1
2 ) = {2, 3, 1

2 } contains 2, there is no positive r for which Br(2) ⊂ Bα/2( 1
2 ).

Also, there are no r1, r2 > 0 such that Br1 (2) ∩ Br2 (3) = φ. Hence, (X, d) is not Hausdorff.

All these facts about Branciari b-metric create troubles when dealing with convergent and Cauchy
sequences. However, these troubles can be overcome with the help of the following property.

Proposition 1.6. [10] Let {xn} be a Cauchy sequence in a Branciari metric space (X, d) such that limn→∞ d(xn, x) = 0,
where x ∈ X. Then limn→∞ d(xn, y) = d(x, y), for all y ∈ X. In particular, the sequence {xn} does not converge to y if
y , x.

Remark 1.7. The Proposition 1.6 is valid if we replace Branciari metric space by a Branciari b-metric space.

We will investigate the fixed points of Meir-Keeler type contractions on Branciari b-metric spaces.
Therefore, we first recall the definition of the classical Meir-Keeler contraction.

Definition 1.8. [11] Let (X, d) be a metric space. Let T : X→ X be a mapping satisfying the following.
For every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies d(Tx,Ty) < ε, (1)

for all x, y ∈ X. Then T is called Meir-Keeler contraction.

The following remark can be observed immediately.
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Remark 1.9. If T is Meir-Keeler contraction then,

d(Tx,Ty) < d(x, y),

for all x, y ∈ X when x , y. Also, if x = y then d(Tx,Ty) = 0, hence,

d(Tx,Ty) ≤ d(x, y),

for all x, y ∈ X.

We insert the notion of α-admissibility to the Meir-Keeler contraction mappings in order to obtain more
general results. The notion of α-admissible mappings have been introduced by Samet et al. [14] as follows.

Definition 1.10. [14] A mapping T : X→ X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx,Ty) ≥ 1, (2)

where α : X × X→ [0,∞) is a given function.

2. Main Results

In this paper we will generalize the classical Meir-Keeler contraction mappings by inserting the α-
admissibility and replacing the metric d(x, y) in the definition by a more general term. Moreover, we will
define these mappings on Branciari b-metric spaces.

Definition 2.1. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1. Let T : X → X be an α-admissible
mapping. Suppose that for every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies α(x, y)d(Tx,Ty) <
ε
s
, (3)

for all x, y ∈ X. Then T is called α-Meir-Keeler contraction.

Remark 2.2. If T is an α-Meir-Keeler contraction, then

α(x, y)d(Tx,Ty) ≤
d(x, y)

s
,

for all x, y ∈ X, where the equality holds for x = y.

Further generalization on Meir-Keeler mappings can be done as follows.

Definition 2.3. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1. Let T : X → X be an α-admissible
mapping. If for every ε > 0 there exists δ > 0 such that

ε ≤M(x, y) < ε + δ implies α(x, y)d(Tx,Ty) <
ε
s
, (4)

where

M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}, (5)

for all x, y ∈ X, then T is called generalized α-Meir-Keeler contraction.

Remark 2.4. Let T : X→ X be a generalized α-Meir Keeler contraction. Then

α(x, y)d(Tx,Ty) ≤
M(x, y)

s

for all x, y ∈ X, where the equality may hold only when x = y.
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We will first prove the following lemma which will be used in the proof of existence and uniqueness
theorems.

Lemma 2.5. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1. Let {xn} be a sequence in X satisfying

1. xm , xn for all m , n, m,n ∈N,

2. d(xn, xn+1) ≤
1
s

d(xn−1, xn), for all n ∈N,

3. limn→∞ d(xn, xn+2) = 0.

Then {xn} is a Cauchy sequence in (X, d).

Proof. To show that {xn} is a Cauchy sequence, it suffices to show that for any k ∈N

lim
n→∞

d(xn, xn+k) = 0.

First, we observe that from the condition (2) it follows that

d(xn, xn+1) ≤
1
sn d(x0, x1) (6)

for all n ∈ N. We use the notations an = d(xn, xn+1) and bn = d(xn, xn+2) for brevity. Note that taking limit as
n→∞ in (6) we obtain

0 ≤ lim
n→∞

an ≤ lim
n→∞

1
sn a0 = 0. (7)

Therefore, regarding (7) and the condition (3), for k = 1 or k = 2 we have

lim
n→∞

d(xn, xn+k) = 0.

Consider d(xn, xn+k) with k = 2p + 1 ≥ 3. Since xn , xm for all m , n, m,n ∈N, we may apply the rectangular
inequality (BMb3) repeatedly to obtain

d(xn, xn+k) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+k)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+k)]
≤

...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)] + . . .
+ s(k−1)/2[d(xn+k−3, xn+k−2) + d(xn+k−2, xn+k−1) + d(xn+k−1, xn+k)]
≤ san + s2an+1 + s3an+2 + . . . + sk−1an+k−2 + skan+k−1.

Taking (6) into account we have

d(xn, xn+k) ≤ s
1
sn a0 + s2 1

sn+1 a0 + s3 1
sn+2 a0 + . . . + sk−1 1

sn+k−2
a0

=
(k − 1)a0

sn−1 ,

which implies

lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

(k − 1)a0

sn−1 = 0,

that is,
lim
n→∞

d(xn, xn+k) = 0,
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for any k = 2p + 1 ∈N.
Now, we take d(xn, xn+k) with k = 2p ≥ 4 and regarding the fact that xn , xm for all m , n, m,n ∈ N we

apply the rectangular inequality (BMb3) repeatedly which gives

d(xn, xn+k) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+k)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+k)]
≤

...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)] + . . .
+ s(k−1)/2[d(xn+k−4, xn+k−3) + d(xn+k−3, xn+k−2) + d(xn+k−2, xn+k)]
≤ san + s2an+1 + s3an+2 + . . . + sk−3an+k−4 + sk−2an+k−3 + sk−1/2bn+k−2.

Because of (6) we get

d(xn, xn+k) ≤ s
1
sn a0 + s2 1

sn+1 a0 + s3 1
sn+2 a0

+ . . . + sk−2 1
sn+k−3

a0 + sk−1/2bn+k−2

=
(k − 2)a0

sn−1 + sk−1/2bn+k−2,

and taking into account the condition (3) we see that

lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

[
(k − 2)a0

sn−1 + sk−1/2bn+k−2

]
= 0,

and conclude
lim
n→∞

d(xn, xn+k) = 0,

for any k = 2p ∈N, which completes the proof.

We will first prove an existence theorem for the fixed points of generalized α-Meir-Keeler contractions
on Branciari b-metric spaces.

Theorem 2.6. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and T : X→ X be a continuous
generalized α-Meir-Keeler contraction, that is, T satisfies the conditions of Definition 2.3. If α(x0,Tx0) ≥ 1 and
α(x0,T2x0) ≥ 1 for some x0 ∈ X, then T has a fixed point in X.

Proof. Let x0 ∈ X be the element for which α(x0,Tx0) ≥ 1 and α(x0,T2x0) ≥ 1. Define the sequence {xn} in X
as

xn+1 = Txn for n ∈N.

If for some n0 ∈N0 we have xn0 = xn0+1, that is d(xn0 , xn0+1) = 0 then xn0 would be a fixed point of T. Hence,
we assume that xn , xn+1 for all n ≥ 0. First, we note that since T is α-admissible, then we have

α(x0,Tx0) = α(x0, x1) ≥ 1⇒ α(Tx0,Tx1) = α(x1, x2) ≥ 1, (8)

or, in general,

α(xn, xn+1) ≥ 1 ∀n ∈N. (9)

Similarly, because of α(x0,T2x0) ≥ 1 we deduce

α(x0,T2x0) = α(x0, x2) ≥ 1⇒ α(Tx0,Tx2) = α(x1, x3) ≥ 1, (10)



S. Gülyaz et al. / Filomat 31:17 (2017), 5445–5456 5451

and hence,

α(xn, xn+2) ≥ 1 ∀n ∈N. (11)

We will show that the sequence {xn} satisfies the conditions of the Proposition 1.6 and the Lemma 2.5. Define
the sequences {an} and {bn} as an := d(xn, xn+1) and bn := d(xn, xn+2). If we put x = xn and y = xn+1 in (4), we
note that for every ε > 0 there exists δ > 0 such that

ε ≤M(xn, xn+1) < ε + δ =⇒ α(xn, xn+1)d(Txn,Txn+1) <
ε
s
, (12)

where

M(xn, xn+1) = max {d(xn, xn+1), d(xn+1, xn+2)} .

From the Remark 2.4 we have

d(xn+1, xn+2) = d(Txn,Txn+1) ≤ α(xn, xn+1)d(Txn,Txn+1) ≤
M(xn, xn+1)

s
,

where due to the fact that xn , xn+1 we see that equality does not hold, hence

d(xn+1, xn+2) <
M(xn, xn+1)

s
. (13)

If M(xn, xn+1) = d(xn+1, xn+2) for some n ∈N, then (13) implies

d(xn+1, xn+2) <
d(xn+1, xn+2)

s

which is not possible. Then M(xn, xn+1) = d(xn, xn+1) for all n ∈N, so that (13) yields

d(xn+1, xn+2) <
d(xn, xn+1)

s
. (14)

Thus, the condition (2) of Lemma 2.5 holds.
For the sequence {bn}we consider the condition (4) with x = xn and y = xn+2. Then we have

ε ≤M(xn, xn+2) < ε + δ =⇒ α(xn, xn+2)d(Txn,Txn+2) <
ε
s
, (15)

where

M(xn, xn+2) = max {d(xn, xn+2), d(xn, xn+1), d(xn+2, xn+3)} .

From the Remark 2.4 we have

d(xn+1, xn+3) = d(Txn,Txn+2) ≤ α(xn, xn+2)d(Txn,Txn+2) ≤
M(xn, xn+2)

s
. (16)

Clearly,
M(xn, xn+2) = max {d(xn, xn+2), d(xn, xn+1), d(xn+2, xn+3)} = max{bn, an, an+2}

can be either an or bn since {an} is a decreasing sequence. Consider the sequence {Mn} defined as Mn =

max{an, bn}. We already have an+1 ≤ an and from (16) bn+1 ≤
max{bn, an}

s
≤ max{bn, an}. Therefore, for all

n ∈N
Mn+1 = max{an+1, bn+1} ≤ max{an, bn} = Mn.

This means that the positive decreasing sequence {Mn} is convergent to some M ≥ 0.
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If M > 0, then we have

M = lim
n→∞

max{an, bn} = max{ lim
n→∞

an, lim
n→∞

bn} = max{0, lim
n→∞

bn} = lim
n→∞

bn.

On the other hand, if we let n→∞ in (16), we obtain

M = lim
n→∞

bn+1 < lim
n→∞

Mn

s
=

M
s
,

which contradicts the assumption M > 0 and hence, M = 0. Then, we conclude

lim
n→∞

bn = lim
n→∞

d(xn, xn+2) = 0,

that is, the condition (3) of the Lemma 2.5 is satisfied.
Next we will show that for all n , m,

xn , xm. (17)

Suppose on the contrary that xn = xm for some m,n ∈N with n , m. We already have d(xn, xn+1) > 0 for
each n ∈N, hence, without loss of generality we may take m > n + 1. Since we have d(xm, xm+1) = d(xn, xn+1),
the inequality (14) implies

d(xn, xn+1) = d(xm, xm+1) <
d(xm−1, xm)

s
<

d(xm−2, xm−1)
s2 < . . . <

d(xn, xn+1)
sm−n (18)

which is not possible. Therefore, the assumption that xn = xm for some m , n is incorrect and we should
have xn , xm for all m , n.

By the Lemma 2.5, the sequence {xn} is Cauchy in the complete Branciari b-metric space (X, d), so it
converges to a limit z ∈ X. In addition, by the Proposition 1.6 there exists a unique z ∈ X such that

lim
n→∞

d(xn, z) = 0. (19)

By the continuity of T we have

lim
n→∞

d(Txn,Tz) = lim
n→∞

d(xn+1,Tz) = 0,

that is, the sequence {xn} converges to Tz as well. Since the limit is unique, we conclude that Tz = z which
completes the proof.

In order to provide the uniqueness of the fixed point of α-admissible mappings, extra condition is
required. There are different versions of the uniqueness condition, two of which are given below.

(U1) For every pair x and y of fixed points of T, α(x, y) ≥ 1.
(U2) For every pair x and y of fixed points of T, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.
We give uniqueness theorem employing the condition (U1).

Theorem 2.7. If the condition (U1) is added to the conditions of Theorem 2.6, then the mapping T has a unique fixed
point.

Proof. First, observe that the existence of a fixed point is proved in Theorem 2.6. Therefore, we need to
prove only the uniqueness of the fixed point. Let the mapping T have two fixed points, say z,w ∈ X, such
that z , w.

By the contractive condition (3) with the fixed points z and w we see that for every ε > 0 there exists
δ > 0 such that

ε ≤M(z,w) < ε + δ implies α(z,w)d(Tz,Tw) <
ε
s
, (20)
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where

M(z,w) = max{d(z,w), d(z,Tz), d(w,Tw)} = max{d(z,w), 0, 0} = d(z,w). (21)

Regarding the condition (U1), that is, α(z,w) ≥ 1, since d(z,w) > 0, the Remark 2.4 implies

d(z,w) = d(Tz,Tw) ≤ α(z,w)d(Tz,Tw) <
M(z,w)

s
=

d(z,w)
s

, (22)

which is a contradiction. Therefore, d(z,w) = 0, or, z = w which completes the proof of the uniqueness.

In order to weaken the conditions for existence of a fixed point often the continuity of the mapping T is
being replaced by the so-called α-regularity condition of the space. The α-regularity on a Branciari b-metric
space is defined as follows.

Definition 2.8. A Branciari b-metric space (X, d) is calledα-regular if for any sequence {xn} such that limn→∞ d(xn, x) =
0 and satisfying α(xn, xn+1) ≥ 1 for all n ∈N, we have α(xn, x) ≥ 1 for all n ∈N.

Combining the Theorems 2.6 and 2.7 with the condition of the Definition 2.8, we state another theorem.

Theorem 2.9. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and T : X→ X be a generalized
α-Meir-Keeler contraction. Assume that,

1. There exists x0 ∈ X for which α(x0,Tx0) ≥ 1 and α(x0,T2x0) ≥ 1,
2. Either T is continuous or (X, d) is α-regular. Then T has a fixed point in X.

If, in addition, the condition (U1) holds, the fixed point of T is unique.

Proof. The case of continuity of the mapping T has been considered in Theorem 2.6. We will only prove the
existence part for the case of α-regularity of (X, d). As in Theorem 2.6, starting with the point x0 for which
α(x0,Tx0) ≥ 1 and α(x0,T2x0) ≥ 1 we construct the sequence {xn} = {Txn−1}, for all n ∈ N. This sequence
converges to a unique limit z ∈ X. We will show that z is a fixed point of T.

Due to the fact that (X, d) is α-regular, the sequence {xn} satisfies α(xn, z) ≥ 1 since it converges to z and
α(xn, xn+1) ≥ 1 for all n ∈N. We substitute x = xn and y = z in the inequality (3) which gives

ε ≤M(xn, z) < ε + δ implies α(xn, z)d(Txn,Tz) <
ε
s
, (23)

where

M(xn, z) = max{d(xn, z), d(xn,Txn), d(z,Tz)}. (24)

On the other hand, from the Remark 2.4 we have

d(xn+1,Tz) = d(Txn,Tz) ≤ α(xn, z)d(Txn,Tz) <
M(xn, z)

s
. (25)

By the Proposition 1.6, we have
lim
n→∞

d(xn+1,Tz) = d(z,Tz).

Also,
lim
n→∞

M(xn, z) = lim
n→∞

max{d(xn, z), d(xn,Txn), d(z,Tz)} = d(z,Tz).

Taking limit as n→∞ of both sides of (25) we end up with

d(z,Tz) <
d(z,Tz)

s
,

and thus conclude that d(z,Tz) = 0.
The uniqueness proof is identical to the proof of Theorem 2.7.
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3. Consequences

We next derive some consequences of the main results presented in the previous section. The generalized
Meir-Keeler contraction considered in this work covers many particular types of contractions. We will
discuss some of these cases below.

Corollary 3.1. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1. Let T : X → X be an
α-admissible mapping satisfying the following conditions.

(1) For every ε > 0 there exists δ > 0 such that

ε ≤ N(x, y) < ε + δ implies α(x, y)d(Tx,Ty) <
ε
s
, (26)

where

N(x, y) = max{d(x, y),
1
2

[d(Tx, x) + d(Ty, y)]}, (27)

for all x, y ∈ X.
(2) There exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(x0,T2x0) ≥ 1.
If T is continuous or (X, d) is α-regular, then T has a fixed point. If, in addition, T satisfies the condition (U1),

then the fixed point is unique.

Proof. The proof is obvious from the Theorem 2.9 due to the fact that N(x, y) ≤M(x, y) for all x, y ∈ X.

Corollary 3.2. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1. Let T : X → X be an
α-Meir-Keeler contraction, that is, for every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies α(x, y)d(Tx,Ty) <
ε
s
, (28)

for all x, y ∈ X.
If T is continuous or (X, d) is α-regular, then T has a fixed point. If, in addition, T satisfies the condition (U1),

then the fixed point is unique.

Proof. The proof follows easily from the relation d(x, y) ≤M(x, y) for all x, y ∈ X.

Some more consequences are concluded from the main result given in Theorem 2.9 by taking α(x, y) = 1.

Corollary 3.3. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1. Let T : X → X be a
continuous mapping satisfying the following:
For every ε > 0 there exists δ > 0 such that

ε ≤M(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
, (29)

where

M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}, (30)

for all x, y ∈ X. Then T has a unique fixed point.

Corollary 3.4. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1. Let T : X → X be a
continuous mapping. Assume that for every ε > 0 there exists δ > 0 such that

ε ≤ N(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
, (31)

where

N(x, y) = max{d(x, y),
1
2

[d(Tx, x) + d(Ty, y)]}, (32)

for all x, y ∈ X. Then T has a unique fixed point.
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The last consequence is the classical Meir-Keeler contraction on Branciari b-metric spaces.

Corollary 3.5. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1. Let T : X → X be a
continuous Meir-Keeler contraction mapping, that is, given ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
, (33)

for all x, y ∈ X. Then T has a unique fixed point.

The general nature of α-admissible mappings makes it possible to deduce fixed point theorems for cyclic
mappings and mappings defined on partially ordered spaces. Assume that a partial ordering � is defined
on a Branciari b-metric space (X, d) with a constant s ≥ 1. Let T : X → X be an increasing mapping. Then,
by choosing the function α as

α(x, y) =

{
1 if x � y or y � x
0 if otherwise

the following fixed point theorems easily follow from the main theorems.

Corollary 3.6. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 on which a partial ordering
� is defined. Let T : X → X be an increasing mapping satisfying the following condition for all comparable pairs
x, y ∈ X:
Given ε > 0 there exists δ > 0 such that

ε ≤M(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
, (34)

where

M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}. (35)

Assume that x0 � Tx0 and x0 � T2x0 for some x0 ∈ X. Then T has a fixed point. If, in addition, any two fixed points
of T are comparable then T has a unique fixed point.

Corollary 3.7. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 on which a partial ordering
� is defined. Let T : X → X be an increasing mapping satisfying the following condition for all comparable pairs
x, y ∈ X:
Given ε > 0 there exists δ > 0 such that

ε ≤ N(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
, (36)

where

N(x, y) = max{d(x, y),
1
2

[d(Tx, x) + d(Ty, y)]}. (37)

Assume that x0 � Tx0 and x0 � T2x0 for some x0 ∈ X. Then T has a fixed point. If, in addition, any two fixed points
of T are comparable then T has a unique fixed point.

Corollary 3.8. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 on which a partial ordering
� is defined. Let T : X → X be an increasing mapping satisfying the following condition for all comparable pairs
x, y ∈ X:
Given ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies d(Tx,Ty) <
ε
s
. (38)

Assume that x0 � Tx0 and x0 � T2x0 for some x0 ∈ X. Then T has a fixed point. If, in addition, any two fixed points
of T are comparable then T has a unique fixed point.
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