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Abstract. Chen established sharp inequalities between certain Riemannian invariants and the squared
norm of mean curvature for submanifolds in real space form as well as in complex space form. In this paper
we generalize Chen inequalities for submanifolds of Bochner-Kaehler manifolds. Moreover, we study CR-
warped product submanifolds of Bochner-Kaehler manifold and establish an inequality for the Laplacian
of the warping function, from which we conclude some obstructions to the existence of such immersions.

1. Introduction

In [7], Chen established sharp inequality for a submanifold in a real space form involving intrinsic
invariants of the submanifolds and squared norm of mean curvature, the main extrinsic invariant and in
[2], Chen obtained the same inequality for complex space form. After that many research articles have
been published by different authors for different submanifolds and ambient spaces in complex as well as
in contact version(see[4]). In this article we obtain these inequalities for submanifolds in Bochner-Kaehler
manifold.

In [10] Bishop and O’Neil initiated the theory of warped product submanifold as a generalization
of pseudo-Riemannian product manifold. In 2001, Chen studied warped product CR-submanifold in a
Kaehler manifold A and introduced the notion of CR-warped product[5]. He proved that there does not
exist warped product CR-submanifold in the form N, X; N7 other than CR-products such that N~ is a

holomorphic submanifold and N, is a totally real submanifold of V. In this paper, we study warped product
CR-submanifolds of Bochner-Kaehler NV in the form Nt Xy N, where N+ is a holomorphic submanifold

and N, is a totally real submanifold of . We establish the inequality for the Laplacian of the warping
function f in terms of mean curvature for warped products isometrically immersed in Bochner-Kaehler

manifold NV. We also conclude some corollaries giving the obstructions to the existence of such immersions.

2. Preliminaries

_ Let N be a n-dimensional submanifold of a Bochner-Kaehler manifold N of dimension 2m. Let V and
V be the Levi-Civita connection on N and N respectively. Let | be the complex structure on N. Then the
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Gauss and Weingarten formulas are given respectively by

VxY = VxY + (X, Y), (1)

VxV = -ByX + V1Y, )

for all X, Y tangent to NV and vector field V normal to N. Where w, V§, By denotes the second fundamental
form, normal connection and the shape operator respectively. The second fundamental form and the shape
operator are related by

g(@(X,Y),V) = g(BvX,Y). (©)
Let R be the curvature tensor of NV, Then the Gauss equation is given by [7]
R(X,Y,Z,W) = R(X, Y, Z, W) + g(@(X, W), (Y, 2)) - g((X, Z), (Y, W)

for any vector fields X, Y, Z, W tangent to N.
Let x € N and fey, ..., e,} be an orthonormal basis of the tangent space TN and {es+1, ..., €2} be the
orthonormal basis of T+ N. We denote by H, the mean curvature vector at x, that is

1 n
HE) = = 21 w(ei, e, @
Also, we set
wl?], = g(w(ei,ej), ), i,je{l,..,n}, re{n+1,..2m}
and
ol = ) (@ei,e)), wlee)). (5)

ij=1

For any x € N and X € T, N, we put JX = TX + FX, where TX and FX are the tangential and normal
components of JX, respectively.
We denote by

ITI? = )" *(Tei ).

ij=1

Let N be a Riemannian manifold. Denote by K (m) the sectional curvature of N of the plane section
11 C TyN,x € N. The scalar curvature p for an orthonormal basis{e;, e, ..., e,} of the tangent space T, N at x
is defined by

p(x) = Z K(e; Aej).

i<j

The curvature tensor of a Bochner-Kaehler manifold N is given by [9]

RYLZW) = LY, Z)g(X, W) = L(X, Z)g(¥, W) + L(X, W)g(¥, 2)
~L(Y, W)g(X, Z) + M(Y, Z)g(JX, W) = M(X, Z)g(]Y, W)
+M(X, W)g(TY, Z) — M(Y, W)g(JX, Z)

—2M(X, Y)g(JZ, W) = 2M(Z, W)g(J X, Y) (6)
where
R S Ve p
LY 2) = 5 R 2) = sy an s 1 %) @
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M(Y, 2) = =L(Y, ]2), (8)

L(Y,Z) = L(Z,Y), LY, Z) = L(Y, ] 2), LY, JZ) = =L(JY, 2), ©)
Ric and p are the Ricci tensor and scalar curvature of N.

Definition 2.1. The Kacehler manifold N is said to be Bochner-Kaehler if its Bochner curvature tensor vanishes.
These spaces are also known as Bochner-flat manifolds.

Lemma 2.2. [7] Let n > 2 and x1, x5, ..., Xu, b be real numbers such that

) xp ==Y 2 +b)
i=1 i=1

then 2x1x, > b, with equality holds if and only if
X1+ X2 =X3 = ... =Xy.

In [1] A. Bejancu introduced the notion of CR-submanifolds, which is the generalization of invariant and
anti-invariant submanifolds. In [3] B. Y. Chen introduced the notion of slant submanifolds as a generalization
of CR-submanifolds.

Definition 2.3. A submanifold N' of a Bochner-Kaehler manifold N is said to be a slant submanifold if for any x € N
and X € TN, the angle between [X and TN is constant, i.e., the angle does not depend on the choice of x € N and

X € TyN. The angle 0 € [0, 7] is called the slant angle of N in N.
Invariant and anti-invariant submanifolds are the slant submanifolds with slant angle 6 = 0 and 6 = 7
respectively and when 0 < 0 < 7, then slant submanifold is called proper slant submanifold.

Definition 2.4. A Riemannian manifold N is said to be Einstein manifold if the Ricci tensor is proportional to the
metric tensor, that is, Ric(X,Y) = Ag(X, Y) for some constant A.

Definition 2.5. Let M and N be two Riemannian manifolds with Riemannian metrics gy and gy respectively and
f > 0, a differentiable function on M. Consider the product manifold M x N with its projection T : M X N — M and
0 : MXN — N. The warped product of N : M'X ¢N is the manifold M X N equipped with the Riemannian structure
such that

9(X,Y) = g(.X, .Y) + (f 0 9)°9(0.X, 0.Y)
for any X € TyN. The function f is called the warping function of the warped product.

Let N = N7 Xy N be the warped product CR-submanifolds of Bochner-Kaehler manifold N such that
the invariant distribution is D = TN+ and anti-invariant distribution is D* = TN, where f : N+ — R.
Then the metric g on N is given by [5]

9(X,Y) = (X, Y)Y + (f o m)*0.X,0.Y)

where 1 and ¢ are the projection maps from N onto Nt and N, respectively.

3. B. Y. Chen Inequalities

In this section, we obtain B. Y. Chen inequalities for submanifolds of a Bochner-Kaehler manifolds.
First we have,
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Theorem 3.1. Let N be a submanifold of a Bochner-Kaehler manifold N'. Then, for each point x € N and each plane
section 1 C TyN, we have

7n + 10 — 3n% + 3||T|]? )_ ~ n?(n —2)

p—K(n) < ( 2021 + 2)(2n + 4) 2(n—1)

2 —_—
IFHIP - 5

m@(ei, Jeg(ei, Jej).

(10)

Equality holds if and only if there exists an orthonormal basis {ey, ey, ..., e,} of Tx N and orthonormal basis {e,4+1, €n+2, .-, €2}
of T+ N such that the shape operators takes the following forms

a 00 -~ 0
0 g 0 -~ 0
Buy=|0 0 ¢ = 0f hip=c¢ (11)
0 00 -+ &
and
wgl a)gg 0o --- 0
wy, —wy 0 --- 0
B=[0 0 0 - Ofy-pyi2.  om (12)
0 0 0 -~ 0

Proof. Using Gauss equation, the Riemannian curvature tensor of N is given by
RX,Y,Z,W) = LY, Z)g(X,W) - L(X, 2)g(Y, W) + L(X, W)g(Y, Z)
~L(Y, W)g(X, Z) + M(Y, 2)g(JX, W) = M(X, Z)g(JY, W)
+M(X, W)g(JY, Z) = M(Y, W)g(J X, Z) = 2M(X, Y)(JZ, W)
~2M(Z, W)g(JX, Y) + g((X, W), (Y, 2)) — g(e(X, Z), (Y, W)

forany X,Y,Z, We TN.
Z Roei ejej,e;)) = Llej,ej)gei ei) — Liei, ej)glej, ei) + L(ei, e)g(ej, e;)
ij

—L(ej, ei)gei ej) + M(ej, ej)g(Jei, i) — Mei, ej)g(Jej, e:)

+M(ei, ei)g(Je;j, e;) — Mlej, ei)g(Jei, ej) — 2M(e;, e;)(Jej, €:)

—2M(ej, e)g(Jei, ej) + g(w(ei, e;), w(ej, e;)) — glw(ei, e;), wlej, ei))

= L(ej ej)glei e;) — L(ei, e)g(e;j, ;) + L(ei, ei)g(ej, e))
—L(ej, e g(ei, ej) — L(ej, Jej)g(Jei, ei) + Lie;, Jej)g(Je;, e;)
—L(e;, Jer)g(Jej, €j) + Liej, Je)g(Jei, ej) + 2L(e;, Jej)(Jej, e:)

+2L(ej, Je)g(Jei, ej) + g(w(ei, €:), w(ej, e))) — glaw(ei, €)), w(ej, €))-
(13)

Using (9), (4) and (5) in (13), we have
Y Reejepe) = 2nllee)—2Lie egleie) + 6L Jegle Jej)
b

2 2 2
+7|H|I” - ol



M. A. Lone et al. / Filomat 31:18 (2017), 5511-5523
Which simplifies to,
2p = 2(n—1)L(ei,e) + 6L(ei, Jej)glei, Jep) + n*|HI = llwll.

Combining (7) and (14), we have

_ 2n-1)— 2(m-1)p
20 = o) Ric(e;, e;) — mg(euez)
+ 6 E(e« Jeng(e;, Jei) — L
2+ 4 eI ) T S 5 0V on + 4)
+1?||H|P — el
or
_en?+2n—-8-6|TIP_ —
20 = Donroan+ s P el jege)
+1?(|HIP — ol
Denoting by

3 6n*> +2n -8 —6||T|>\= n*(n—2) )
€=2 _( 201 +2)(2n + 4) ) B Pl

we obtain

( )

2 2 2 2
e = ||H|I” - llwll” - ———IIH|I".

or
nIHIP = (n = 1)(e + llwlP).

For chosen orthonormal basis, the above equation takes the form

(Z a)”+1 =(n-1) Z:(w”“)2 + Z:(w”“)2 + zzm: Zn:(a)ij)z +€].

i#] r=n+1i,j=1

Using lemma 2.2 in (16), we have

2m  n
1 1 142 2
20wl > ) @)P 4 ) Y @) e

i#] r=n+1i,j=1

On the other hand, from Gauss equation we obtain

K(m) = L(ez, e2) + L(er, 1) + glw(er, e1), w(ez, e2) — g(w(er, e2), w(ez, e1)).

Combing (7) and (18), we derive

2m

2m
4n+3
7( = >0+ n+l_n+l + 7 roo_ r 2'
(m) (2n+2)(2n+4)f3 Wy Wy 7;2“)110)22 y:§n+1(w1z)

g(ei, Jej)g(ei, Je))

6 —
— 5z Ricei, Jejg(ei, Jey),

5515

(14)

(15)

(16)

(17)

(18)

(19)
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Incorporating (17) in (19), we arrive at the inequality

2m n
K = 5 Y@z Y Y@+ ze

i#] r=n+1i,j=1
2m 2m
4n+3 _ .y .2
*Er @ pP T L e ) @)
r=n+2 r=n+1
Which implies that
4n + _ 1
K(r) > nt3

Qi+ )+ 4l T 2¢
or

7n+10-3n> + 3|TIP\- n*(n—-2) _.» 6
— < — - - . . . ).
p=K(m < ( 221+ 2)2n + 4) ) 200=1) I~ s sy RictenJeDgte Je)
(20)
If the equality in (10) at a point p holds, then the inequality (20) become equality. In this case, we have
a);’;'l = wg’]fl = a)l’.;frl =0, i#]>2,

a)lf]. =0,Vi#j ij=3,.,2m, r=n+1l,.,2m,

Wy +wy, =0,Yr=n+2,.,2m,

n+2 n+l _ — o am mo_
Wi Wy = =Wt wy, = 0.
: n+l_ T — — n+l _ — r
Now, if we choose e;, ¢, such that w3 =0 and we denote by a = Wi, B = Wy, &= Wit = = Wy

Therefore by choosing the suitable orthonormal basis the shape operators take the desired forms. [

Corollary 3.2. Let N be a submanifold of a Bochner-Kaehler manifold N which is Einstein. Then, for each point

x € N and each plane section m C TN, we have

7n + 10 — 3n% + 3||T|]? )_ _n*(n-2) 61
22n +2)(2n + 4) 2(n—1) 2(2n + 4)

The equality at a point x € N holds iff there exists an orthonormal basis {eq, e, ..., e,} of TxN and orthonormal basis

{en+1, ns2, ..., €2m} Of TN such that shape operators of N in N at x have the forms (11) and (12).

p—K(m) < ( IH|P - ITIP.

Similarly, in case if AV is a slant submanifold of a Bochner-Kaehler manifold N. We have the following
theorem

Theorem 3.3. Let N be a slant submanifold of a Bochner-Kaehler manifold N'. Then, for each point x € N and each

plane section . C T, N, we have

7n + 10 — 3n% + 3||T|]? )_ ~ n?(n —2)
2(2n +2)(2n + 4) 2(n—1)

llH* - LE(e,',]ej)cose.

p—K(m < ( 221 +4)

Equality holds if and only if there exists an orthonormal basis {e1, €3, ..., e,} of Ty N and orthonormal basis {e,+1, €n+2, ..., €2m}
of T*N such that the shape operator takes the following forms

a 0 0 0
0 g0 - 0
Bu=|0 0 & - 0] pip=¢ (21)
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and
wil wqg o --- 0
wy, —wy 0o --- 0
B=[0 0 0 - Ofy=pyi2.  om (22)
0O 0 0 -+ 0

From this theorem, following corollaries can be easily deduced.

Corollary 3.4. Let N be a slant submanifold of a Bochner-Kaehler manifold N, which is Einstein . Then, for each
point x € N and each plane section = C TN, we have

cos>0.

7n + 10 — 312 + 3||T|2 )_ _A(n-2)

) 6
221 +2)(2n + 4) 2(n - 1) H = 5

p_(K(”)S( Qn+4)

The equality holds at a point x € N if and only if there exists an orthonormal basis {ei, ey, ...,e,} of TN and
orthonormal basis {e,41, €n+2, ..., €am} Of TN such that shape operators of N in N at x have the forms (21) and (22).

Corollary 3.5. Let N be a invariant submanifold of a Bochner-Kaehler manifold N . Then, for each point x € N and
each plane section 7 C TxN, we have

ﬁ(@,‘, ]€j).

7n + 10 — 3n% + 3||T|]? )_ ~ n?(n —2)

p—K(m < ( 201+ 2)2n + 4) 201 —1)

2____°
Pl 22n +4)

The equality at a point x € N holds iff there exists an orthonormal basis {eq, e, ..., e,} of TxN and orthonormal basis
{ens1, €ns2, ... €2} Of TN such that shape operators of N in N at x have the forms (21) and (22).

Corollary 3.6. Let N be a anti-invariant submanifold of a Bochner-Kaehler manifold N . Then, for each point x € N
and each plane section 7t C T, N, we have

1.

7n + 10 — 3n* + 3||T|? )_ _n(n=2)

p—K(m < ( 201+ 2)2n + 4) 201 —1)

The equality at a point x € N holds iff there exists an orthonormal basis {eq, e, ..., e,} of TxN and orthonormal basis
{en+1, €ns2, - €2} Of TEN such that shape operators of N in N at x have the forms (21) and (22).

4. Warped Product CR-Submanifolds of Bochner-Kaehler Manifolds

Letx: N+ X f N, - N be an isometric immersion of a warped product CR-submanifold into Bochner-
Kaehler manifold N. We denote H, = nl—] 221 w(e;, e;), where ny is the dimension of N+ and H, =
nlz Z;Lnl +1 w(es, e5), where n; is the dimension of N, [8]. The immersion x is said to be mixed totally

geodesic if w(X, Z) = 0, for any vector fields X and Z tangent to N+ and N, respectively.

Furthermore, it is easy to see that the scalar curvature p of N can be decomposed as p = Pp + pp., where
Pp = Z?zll Ric(e;, e;) and PpL = an=n1+1 Ric(es, es).

Let Nt X N be warped product CR-submanifolds of a Bochner-Kaehler manifold. Since N+ X N is
a warped product, from [8], we see that

VxZ =VzX = ]lc(x NZ (23)
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for any vector fields X, Z tangent to N7, N, respectively. Also for X and Z unit vector fields, the sectional
curvature K(X A Z) of the plane section spanned by X and Z is given by

%{(VXX)f - X2f). (24)

We now choose a local orthonormal frame {ej, ey, ..., €, €441, - - ., €2} such that ey, ey, ..., e, are tangent
to Nt and ey, 41, ..., e, are tangent to N, and e, is parallel to the mean curvature vector H. Then using
(24), we find

A a
7f = ZK(ej Aes) foreachs € {ny +1,...,nl. (25)
j=1

Also from the equation of Gauss, we have

K(X ANZ) = g(VzVXX -VxVzX, 7) =

0y - 6n2+2n—8—6||T||2_+
P = on+en+4) P onra
+?|H|* - llwl*.

Ric(e;, Jepg(ei, Jej)

Which implies that

6n2 +2n—8—6||T|*— _
20n+2)2n+4) P om+4

mIHIP = 2p + llwl? - Ric(ei, Jej)g(ei, Je))- (26)

Here we know that p denotes the scalar curvature of N+ X N, given by

Z K(e; A 6]‘).

1<i<j<n

We set

€=2p—{

612 +2n—-8—6||T|? _ 6 — n oo
2@n+2)2n+ ) o - 7 +4RIC(€z,]€])!7(€uI€]) - ?HHH .

Then (26) can be written as
n?IHI? = 2(e + llwl?) (27)

The above equation can also be written as

2m n

anﬂ 2e + Z(wn+l)2 Z(wn+1 2, Z Z(w;j)z}

i#] r=n+2i,j=1

Let us suppose a; = @', a, = Y./, ot and a3 = Y1, | @', The above equation becomes

11 7 = W
3
(Lof =2 Yt T e 3 Vep- T, opafs
i=1 1<i#j<n r=n+21i,j=1 2<j#k<ny
n+l_n+l
- Z Wgs Wy }
np+1<s#t<n

Thus a4, a5, a3 satisfy lemma 2.2 for n = 3, i.e, we have
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(ia,ub)

1=

2m n
n+1 r\2 n+l_ n+l n+l_ n+l
b=e+ ), @V ), Y@ ) et ) arlef

1<i#j<n r=n+2i,j=1 2<j#k<m np+1<s#t<n

ij

where

Then form the lemma 2.2, 2214, > b, with the equality holding if and only if a; + a, = a3. In our case, we
have from the above result

2m n

€ 1
n+1 n+1 n+l n+l n+12 r \2
Y, efflelte Y elleftzge 3 @iz ) Y @l
1<j<k<my ny+1<s<t<n 1<a<fsn r=n+2 a,f=1

(28)

equality holds if and only if

Z wn+1 Z a)””. (29)

t=n1+1
We know that
Z K(ei Nej) = Z K(ej Aex) + Z K(es A e;) + Z ZK(ej A €s).
1<A<usgn 1<i<j<my np+1<s<t<n s=m+1 j=1
(30)
Also we know that
Af &
— = K(eiAes) Y se{n+1,...,n}
7 LK@
which implies that
A
Y, Z- Y Y K e
s=n1+1 s=ni+1 j=1
or
A n n
nsz = Z ZK(ej A es). (31)
s=n+1 j=1
From (30) and (31), we get
le— =p- ), Kejre)- ), Kesne. (32)

1<j<k<m ni+1<s<t<n

Now using the Gauss equation , we find

Y, Kene)= ), gReiee e

1<i<j<m 1<i<j<my
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The last equation combined with (13), gives

Af
me = p=2 ), Lepehglee)+2 ), Leneglee)=6 Y, LieJehgteile)
1<i<j<m 1<i<j<my 1<i<j<m
2m 2m
=) ) @t ) ), @2 ) Leegtenen)
r=n+11<i<j<m r=n+11<i<j<m m+1<s<t<n
¥2 ) Legelglese) =6 ) Lie, Jegles, Jer)
n+1<s<t<n m+1<s<t<n
2m 2m
2
-) ), @), ), @
r=n+1ny+1<s<t<n r=n+1n+1<s<t<n

which can be further written as

Af
nz7 = p- Z L(ej, ej)g(ei, &) + Z L(ei, e))g(ei ej) — 3 Z L(ei, Jej)g(ei, Jej)
1<i#j<m 1<#j<m 1<i#j<m
- Z Les, es)gler, er) + Z Les, er)gles, e) =3 Z Les je)g(es, Jer)
n+1<s#t<n m+1<s#t<n m+1<s#t<n
2m 2m 2m
2
D NECTED WD MRS NI Dt
r=n+11<i<j<m r=n+11<i<j<m r=n+1ny+1<s<t<n

2m
DD R (33)

r=n+1nj+1<s<t<n

Since in the second and fifth term i # j and s # t and the basis {e)}}_, is orthonormal, we have

Y, Levepglee)= Y, Lieselglese) =0.

1<i#j<m np+1<s#t<n

Therefore, the last equation (33) becomes

w0 Y Lo - Y Lesedgene)+ Y e
k=1

f 1<i,j<m ny+1<s,t<n

+ Z L(ew, ew) —3 2 L(ei, Jej)g(ei, Jej) — 3 2 L(es, Jer)g(es, Jer)

w=n+1 1<i,j<my n1+1<s,t<n
2m 2m 2m
ro.r r\2 ror
P MPNCTED WD WCOED WD I
r=n+11<i<j<m r=n+11<i<j<m r=n+1n1+1<s<t<n

2m

+), ), @y

r=n+1n;+1<s<t<n
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which implies that
Af -
e Z Liej e) = (n —m) Z L(es,es)+ZL(ek,ek)
j=1 s=np+1
11

+ Z L(ew ea) = 31) |, Liei, Jej)glei, Jej) - Z Les, Jer)g(es, Je))}
w=n1+1 ',j:l st=n1+1
2m 2m

_Z Z‘”%*Z Z _Z Z Wis Wy
r=n+11<i<j<m r=n+11<i<j<m r=n+1n;+1<s<t<n

2m
£Y), @

r=n+1n;+1<s<t<n

or

mo = <n1—1>ZL<e,,e]> (2= 1) Z L(es €:)
s=n1+1
1 2m
—3{ZL(ei,]ej)g(ei,]ej)— 2 L(es,]et)g(es,fet)}— 2 Z Wi
i,j=1 st=n1+1 r=n+11<i<j<m
2m 2m 2m
o 2 2
£, Y @pr-) ), ehehr ), ), @)
r=n+11<i<j<m r=n+1n1+1<s<t<n r=n+1ny+1<s<t<n
Since Je; € TN*. This gives from the last equation
Af
me = ("1—1)ZL(6]/€;)—(712—1) Z Les ¢)
s=m+1
1y
e Y, ¥
j=1 r=n+11<i<j<m
2m 2m 2m
2 2
DHDIRCIED WD WD WD WY
r=n+11<i<j<m r=n+1nj+1<s<t<n r=n+1n;+1<s<t<n
which can further be simplified as
Af
me = (n1+2)ZL(e],e]) (ny = 1) Z L(es, e)
s=n1+1
2m
ror r\2
M MRS W W
r=n+11<i<j<m r=n+11<i<j<m
2m 2m
2
-) ) e ), ), @
r=n+1n;+1<s<t<n r=n+1ny+1<s<t<n

Using (28) in the above equation, we derive
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A
n27f < p-(m +2)ZL(e],e])—(n2 -1 Z L(es,e5) — Z Z Wi,
s=n1+1 r=n+2 1<i<j<m
2m 2m
Y Y Y epe Y Y
r=n+2 ny+1<s<t<n r=n+11<i<j<m r=m+1 nj+1<s<t<n
€ 2
$- X @b 3 Ve
1<a<p<n r=n+2 a,f=1
or
Af 2m
me <n1+2>ZL<e],e,> (n2—1) Z Lese)+ Y. Y @) - wjal)
s=n1+1 r=n+2 1<i<j<m
e 1 1\2
* Z Y, @hP-elwil -3 -5 Z Z(wii;
r=n+2 n1+1<s<t<n r=n+2 a,f=1
n
_2 Z (wn+1 2
j=1 t=n+1

which implies

A
ml < <n1+2>ZL<e],e,> (-1 Y Lewe) -
s=m+1
2m  n n 2m n 2 1 2m n 2
_ 2 r _ r
ZZZ(“’t) (.wff) 22(2%)
r=n+1 j=1 t=n1+1 r=n+2  j=1 r=n+2 t=n1+1
or
af
me <n1+2>ZL<e],e,> (2= 1) Z Lies,e5) —
s=n1+1
Last equation can be rewritten as
af
m— < p- <n1+z>ZL<e],e,> (2 - 1) Z L(es, )
s=m+1

(6n +2n—8—6||T||2)_ 3
2

= n? 2
TP TR TETEy L Riclei, Jep)ges Jep) + LIHIE = p.

Using the definition of tensor L, we get from the last inequality

Af (n1+2)_ m(m+2)  _ (p-1)_ m(np—1)  _
e A i T ) s L Py T P Y s
(6712 +2n — 8 — 6||T|]? )_ 3
42n +2)2n + 4) 2

N 2
JRiclei, Jej)gtei ) + L IHIP
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or
Af (m+2)_  (ma-1)_ 6/|T|I — n(m +2)  _
M S T a T I a o T T en+ ' T 2+ 2en+ '
na(ny — 1) _+( 6n%+2n—-8 )_
20n+2)2n+ 4P T \anr2n + 9
5 Ricei, Jepglei, Je) + Z||7’(|| .
Let p, > 0 and p,,. > 0. We have
_ 2 —
ﬂ‘ < ni(ny +2) 54 (np—1) 5+( 6n-+2n-8 )E
f 2np(2n + 2)(2n + 4) 2(2n +2)(2n + 4) 4(2n +2)(2n + 4)
_on?
+—n2(2n+4)pD + le(HH . (34)

Hence, we have the following

Theorem 4.1. Let N = N7 X; N, be an n-dimensional warped product CR-submanifold immersed in Bochner-
Kaehler manifold with p, > 0 and p,. > 0. Then the warping function f satisfies the following inequality

Af  T4n® —4dniny + 6mp — 81— 3 _ n?
| I N——
f 16ny(n + 1)(n + 2) 2ny(n + 2) 4n,
Moreover, the equality holds, if and only if the immersion is mixed totally geodesic, the partial mean curvatures satisfy

IHI.

mHy = nyHp and pp, = 0, ppp. = 0. In the case of equality ATf = %llHllz.

Corollary 4.2. Let N = Nt Xy N, be a warped product CR-submanifold immersed in Bochner-Kaehler manifold
such that the equality holds in the above theorem. Then there does not exist such immersions with harmonic warping
function.

Corollary 4.3. Let N = Nt X; N be a warped product CR-submanifold immersed in Bochner-Kaehler manifold N
such that the equality holds in the above theorem. Then there does not exist such immersions with warping function
as an eigen function of the Laplacian on N+ having corresponding eigenvalue A < 0.

Corollary 4.4. Let N = Nt Xy N be a warped product CR-submanifold immersed in Bochner-Kaehler manifold
such that the equality holds in the above theorem. Then there does not exist such minimal immersions with warping
function as an eigen function of the Laplacian on Nt having corresponding eigenvalue A # 0 .

Theorem 4.5. Let N = N7 Xy N be an n-dimensional warped product CR-submanifold immersed in Bochner-
Kaehler manifold with p,, < 0 and pp+ < 0. Then the warping function f satisfies the following inequality
Af < _[(”1 +2)pp + (12 = 1)pp. ] B 6IITII>
f - 21ny(n + 2) 16n;
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