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Abstract. In this work, we investigate the order of the growth of the modulus of orthogonal polynomials
over a contour and also arbitrary algebraic polynomials in regions with corners in a weighted Lebesgue
space, where the singularities of contour and the weight functions satisfy some condition.

1. Introduction

Let C be a complex plane, C := CU{oo}; L c Cbe a closed rectifiable Jordan curve, G := intL, with 0 € G,
Q :=extL. Let h(z) be a nonnegative, summable on a L and nonzero except possibly on a set of measure zero
function. The systems of polynomials {K,(z)}, K.(z) = a,z" + ..., degK, =n,n =0,1,2,.., satisfying the
condition

n=m,
n+m,

[ er@na~{

L

are called orthonormal polynomials for the pair (L, &). These polynomials are determined uniquely if the
coefficient a,, > 0.

These polynomials were first studied by G. Szeg6 [36], [37]. V.I. Smirnov [32], P.P. Korovkin [19], Ya. L.
Geronimus [16] investigated these polynomials under various conditions on the weight function h(z) and
contour L. In [34], PK. Suetin investigated many properties of the polynomials {K;(z)} for smooth contour
and weight function h(z) that is zero or infinite at finite number points on the contour L. A.L. Kuz'mina
[20] and G. Fauth [14] have considered some properties of the polynomials {K,(z)} for piecewise analytic
contour L with finite number of corners. In [35], P.. Suetin obtained several estimates for the rate of growth
of the polynomials {K,(z)} on the contour L, depending of the singularity of the weight function h(z) on L
and of the contour L.

Let L be a rectifiable Jordan curve with the natural parametrization z = z(s),0 < s < | := mesL. We say
that L € C(1,a), 0 < a < 1, if z(s) is continuously differentiable and z’(s) € Lipa. Let L belong to C(1, &)
everywhere except for a single point z; € L, i.e., the derivative z’(s) satisfies the Lipschitz condition on the
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[0, 1] and z(0) = z(I) = z1, but z’(0) # z’(l). Assume that L has a corner at z; with exterior angle vrt, 0 <v < 2,
and denote the set of such curves by C(1, a, v).
Denoted by w = ®(z), the univalent conformal mapping of Q2 onto A := {w : [w| > 1} with normalization

D(c0) = 00, lim, 00 ? >0and W := @' For t > 1, we set

Li:={z: |D@)| =t, L1 =L, G :=intL;, Q := extL.

Let {z:]"  be the fixed system of distinct points on curve L. For some fixed Ry, 1 < Ry < 00, and z € Gr \G,
1fi=1 0

consider the generalized Jacobi weight function / (z) , which is defined as follows:

h(z) := ho(z) H |z - zj|yj , 1)

=1

where y; > -1, forall j = 1,2,...,m, and hg is uniformly separated from zero in L, i.e. there exists a constant
co(L) > 0 such that for all z € Gg,

ho(z) = co(L) > 0.

PXK. Suetin [35] investigated this problem for K, (z) with the weight function /1(z) defined as in (1) and for
the curve L € C(1, a, v). He showed that the condition of ”pay off” singularity curve and weight function at
the points z; can be given as following:

I+ypn =1, )

and, under this conditions, for K,(z) provided the following estimation:

Ky(2)| <c(L)Vn+1, z€L, 3)

where ¢(L) > 0 is a constant independent on .

In this work we study the estimations of the (3)-type for more general contours of the complex plane
and we obtain the analog of the equality (2) corresponding to the general case. In parallel, we also study the
growth of arbitrary algebraic polynomials with respect to their seminorm in the weighed Lebesgue space,
under the (2)-type conditions.

2. Definitions and Main Results

Throughout this paper, ¢, ¢ c1, ¢z, ... are positive and &g, €1, €2, ... are sufficiently small positive constants
(generally, different in different relations), which depends on G in general and, on parameters inessential
for the argument; otherwise, such dependence will be explicitly stated.

Let 9, denotes the class of arbitrary algebraic polynomials P,(z) of degree at mostn € INg := {1,2,...}U{0} .

Without loss of generality, the number Ry in the definition of the weight functions, we can take Ry = 2.
Otherwise the natural number 7 can be chosen n > [ Rjo_l] , where ¢y, 0 < ¢y < 1, some fixed small constant.
Let 0 < p < oco. For a rectifiable Jordan curve L, we denote

1/p
WPallg, = =Pnllg,pry == fh(z) IPa(z)l |dz]| ,0<p<oo,
L
WPulle, : =Pullzoqry = max [Pu(2)], p = oo.

Clearly, |Illz, is a quasinorm (i.e. a norm for 1 < p < co and a p—norm for 0 <p <1).

For any k > 0 and m > k, notation i = k,m means that i =k, k+1,...,m.
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Let z = i(w) be the univalent conformal mapping of B := {w : |[w| < 1} onto the G = intL normalized by

P (0) =0, ¢’ (0) > 0. By [28, pp.286-294], we say a bounded Jordan region G is called « -quasidisk, 0 <k <1,

if any conformal mapping ¢ can be extended to a K -quasiconformal, K = {*£, the homeomorphism of the

plane C on plane C. In that case, the curve L := 9G is called a « -quasicircle. The region G (curve L) is called
a quasidisk (quasicircle), if it is x-quasidisk (x -quasicircle) for some 0 < x < 1.

We denoted the class of « -quasicircle by Q(x), 0 < x < 1, and denote by L € Q, if L € Q(«), for some
0 < x < 1. It is well-known that the quasicircle may not even be locally rectifiable in [21, p.104].

Definition 2.1. We say that L € é(K), 0 <x <1, if L € Q(x) and L is rectifiable. Analogously, L € @, if
L € Q(x), forsome 0 < x < 1.

In [8], the authors obtained the following result for L € é(K), 0<xk<1l:
Theorem A. Let p > 0. Suppose that L € Q(x), for some 0 < x < 1 and h(z) defined in (1) for y; = 0, for
all j = 1,m. Then, for any P, € p,, n € Ny, there exists c; = c1(L,p) > 0 such that:

M
IPullz., <c1(n+1) 7 Pl £,y 1) - 4)
Corollary A.
IKllz. < ci(n+1)%. (5)

Thus, Theorem A provides an opportunity to observe the growth of |P,(z)| on the curve L. Note that,
Theorem A for L := {z : |z| = 1} (i.e. ¥ = 0) provided in [18]. The other classical results are similar to (4) we
can find in [38]. The evaluations of (4)-type for 0 < p < co, h(z) = 1 (or h(z) # 1 ) was also investigated in
[33], [23], [24], [26, pp.122-133], [30], [1]-[8] and others (see also the references cited therein), for different
Jordan curves having special properties. In [11, Theorem 6] obtained identical inequalities for more general
curves and for another weighed function. There are more references regarding the inequality of (4)-type,
we can find in Milovanovi¢ et al. [25, Sect.5.3].

From the conditions of the theorem, we see that, it holds for k—quasidisks with 0 < k < 1. But calculating
the coefficient of quasiconformality x for some curves is not an easy task. Therefore, we define a more
general class of curves with another characteristic. One of them is the following;:

Definition 2.2. Wesay thatL € Q,,0<a <1,ifLe Qand ® € Lipa, z € Q.

We note that the class Q, is sufficiently wide. A detailed account on it and the related topics are
contained in [29], [22], [40] and the references cited therein. We consider only some cases:

Remark 2.3. a) If L = dG is a Dini-smooth curve [29, p.48], then L € Q;.

b)If L = dG is a piecewise Dini-smooth curve and largest exterior angle at L has opening an, 0 < a <1,
[29, p.52], then L € Q,.

o)If L = dG is a smooth curve having continuous tangent line, then L € Q, forall 0 <a < 1.

d) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair z1, z, € L, if s(z1,2,) represents
the smallest of the lengths of the arcs joining z; to z; on L, there exists a constant ¢ > 1 such that s(z;,z;) <
clz1 —z|, then ® € Lip a for a = 3(1 - Larcsin 1)~ [40].

e) If L is “c-quasiconformal” (see, for example, [22]), then @ € Lip a for a = I

m . AlSO, if L is an

asymptotic conformal curve, then ® € Lip a forall 0 < a < 1 [22].

Definition 2.4. Ttis said thatL € Q,, 0 <a < 1,if L € Q, and L is rectifiable.

In this case, we have the following;:
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Theorem B. ([27]) Let p > 0. Suppose that L € éa,for some 0 < a < 1 and h(z) defined as in (1) with y; = 0,
forall j = 1,m. Then, forany Py, € p,, n € Ny, there exists c; = ca(L, p) > 0 such that

1
mn+Dw, l<ac<i,
IPull 2., < c2lIPall 22 6
nil L 2 n .Ep(h[),L) (n+1)§, O<a< %’ ( )
where 6 = 6(L), 6 € [1,2], is a certain number.
Corollary B.
m+1=, l<ac<i,
K < 2 7
I ””Lw‘cz{( +1)%, O<a<}, @)

Therefore, according to 2.3, we can calculate a in the right parts of estimations (6) and (7) for each case,
respectively.
Now, let’s introduce “special” singular points on the curve L.

Definition 2.5. We say that L € é[v] ,0<v <2, if

a) Le é,

b) For Yz € L, there exists a r := #(L,z) > 0 and v := v(L,z), 0 < v < 2, such that for some 0 < 6y <2 a
closed maximal circular sector S(z;7,v) := {C C=z+re%", 0y <0 <6+ v} of radius r and opening
v7 lies in G = intL with vertex at z.

It is well known that each quasicircle satisfies the condition b). Nevertheless, this condition imposed on
L gives a new geometric characterization of the curve. For example, if the contour L* defined by

ion 1
L :=[0,i]u {z 1z =607, 5 <0< 2} Ul[L,0],
then the coefficient of quasiconformality k of the L* does not obtain so easily, whereas L* € Q [%] .

Definition 2.6. We say that L € @a Vi, vinl, 0 <v1, .., vy <2, 0 <a <1, if there exists a system of points
{GleL,i= 1,m,suchthatL € Q[vi] for any points (; € L, i = 1,m,and @ € Lipa,0<a <1, ze€ ﬁ\ {Ci}.

It is clear from Definition 2.5 (2.6), that each contour L € Q, [v1,...,viu], 0 < v1,..., vy <2, 0 < @ £ 1,
i =1,m , may have “singularity” at the points {C}iL, € L. If a contour L does not have such ”“singularity”,
ie.ifv;=1,i=1,m, then it is written as L € Qu0<ac<l.

Throughout this work, we will assume that the points {z;};2; € L are defined in (1) and {(;}}2; € L are
defined in Definitions 2.4 coincides. Without the loss of generality, we also will assume that the points
{z;}!", are ordered in the positive direction on the curve L.

We state our new results. Our first results is related to the general case: assume that the curve L have

“singularity” on the boundary points {z;}",, i.e., v; # 1, for all i = 1,m, and the weight function 1 have
“singularity” at the same points, i.e., y; # 0 for some i = 1, m. In this case, we have the following;:

Theorem 2.7. Let p > 0. Suppose that L € Qu [V1) oor V] , for some 0 < vy, ..., vy <1, 2_%4 < & < 1; h(z) defined as
in (1). Then, for any P, € 9,, n € Ny, there exists c3 = c3(L, p, yi, &) > 0 such that

yitl .
IPu(z)l < ca(n+1) 7 Pl sy (8)
and

VHL (5
Pall . < cstn+ D)7 Pl g0 9)

where y := max {0, y;} and v := min {0,v;}, i = 1, m.
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Corollary 2.8. For any K, n € Ny, there exists c4 = c4(L, v, ) > 0 such that
vitl 2
Ku(z)| < ca(n +1)77 7, (10)
and

Kullz < ca(n+1)0#D0-3), (11)

where y := max{0, y;} and v := min{0,v;}, i = 1, m.

The following result show the condition of “pay off” of singularity of curve and weight function at the
points {z;}}"; :

Theorem 2.9. Let p > 0. Suppose that L € éa [Vi, ..., vin] , for some 0 < vy, .., vy <1, (2—1_1/) < a < 1; h(z) defined
as in (1) and

Vi a2 - ) (12)
or each points {z;}",. Then, for any P,, € 9,,, n € Ny, there exists cs = c5(L, p, i, &) > 0 such that
p i=1 y p V4
1
IPullz, < cs(n+1)% IPull g, n1 - (13)

Corollary 2.10. Suppose that L € éa [Vi,..; V], for some O < vy, ..., vy < 1, ﬁ < a £ 1; h(z) defined as in (1)
and

Pt o
for each points {zi}l’.il. Then, for any K,,, n € Ny, there exists c¢s = c5(L, p, yi, ) > 0 such that
IKnllz < cs(n +1)%. (15)

Comparing Theorem 2.9 with Theorem B, it is seen that, if the equality (14) is satisfied, then the growth
of rate of the polynomials P,(z) and, consequently, K, (z) on L does not depend on whether the weight
function h(z) and the boundary contour L have singularity or not. The condition (14) is called the condition
of “interference of singularity” of weight function & and contour L at the “singular” points {z;}i, .

Corollary 2.11. Suppose that L € C(1,a, A1), for some 1 < Ay < 2, and }\1_1 < a < 1. h(z) defined as in (1) and
(1+DA =1,

for each points {z;}i",. Then
IKull £, < 5 Vn+ 1. (16)

The estimation (16) coincides from (3) for % < a < 1. Therefore, Theorem 2.9 generalizes the one result
[35, Th1] for 1 < A; <2and - <a <1.
1

Theorem 2.9 is true under the condition 0 < v; < 1. On the other hand, from Ty Sas 1 we see that

thev; =1 - ¢ true only for @ > 1 — ¢, Ve > 0. Therefore, for the 1 < v; < 2, we can consider only curves L
such that ®(z) € Lip (1 - €), Ve > 0, z € Q. For this purpose, let’s give a following definition.

Let S be rectifiable Jordan curve or arc and let z = z(s), s € [0, |S|]], |S| := mes S, denote the natural
representation of S.
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Definition 2.12. We say that a Jordan curve or arc S € Cy, if S has a continuous tangent 0(z) := 0(z(s)) at
every point z(s).

Now, we shall define a new class of curves L, which have a exterior corners (with respect to E) at the
points {z;}72; € L.

Definition 2.13. We say that a Jordan region L € PCg(A1,A2,...,Ay), 0 < A; <2, i = 1,m,if L = dG consists
of the union of finite Co(smooth)- arcs {L;}!’;, such that they have exterior (with respect to G) angles

Airt, 0 < A; < 2, at the corner points {z;};2; € L, where two arcs meet.

According to the ”three-point” criterion [10, p.100], every piecewise smooth curve (without cusps) is
quasiconformal.
In this case, we have the following:

Theorem 2.14. Let p > 0. Suppose that L € PCg(A1, ..., Ay), for some 0 < A; < 2, i = 1,m; h(z) defined as in (1).
Then, for any K,,, n € Ny, there exists cs = c¢(L, p, Vi, €) > 0 such that

vy
IPu(z)] < o+ 1) 7 1Pyl g, 1), Ve > 0. (17)
If
1= L (18)
yl - /\i/

is satisfies for each points {z;};-,, then

1
IPall ., < c6(n+ 1) - IPull g1 (19)
T Ai+ e, Zf0</\,'<2, . .
where A; := { 2, if A =2, for arbitrary small € > 0.

Corollary 2.15. Suppose that L € PCg(A1, Ay, ..., Ay), for some 0 < A; < 2, i = 1,m; h(z) defined as in (1). Then,
for any K,,, n € INy, there exists c; = c7(L, yi, €) > 0 such that

IKo(2)] < cr(n + 1) T4%, Ve > 0. (20)
If

yi+l= (21)

1

Ai’

for each points {z;}i_, ;then
IKall £, < c7(n+1)3*, Ve > 0. 22)

The number ¢ > 0 on the right side of the estimations (17) (19) and, consequently, (20) and (22) can be
removed. For this, we introduce the following definitions:

Definition 2.16. ([29, p.48]; see also [13]) We say that a Jordan curve or arc S called Dini-smooth (DS), if it
has a parametrization z = z(s), 0 < s < |5|, such that z'(s) # 0, 0 < s < [S| and |z'(sz) -~ z/(sl)( < g(s2 —s1),
51 < 5, where g is an increasing function for which

1

f@dx<oo

0
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Now, we shall define a new class of curves, which at the finite number points have exterior corners and
interior cusps simultaneously.

Definition 2.17. We say that a Jordan curve L € PDS(A1, A3, ..., Ay), 0 < A; <2, 0= 1,m, if L = G consists of
m

a union of finite number of Dini-smooth arcs {L ]};n , connecting at the points {z j}] o € L such that for every

zi € L, i =1,m, they have exterior (with respect to 6) angles A;mt, 0 < A; <2, at the corner z;.

In this case, we have the following;:

Theorem 2.18. Let p > 0. Suppose that L € PDS(A4, ..., Aw), for some 0 < A; <2, i = 1,m; h(z) defined as in (1).
Then, for any K,,, n € Ny, there exists cs = cs(L,p, vi) > 0 such that

vitl
[

1
Pu(z)| < cs(n +1) 7V IPull 1,1 - (23)
If

1
yitl=—, (24)

1

is satisfies for each points {z;}i-,, then

1
IPullz., < cs(m+1)7 - IPull g, - (25)

Corollary 2.19. Suppose that L € PDS(A1, Az, ..., Ay), for some 0 < A; < 2, i = 1,m; h(z) defined as in (1). Then,
for any Ky, n € Ny, there exists cg = co(L,p, i) > 0 such that

IKn(z)] < ol + 1), (26)
If
1
Vi +1= XI (27)

for each points {z;}!", , then
||Kn||-£oo < Co Vn 1. (28)

Note that, C(1,a, A1) € PDS(A1) € PCy(Aq) for each fixed 0 < Ay < 2 and PCy(A1) C Q,[M1], for each
fixed 0 < Ay < 1. In this, (27) and (28) coincides with (2) and (3). Thus, the Corollary 2.19 generalizes the
corresponding result in [35].

The sharpness of the estimations (4), (6),(0.3.3) (13) (17) and (23) for some special cases can be discussed
by comparing them with the following results:

Remark 2.20. a)For any n € I, there exists a polynomials P; € ¢,, and constants c;p = cjo(L) > 0 and
cnn = cn(L,p,y) > 0such that, forL:={z:|z| =1} a) h*(z) =1 and b) i*(z) = |z - 1|, y > 0. we have:

P,

\

a)‘
b) |

. 2 c1on%’ ”P:t”g,(h», nr P> 1;

ﬂ
ciin vy

Py

1\

N |P;|)£p(h,,/ Ly P>VHL
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As can be seen from these considerations, some estimates for arbitrary polynomials exact, but estimates
for ortogonal polynomials obtained as special case, are not exact. Now, we can give one condition where
this estimation also will be exact. Suppose that on the one of singular points of weight function #, say z,
satisfies the following relation:

IKnll 2., = IKn(z1)l,
Then, according to [3], for L € éa the following is true:

Ka(z1) < (n+1)772, (29)

v1+1
where s; = Jéa .

The inequality (29) is sharp. For h(z) = |z - 1%, L:={z: |zl = 1} and

1
K = [1+2 1)z"],
. (2) (n+1)(n+2)[ +2z 4+ ...+ (n+1)z"]
we have:
|K:Z LmzK’Z(l)':wxn

3. Some Auxiliary Results

For a > 0 and b > 0, we shall use the notations “a < b” (order inequality), if 2 < cb and “a < b” are
equivalent to c1a < b < cpa for some constants ¢, ¢1, ¢; (independent of a and b) respectively.

The following definitions of the K-quasiconformal curves are well-known (see, for example, [10], [21,
p-97] and [31]):

Definition 3.1. TheJordanarc (or curve) Lis called K—quasiconformal (K > 1), if there is a K—quasiconformal
mapping f of the region D D L such that f(L) is a line segment (or circle).

Let F(L) denotes the set of all sense preserving plane homeomorphisms f of the region D D L such that
f(L) is a line segment (or circle) and lets define

Kp := inf{K(f) : f € F(L)},

where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve, if K;, < co, and L is
a K—quasiconformal curve, if K, < K.

According to [31], we have the following facts:
Corollary 3.2. If S € Cg, then S is (1 + €)—quasiconformal for arbitrary small € > 0.
Corollary 3.3. If S is an analytic curve or arc, then S is 1—quasiconformal.

Remark 3.4. It is well-known that, if we are not interested with the coefficients of quasiconformality of the
curve, then the definitions of “quasicircle” and “quasiconformal curve” are identical. However, if we are

also interested with the coefficients of quasiconformality of the given curve, then we will consider that if
the curve L is K—quasiconformal, then it is k—quasicircle with x = %

By the following Remark 3.4, for simplicity, we will use both terms, depending on the situation.
Forz e Cand M c C, we set

d(z, M) = dist(z, M) := inf{|z - (| : C e M}.
For 6 > 0 and z € C let us set: B(z,0) := {C:|C—z| < 8}, Q(z,0) := QN B(z, 6).
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Lemma 3.5. ([4]) Let L be a K—quasiconformal curve, z1 € L, 25,23 € QN {z : |z — z1| < d(z1,Ly,)}; wj = D(z)),
j=1,2,3. Then
a) The statements |z1 — zp| < |21 — z3| and [wy — wy| < [w1 — w3 are equivalent.

and similarly so are |z1 — zo| < |z1 — z3| and |wy — wo| < [w1 — ws|.

b) Iflz1 — 22| < |z1 — 23|, then

c

&

Wy — W3
w1 — w2

21— 23
71 — 22

w1 — W3
w1 — w2

=<

=<

where ¢ = ¢(L) <1, c =¢(L) > 1, 0 <1y < 1are constants, depending on L and L, := {z = y(w) : |lw| = ro}.
Corollary 3.6. Under the assumptions of Lemma 3.5, if z3 € Ly, (z3 € Lgy, ), then

K2 K2
[wi —wo|™ < |z1 — 22| 2wy — wy|

Corollary 3.7. IfL € Cy, then

1-¢

T < zy = zo] < wy —wal'7F,

[wy — wsl

forall € > 0.

m

Let {z j}] | be a fixed the system of the points on L and the weight function 1 (z) defined as (1).
Recall thatfor0 < 6; < ¢ := imin“zi - zj‘ 1,j=1,2,..,m, i # j},weput Q(zj, 6j) == Qn{z : |z - Z]'| < 6j};
m — m
0= 1m.in 0, Q(6) := U Q(zj, 6), Q= Q\ Q6). Additionally, let A; := ®(Q(z;, 6)), A®) := U D(Q(zj, 9)),
<j<m j=1 j=1
A(0) == A\A(D).

Throughout this work, we will take R =1 + n%, for some fixed 0 < ¢¢ < 1. Further, we introduce:

w; = ®(z), @ =argw;, L i=LnQ, L, :=LxknQ, j=1,m, (30)
j i) Pj & Wj R ]

where QJ := ‘I’(A}) and

A, ={t=Rei9-R>1 P T 1 <@<(f’1+(92}

1 : . 7 2 > 2 ,

’ . _ + +

Am :{t:Re'Q;R>1’(Pm12—(Pm SG<(P’”2(P1}’
and, for j=2,m—-1

’ . 1+ . -+ .

8= {r=Re? R >1, PLEO <o BITOMY,

mo m .
L=ULj;Lg = UL

j=1 j=1
Lemma 3.8. Let L € Q(x) for some 0 < x < 1. Then

W (w1) = W(w)| = lwy — wo]'™,

forall wy,w, € A.
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This fact follows from [28, p.287, Lemma 9.9] and the estimation for the Y’ (see, for example, [12, Th.2.8]):

d(W(7),L)
ltf|-1

The following lemma is a consequence of the results given in [15], [40].

W' (7)] = (81)

Lemma 3.9. Let L € Co(A1,...,Am), 0<A;<2,j=1,2,.., m, Then
i) for any w € Ay, [w — wil*e < |W(w) — W(w;)| < [w — w1V, fw — w1 < W (w)] < fw — w1,
i) for any w € A\A;, (lw] — )¢ < d(¥(w), L)| < (lw] - D', (jw| - 1)° < [¥' ()| < (jw| - 1)~°.

The following lemma is a consequence of the results given in [29], [13, pp.32-36], and estimation (31)
(see, for example, [12, Th.2.8]):

Lemma 3.10. Let a Jordan curve L € PDS(Ay, ..., Aw), 0 < A; <2, j=1,m. Then,
A Ai-1

W(w) - W(w))| = [w-w|", V@) = [w-w|"";

W(w) - V(w))| < , W (w)] =< 1.

i) forany w € A,
ii) for any w € Z\AJ-,

Lemma 3.11. ([9]) Let L be a rectifiable Jordan curve, h(z) defined as in (1). Then, for arbitrary P,(z) € p,, any
R > 1and n € N, we have

“Pn“.[:p(h,LR) <R ||Pn||L,,(h,L)/ p >0,y :=max{0;y;} ,i=1m. (32)

Remark 3.12. In case of i(z) = 1, the estimation (32) has been proved in [17].

4. Proofs of Theorems

Throughout proofs of all theorems, we will take n > [%] , where ¢y, 0 < ¢y < 1, some fixed small
constant. In addition, in case when n = 0, the number 7, participating in the all inequalities below will be
changed to (n + 1).

4.1. Proof of Theorem 2.9

Proof. Suppose that L € Qa [V1, ..., vim], for some 0 < vy, .., vy <1, 5= <a <1, i= 1,m, be given and h(z)
defined as in (1). For each R > 1, let w = @g(z) denotes be a umvalent conformal mapping Gg onto the B,

normalized by pr(0) =0, ¢(0) > 0, and let {C]} , 1 <j<m<n,bea zeros of P,(z) lying on Gg. Let

Buk(@) = ]"[B]R - ﬁ #r@)_ ey )
1 <pR<c])<pR(z>
denotes a Blashke function with respect to zeros {Cj} ,1<j<m<n,of Py(z) ([39]). Clearly,
|Bur@@)| =1, z € Lg, (34)
and
Bur(z)| <1, z € G (35)

For any p > 0 and z € Gg, let us set

P, (2) ]”/ ?

Bm,R(Z) (36)

T, (z):= [
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The function T}, (z) is analytic in Gg, continuous on Gr and does not have zeros in Gg. We take an arbitrary
continuous branch of the T, (z) and for this branch we maintain the same designation. Then, the Cauchy
integral representation for the T, (z) in Gr gives

1
Tn (Z) = A n (C) , Z € GR/ (37)
2711L[
or
P,@ | _ 1 (] Pu© [ 1 |d¢|
[Bm,R(zJ : 2nf B -7 —f P O 7=

LR

since |Bm,R(C)) =1, for C € Lg. Lets now z € L. Multiplying the numerator and denominator of the integrand
by h'/2(C), by the Holder inequality, we obtain

172
P, > 1 j‘ F
Bur(2) <5 h(C) |P, (O |dC] 38)
Lr
172
d 1
X f — | il =: ﬁ]ﬂ,l X ]n,Z/
b IHe-z" 10 =27
j=1
where
1/2 1/2
d
Jng = fh(C) [P, QP 1ACl| , Jup = f — | f/l‘
Lz Ix H‘C—Z]'| "1C =z
j=1
Then, since |By,r(z)| < 1, for z € L, from Lemma 3.11, we have:
Py @] = (T - Ju2)? < WPull, - (Ju2)*", z € L. (39)

By using notations (30), for the integral |, », we obtain

Llq v 4| ;
(s’ -Xf ”qu: s =Y i (40)

H |c—z"1c - i=T
where
122 = f qu 27 l = 1’ m, (41)
’ . IC =z |C - 2]

R

m .
since the points {z]-}],_1 € L are distinct. It remains to estimate the integrals | , for each i = 1,m. For

simplicity of our next calculations, we assume that

m=1. (42)
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Under this assumptions, L € éa [v1], for some 0 <v; <1, 0 < a < 1. Then, according to [22], ¢ € Lipv; and
there exists the number 6, 0 < 6 < &g < diam G, such that

D e Lip , 2 € Q(z1,0). (43)
2 - V1
We denote that,
Ly; @ =LyNQ(z1,0), Ly, = Le\Ly 15 Fy; = O(Ly,); (44)
Li : =L'NB(z,0), Ly:= L"\Lj; F} :=®(L}), i=1,2.

By taking into consideration these designations and by replacing the variable 7 = ®(C), from (31), we have

2

1 W’ ()| d]

2 Z:‘ W(7) = W)l V(1) - W) (45)
Fi,

i f d(W(7), L) |d|
= 1) - W)l W - )P (- 1

2
= ) J(FR).
i=1

So, we need to evaluate the integrals | (P}U) for each i = 1,2. For this, we will continue in the following
manner. Let

X

X

IPulleo =2 I1Pu ('), 2" €L, (46)

and let w’ = @(z’). There are two possible cases: the point z’ may lie on L' or L2.
1) Suppose first that 2’ € L'. If 2’ € L}, then w’ € F}, fori = 1,2. Let’s F}zlj = {T € F}z], Dt —wy] > |t - w’l},
F}zzj = F}w\ F}{’llj, j =1,2. Consider the individual cases.

1.1) Letz’ € L%. Applying Lemma 3.5, we have

d(W(v), L) dt|
L 47
JFr) f V(1) = W)l W(7) = V()P (|t - 1) ;

1
FR,l

<. f dd f ]
- 1 1
) W) - )t () - W)
R/,l PR’,]
|d| |d|
5 " ’ (7’1+1)(2*V1)*l ’ 1 +n ()’1”)(2*"1)’% %
1,1 |T-ZU| alT_wla 12 |T—ZU1| |T—ZU1
2 F 2
R1 R1
|d| |d| 1
< n — 1 tn — <na,
J T —w'le Sa lt—wl®
R1 R1

JEL ) = f d(W(1), L) |dr]
@) - W) W) - W@ (7l - 1)

R2

(48)
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f d(W (1), L) |dr| { ©)™, 120
(@)~ WP (-1 | (2diamG) ", —1<y1<0

Fl

F

| ]
ﬁqfwm—wwmmvn'

If 2/ € L1 N B(z1, 3), then according to

o 6
-7 > - — |z = >0—— = —
C-ZIzlC-z|-Z-znl20-7=7,

from (48), we obtain:

ldz|

FL < n| —-— 49
JFr2) () — W) )
Fra
2 1
< n-S |dT|§n-)FR,2| <n.
Fra
Ifz' e L% \ B(z1, g), then [C-Z'|>|t— w'li ,since @ € Lipa, z € 5\ {z1}, and from (48), we obtain:
|d| f |d| 1
FL 5nf—$n —— <na. 50
T2 =21 | - =" ) [ ur 50
Fra Fra
Therefore, in this case, combining (45)-( 50), we have:
T2 <. (51)

1.2) Let 2’ € L}. According to (14), analogously to case 1.1, we have:

. d(W(7),L)|d|
](FR,l) - f |\I’(T) _ \y(wl)P/l |\I/(T) - ‘II(ZU’)|2 (|T| - 1) (52)

1
R

|d| |d|
ﬁ n ’ }/1+1 +n V1+1
J (@ - ww) J W@ - W)
R2 FR2
|d7| |d|
= n )t +n n— -
v1+1)+ +1)@-v)-% =
11 T —w'| e rl2 T —wi] " ne IT —wy
R2 R2

|d|

| ’| (1 +)a
T—wW a2
Fia

|d| |

IA
+
=
%
=
a
:

IA
+
2
3

1
|T _ wl|a2(2—v1)
Rl

1 1 1 1 1
n-ne-@mr) +na 5 Nne +na ﬁ ne,

IA
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and, for the integral J(Fy ,) :

. d(W(7),L)|d|
](FR,Z) - f W () — \y(wl)P/l W(t) — ‘I/(ZU')|2 (Itl=1) =

1
R2

f d(¥ (1), L) |dx] { ey, nz0
. ==\ /1
: W (1) - W) (|t - 1) (ZdzamG) , —1<y1<0,
R2
< n ___dd n f _ ne
- [W(7) - W) ~ lt—w|t
Fra k2
So, for z’ € L}, from (45), (52) and (53), we get:
1, <ni. (54)

Therefore, in case of z’ € L! for each y; > —1 and for all z € L, from (39), (40), (52) and (54), we have
1
1P (@) < ni [Pyl - (55)
If z’ € L\L!, then inequality (53) will be ensured is better. So, we completed the proof. [

4.2. Proof of Theorem 2.7

Proof. Suppose that L € éa [vi,...,viu], for some 0 < vy, ..., v, < 1, ﬁ <a<1,i=1m, be given and h(z)

defined as in (1). By using the notations where we used in beginning of the proof of Theorem 2.9 ((33)-(36))
from (37) for z = z;, we get:

d
Tn<Z])=2meTn(C)C_CZ

]
L

Therefore, multiplying the numerator and the denominator of the integrand by h'/2(C), according to the
Holder inequality, from (34) and (35), we obtain

1/p
P )| <(5) | [ moworia| (56)
Lr
1/p
dq| 1y
X fﬁ =\ In,l XIn,Z:
; H)C—Zj‘z Vi (27‘()
j=1
where
1/p
|dC|

Ly = 1Pl g, 0,15) » Inz2 = fm—m
L 11 |C - Zf)
j=1
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Then, by Lemma 3.11, for each point {z j}]’,ﬂ:l € L, we have

P (z)| < WPl - Ina. (57)

Since the points {z; m € L are distinct, by using designations (30), we get
p i =1 y g & &

(Inz)p‘Zf

m

|4 - |dC| . i
2+7,] Z f 2 'Zln,Z’ (58)

i=1

H [
where

Ifﬂ::fﬂ%,izl,m. (59)
' ) 1T =z

Ly

Therefore, it remains to estimate the integrals I; , for each i = 1, m. In this case, we also assume that m = 1.
Under the notations (44), we have:

g (WA _ (_d__ (g )
-l Szl J - a
Lk %1 Lka
By applying (43), we obtain:
J L L D
IC =z W(7) = W(wn)P" (el = 1)
L}{,l Pllz,l

< f IdTIH, <n f |d(T,|H)(z,,) < e
E [W(T) = W(w)| 7" (7] = 1) R lT—wy | "

R1 R1
|dC| 2 1
fm < () VlmesLer <1 (62)
R,2
Then, from (60), we get:
1111,2 < n(ﬁ*l)(z"’l)' (63)

By combining the relations (57)-(63), we obtain:

(1+1) @)

Puz)l<n 7 IIPlly,,

and, according to our assumption m = 1, we complete the proof. [

4.3. Proof of Theorem 2.14.
Proof. Analogously to beginning of proof of Theorem 2.9, in this case, from (39)-(41) and (58), we obtain:

P (2)| <Pl “Ina, z€L. (64)
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where

(In2Y —2 f = = (6)

H(c

i < dd
) |c—z|2”’ B 1c- -z

since the points {z j}jzl € L are distinct. Therefore, for the proof of (64) sufficiently to evaluate the following

integral for eachi =1,m :

[ f _wd
SN

R

For simplicity of our next calculations, we assume that i = 1. By using the notations (44) and setting

6 := c1dy g for some c1 > 1, where di g := d(z1, Ly), ki ‘ = mesL1 » 1=1,2, we have:

P f o f acl f |
" IC -z P I -z P I -z P
Lll< 1 1

R,1 R,2
where
c1dir |L’1<:2|
d ds 1 d ds 1
f |C|2+/ = T = |C|2+ = 2 S o
% %
|C =z |7 sTd |C =z sTd
L}i,l dir , L}Q,2 c1dir ’

According these estimations, from (64) and (65), we get:

1
Py (z0)] < —== 1Pl - (66)
a; g

On the other hand, by Lemma 3.9, for 0 < A; < 2, and [12], for arbitrary continuum with simple connected
complement, we have:

1
der > —, (67)
nh

AM+e f0<A <2,
2, if Ay =

Now, under the conditions (18) we will show estimation (19). Analogously to above situation, from
(39)-(41), we have:

where A; := for arbitrary small ¢ > 0. From (66) and (67), we get the proof of (17).

1P @ < Ut - Jn2?? < 1Pully - (11,) " z € L, (68)

where

4 4| .
L= | —————, i . (69)
"2 f IC =z |C - 2

Ly

I
=
3
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It remains to estimate the integrals ]:'12 for each i = 1,m. As we have assumed in proof of the (41), for
simplicity of calculations, we also assume that m = 1. Therefore, we can estimate the following integral:

- f ||
"2 IC— 21" |C - 2P
I}

Lets denote by:
l}{,1 o= Lll2 NQ(zq,c1d1R), c1 > 1,
l}m : =L N (Qz1,61) \ Q(z1, c1d1 ) 1}2/3 = L}z\(lzlm v 1113,2)'
I+ =L'NBz,adir), [ :=L' N (B(zi,6)\B(z1,c1d1r)), 3 := L'\ (L} U L;)
Then

i€ 3
Ik
Z:f|<:—z|3’1|<:—z| ; Jnalls

where

d| .
L ::fl—, =1,23. 70
nali) J 1C-zlic-2P ] 7

So, we need to evaluate the integrals ]}l z(l}{ 1.) foreach i=1,2,3.
Lets assume

IPalleg = 1P @), 2 € L' = LUR UL,

There are three possible cases: point z’ may lie on I}, or I} and or I}.
1) Suppose first that 2’ € I}.
1.1) According Lemma 3.9, we get:
a)If1 <Ay £2, then

|dC| |C—Z | h |dC|
Batlh o = [ ——% 1 @
yolc- Zn
R1
c1d(z’, l}i/l) dl L
-4 |dC]| -4 dS 1R e
<d g f <d g VAT iz "
IC -z (z', 1)
i@, 1,

R, 1

b)If 0 < A < 1, then
ac
i,z(l}{,l) = f 1| | (72)

L 2
P L ey
R1

f @ f 4
IC -z C-

I Tz 121021} FalteiesNes )
c2d(z’, Lr) c3d(z1, L)
ds ds 1 1
= T + n <d M(Z, Lg)+d M (z1, Lg) < nite
HH ﬂ“

S S
da(z’, L) d(z1, Lr)
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1.2)a)If 1 < Ay < 2, then let us remember that z’ € l%, and consequently, |z; — 2’| < ¢1dy g for some ¢; > 1.
Then, |C — z1| < [C = Z'| + |2/ — z1] £ |C = 2’| + c1d1 r, and, according to well-known inequality [39, p.121]

|JA+BF <|AP +|Bf,0<p<1, A>0, B>0,
we get:
G-zl < IC= 27+ (dig)

Therefore, applying Lemma 3.9, we obtain:

IC— ' o |dC]|
n2Uko) f : (73)
IC -z
< |dC] +d1_% ) |dC]
B -z [l
[2Ylka IaYlka
C2 d . C2 d )
1-5- _1 1-L1 )
: f ;_SH tdigt f 5_25 <d (2, Lp) +d, g d 72, Lg) < '™
i@ 5 Az, Ly)
b)If 0 < Ay <1, then
|dC]
n2(k2) = f I, 5 (74)
yolC=zi|t e -2
R2
d d
_ f | /ClA — f | C|\L+1
I, N(CIC-z12IC-2/l c==1 I, NICC-21 <L/l IC=zln
o1 i 01 p
= f ;;1 - f ;ﬂ <d (2, Lg) +d 7 (21, Lg) < n"*e.
A A
i S e S
1.3)a)If1 < Ay <2, then
IC -2zl i |dC]
Jn2(ks f (75)
IC-z

. _1 dl| (dzamL)
< (diamL)! "1f |
(diamL) 1 TP (61—c1d1R)2|R3‘

R3

b)If 0 < A < 1, then

1
d| 5]
na(lks) ‘:f 1 > S T = =1 (76)
i IC—z¢|" " |C—2Z/| 61 M (51 - C1d1,R)2

2) Letz’ €1}
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2.1) According to Lemma 3.9, we get:
a)If1 <Ay <2, then

d
]}1,2(1111,1) : :f it

19 2
JoAC-nlt -2
R1

1
(5] 1-+

R ltlz,l d(z', Ly)

b)If 0 < Ay < 1, then

|dC|
i,z(l}z,l) = f 1 ’
IC =z " |C -2

s
. 4
[ NS e

I, {CIC-211<IC2'|

I N(CC-2 2102/

d d
S - i _
— Z’ A —Z e
B, |C—z| B, IC = z]
C2 Cc3
ds ds
< +
++1 ++1
sh st
d(z’, L) d(z1, Lr)
_1 _1 )
< d M(Z, Lr)+d M (z1, Lg) < n'*.

22)a)If1 < A; <2, then

_1
IC— 2| |dQ|

1 (ll ) =
n2\'R2 T Z’|2
k2
1--L
_ f IC—zi| ™ |dC] N f |4c]
- 2 1
IC—z2'| IC—zg|n
I, NTIC-z1>IC-2'1) Ik NTIC-z1I<IC=2"1)
g ¢ od
—-z1" M S
N
|C _ Z/| Sﬂ-%—l
Ik ,NICIC-z1l>1C-2')) d(z1, Lr)
<

j‘ m—fuua e
”IC—mPﬂC—ZF

1, NHCC—z >~z

ERSNES L 1 d, "
_ (== vwﬁé;1[|w25¢; f‘ﬁf e,
; IC—z| ' IC—z| ’ st d(@, Ly)

5665

(77)

1+e.
7

(78)

(79)

Lets denote by I,(z1,z’) the last integral and let F := CI)(Z}{2 N{C:|C—=z1| >|C—2]}). For the estimation

I(z1,2"), first of all, replacing the variable 7 = ®(C), we obtain:

hazy= [ LAl

1 1
z/ i ( 2
M —_ Zl
li,Zn{C:‘C. Z |>| — |} |C Z | | |
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f [W(7) — W(w)| [V (7)] |d7]
1
IW(7) = (o) [W(r) = W)

f W(r) - W(w)
W(r) - (')

(7)) de
(1) — W(wy)| ™ [W(7) — W)

Since 7z’ € l;, then cidig < |C—2'| < [C=2z1| £ 1. According to Lemma 3.5, in this case we have
Tl -1 < |t —w'| < |t —wq| < 1. Assume that |7 — w’| < |t — w;] (the inverse is trivial). We set ¢ := |t| — 1.
In this case, we take the discs centered at the point w;, and radius 2°¢g, s = 1,2,...N, where we choose a
number N such that the circleis Qn = {T St —wq| = 2N so} , that satisfies the conditions Qn N{t : |{| = R} # @,
On+1 N {t: |t = R} = @. Then, setting F* := FN {t (27 le, < t—wy < 2560}, and applying Lemma 3.5 and
Lemma 3.9, we have:

Ilz(zl,z) (80)
f W(t) — W(w) |’ (7)| |d|
— ’ 1
J W) = W@ () — Wy w(r) - W)
i f[h— - wﬂ]f(“ R Sk
= - J |T| -1 |T _ w1|1+s |T _ w,|A1+é‘
) 25 (L) 8)\1 —-1-¢
= Z( ) s-1g 1+e f Id’fl/\ﬁf
= (2571¢y) Y |t —w'|
< 21+€g/\1*2*£ i (ZE(L) )s f ld|
2 [ o= 21+g : |T _ w,|/\1+€
Ryl
< /\1 2—¢ ZS(L) ° < 1 Ai—2-e X n/\l—l+s < n1+£
- S/\1+£ 21+é - n - 4

where ¢(L), 0 < ¢(L) < 1, taken from Lemma 3.5.
b)If 0 < Ay < 1, then

}1,2(1}z,2) = f e (81)

+-1 2
JoIc=zln -2
R2

f @ f |
IC — 27|+ IC = 29"

I} ;T2 210271} g pNMCIC=z1I<IC=2'l)
(5] C3
| | ds ds
< [T e N e
—z/|M —z1|M s4 51
b IC— 2| 0 IC =z A, L) d(z1, Ly)

AW, Lr) +d T (21, Lg) < n'*¢

IA

2.3)
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a)If1 <Ay <2, then

- d
nallrs) = fIC % = (82)

_Z/

f [ f 4|
C—2P C— ™

I ;T2 >IC-2'1) I sNTIC-z1I<IC-2/1}
3
- C—zH ldcl | f ds
- iC-zf s
I} N{TIC=z1>IC-2']) d(z1, Lr)
=

f IC _;Zl' I,
IC =z | |C -z

I NGz |>IC2'])

Denoteby I 12 5(21,2') thelastintegral. We estimate this integral analogously to integral I 11{22 (z1,7"). Consequently,
in this case for ]1 2(l 3) we will obtain:

711/2(111(/3) <n'*¢, Ve > 0. (83)

b) If 0 < Ay < 1, then

J ;11,2(11113) = f idCl (84)

-1 2
Jac-mln -2
R3

[

3
< _[d < ds < 1 < nlt*e,
- L1 7 L+1 7 L -
|C—z'[h st d*(z’, Lr)

i, d(, Lr)

3) Now, lets 2z’ € lé. Note that, this case includes also the case of z € L\L!, since the point z’ more removed
from the z;.

31)a)If1 < A; <2, then

d
TnaUgy) = = f . _Cll - (85)
P =t

IC - Z1| - |dC| (diamL)"”
-z (51 —cidq R)

C <1

b) If 0 < A < 1, then

o= [ — (36)

L1 2
P L ey
R1
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. [foaMg_ ds [ g
V- altic-zE T @ -adw? Y ooz
R1

R1

c1dir
di k f Mol 1
2 1 = 1., - .
(01 —c1diR) 2 Sh dl\lR
32)a)lf1 <Ay <2, then
]12(R2 fIC z'” i IdCI 87)

f C-zT g | f 4
IC—zP IC = 2!

Ik ,NCIC=z1 2T~} Ik NIz I<IC~21)
3
) C-=l" g | f ds
- IC-zf g
1L, P{CIC—z1[2]C-2']} d(z1, Lg)
<

f |C — z1]|dC] + plte
C—Z|lC -2z

I, NHCC—2 21027

Denote by 11122 (z1,7") thelastintegral. We estimate this integral analogously to integral I}é (z1,7"). Consequently,
in this case for J! , (I} ;) we will obtain:

Tho(lks) < ', Ve > 0. )

b)If 0 < Ay < 1, then

RCPES f lej' > (89)
IC—z| " IC - 2|

Iz
- L L
— T — |
I} ,NCIC-z1 1210271} Ic | I} ;T2 I<IC~2"1) Ic 1
C2 C3
d d ds ds
< f I + ICI1+15 +1+ L1
A _ A \ s
IC =] i Ly C=zln da(z’, L) st d(z1, Lr) st

d—ng Le) +d 7 (z1, Lg) < 0™

IA

33)a)If1 <Ay <2, then

\1 d
1Ly f|c 2 4| 0)
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Cq

. 1—% |dC| f d_S 1 1+e
< (diamL) f|C—Z’|2 < 2 < TE) <n*e

s d(z', Lr)

b)If 0 < A1 < 1, then

d
JLok,) = f |dC]

1
[ ko

1
lR,S
C4

< 11 f d—s <1
s s2 ~ d(z/, Lg)
1 4z, Lr)

Combining estimations (68)-(91), we get the proof of (19). O

4.4. Proof of Remark 2.20.
n=1 —
Proof. Lets P;(z) = Y, Z/and L := {z : |z| = 1}. Then, L € Q.
j=0

a)h*(z)=1;, b)) =z-1)", y > 0.
Obviously,

n—-1

P;(z)| < Z |zf| =n, |z|=1;

j=0

Py(1)| = n.

So,

On the other hand, according to [38, p. 236], we have:

P,

.=

1- y+1

n v, p>1,
|Pn L,0eL) > Inn, p=1,
1, O<p<l
and
" o1t
|Pn Lp(h”,L)"" v, p>y+1
Therefore,
1 " .
a) ’Pn Lo = nxnr ||Pn”,£p(h»,L) ’ p > 1/
% 17m r+1 padl "
b)‘Pn g = m=n" 77T oxnv ‘Pn||£p(hﬁ’L),p>)/+l.
|

4.5. Proof of Corollary 2.11

5669

©1)

Proof. If L € C(1,a, A1), then the curve L = dG has a interior (with respect to E) (2 = A1)— angle at the
z1. Then, according to [22], ¢ € Lipz_l—/\l, and so, by [22], ® € Lip}%l. Therefore, L € Qup, for a = 1 (2.3)

and 1 = /\1_1 In this case, for p = 2 from (14) and (15), we have the proof. [
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