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Connectedness of Ordered Rings of Fractions of C(X)
with the m-Topology
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Abstract. An order is presented on the rings of fractions S−1C(X) of C(X), where S is a multiplicatively
closed subset of C(X), the ring of all continuous real-valued functions on a Tychonoff space X. Using this, a
topology is defined on S−1C(X) and for a family of particular multiplicatively closed subsets of C(X) namely
m.c. z-subsets, it is shown that S−1C(X) endowed with this topology is a Hausdorff topological ring. Finally,
the connectedness of S−1C(X) via topological properties of X is investigated.

1. Introduction

In this paper, the ring of all (bounded) real-valued continuous functions on a completely regular
Hausdorff space X, is denoted by C(X) (C∗(X)). The space X is called pseudocompact if C(X) = C∗(X).
For every f ∈ C(X) the set Z( f ) = { f ∈ C(X) : f (x) = 0} is said to be zero-set of f and it’s complement which
is denoted by coz f , is called cozero-set of f . Moreover, an ideal I ⊆ C(X) is said to be z-ideal if for every
f ∈ I and 1 ∈ C(X), the inclusion Z( f ) ⊆ Z(1) implies that 1 ∈ I. u ∈ C(X) is a unit (i.e., u has multiplicative
inverse) if and only if Z(u) = ∅ and it is not hard to see that an element f of C(X) is zero-divisor if and only
if intXZ( f ) , ∅. The set of all units and the set of all zero-divisors of C(X) are denoted by U(X) and Zd(X)
respectively.

Let βX and υX be the Stone-Čech compactification and the Hewitt realcompactification of the space X,
respectively. For every f ∈ C∗(X) the unique extension of f to a continuous function in C(βX) is denoted by
f β and for each p ∈ βX, Mp = { f ∈ C(X) : p ∈ clβXZ( f )} (M∗p = { f ∈ C∗(X) : f β(p) = 0}) is a maximal ideal
of C(X) (C∗(X)) and also, every maximal ideal of C(X) (C∗(X)) is precisely of the form Mp (M∗p), for some
p ∈ βX. Moreover, for every p ∈ βX, Op = { f ∈ C(X) : p ∈ intβXclβXZ( f )} is the intersection of all prime ideals
of C(X) which are contained in Mp. In fact, we have;

Lemma 1.1. ([7, Theorem 7.15]) Every prime ideal P in C(X) contains Op for some unique p ∈ βX, and Mp is the
unique maximal ideal containing P.

Whenever p ∈ X, the ideals Mp and Op will be the sets { f ∈ C(X) : p ∈ Z( f )} and { f ∈ C(X) : p ∈ intXZ( f )}
respectively and in this case, they are denoted by Mp and Op. A maximal ideal M of C(X) is called real
whenever the residue class field C(X)

M is isomorphic with the real field R. Thus, for every p ∈ υX, Mp is a
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real maximal ideal, and conversely every real maximal ideal of C(X) is precisely of the form Mp for some
p ∈ υX. Moreover, Mp ⋂

C∗(X) = M∗p if and only if p ∈ υX, see 7.9 (c) in [7].
Let R be a commutative ring with unity and suppose that S is a multiplicatively closed subset or briefly

an m.c. subset of R. Here S−1R is the ring of all equivalence classes of the formal fractions a
s for a ∈ R and

s ∈ S, where the equivalence relation is the obvious one. Whenever S is the set of all non-zero-divisors of
R, then S−1R is called the classical ring of quotients of R.

An m.c. subset T of R is called saturated whenever a, b ∈ R and ab ∈ T imply that a and b belong to T. For
an arbitrary m.c. subset S of R, the intersection of all saturated m.c. subsets of R which contain S, is called
saturation of S and is denoted by S̄. Using 5.7 in [11] we have

S̄ = R\
⋃

P∈Spec(R)
P∩S=∅

P.

Lemma 1.2. ([11, Exercise 5.12(iv)]) For an arbitrary m.c. subset S of a commutative ring R with unity, two rings
S−1R and S̄−1R are isomorphic.

In sequel, for every m.c. subset S of C(X), the ring of fractions S−1C(X) is often abbreviated as S−1C.

2. An Order Relation on S−1C

The m-topology on C(X) is defined by taking the sets of the form

B( f ,u) = {1 ∈ C(X) : | f (x) − 1(x)| < u(x),∀x ∈ X}

as a base for the neighborhood system at f , for each f ∈ C(X), where u runs through the set of all positive
units of C(X). This topology on C(X) which is denoted by Cm(X), was first introduced in [9] and studied
more in [1–3, 5, 8, 12]. To define a topology on S−1C, similar to the m-topology on C(X), we need an ordering
to make S−1C a lattice-ordered ring. We define the order relation ≤ on S−1C as follows:

Definition 2.1. For f
r ∈ S−1C, we define

0 ≤
f
r

if there exists t ∈ S such that 0 ≤ (t2r f )(x) for all x ∈ X.

Clearly 0 ≤ f
r if and only if 0 ≤ (r f )(x) for all x ∈ coz t, for some t ∈ S. This definition is similar

to the familiar definition of order on C(X). But here we consider restriction of each f
r on a cozero-set of

X instead of X itself. To see that the order ≤ is well defined, let f
r ,
1

s ∈ S−1C, f
r =

1

s and 0 ≤ f
r . Then

there exist p, q ∈ S such that q f s = qr1 and 0 ≤ p2r f . Now, the inequality 0 ≤ (q2s2)(p2r f ) implies that
0 ≤ (p2rsq)(q f s) = (p2rsq)(qr1) = (p2r2q2)(s1) and since prq ∈ S, we conclude that 0 ≤ 1s .

Proposition 2.2. let S be an m.c. subset of C(X), then (S−1C,≤) is a lattice-ordered ring.

Proof. Clearly for every f
r ∈ S−1C if 0 ≤ f

r and 0 ≤ − f
r , then f

r = 0. Now, suppose that f
r ,
1

s ∈ S−1C, 0 ≤ f
r and

0 ≤ 1s . There exist t1, t2 ∈ S such that 0 ≤ r f on coz t1 and 0 ≤ s1 on coz t2. Therefore, 0 ≤ r2s2(s2r f + r2s1)

and 0 ≤ r2s2(r f s1) on coz t1t2 and thus, 0 ≤ s2r f+r2s1
r2s2 =

f
r +

1

s and 0 ≤ r f s1
r2s2 =

f
r ·
1

s on coz t1t2. To prove that
S−1C is lattice, it can be shown that

f
r
∧
1

s
=

r f
r2 ∧

s1
s2 =

s2r f
r2s2 ∧

r2s1
r2s2 =

s2r f ∧ r2s1
s2r2 .
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If S is an m.c. subset of a commutative ring R, then for every n ∈ N, the set Sn = {sn : s ∈ S} is an

m.c. subset of R and clearly two rings (Sn)−1R and S−1R are isomorphic. In fact, the map in( f
r ) =

rn−1 f
rn is an

isomorphism from S−1R onto (Sn)−1R. Now we define an ordering ≤∗ on (S2)−1C as follows;

Definition 2.3. For every f
r ∈ (S2)−1C, we define

0 ≤∗
f
r

if there exists t ∈ S2 such that 0 ≤ t(x) f (x) for all x ∈ X.

If S is an m.c. subset of C(X) then S2
⊆ { f ∈ S : 0 ≤ f }. Therefore 0 ≤∗ f

r if and only if 0 ≤ f on coz t for
some t ∈ S. Similar to Definition 2.1, it can be shown that ((S2)−1C,≤∗) is a lattice-ordered ring. Moreover,
we have the following result whose proof is left to the readers.

Proposition 2.4. Let S be an m.c. subset of C(X). Two rings (S−1C,≤) and ((S2)−1C,≤∗) are lattice isomorphic. In
fact, the map i2( f

r ) =
r f
r2 from S−1C onto (S2)−1C is an isomorphism and also order-preserving, i.e., f

r ≤
1

s if and only
if r f

r2 ≤
∗ s1

s2 .

Now using the above proposition, without loss of generality, for every lattice-ordered ring (S−1C,≤) we
can assume that each member of S is non-negative. In addition, we can consider 0 ≤ f

r whenever 0 ≤ f on
coz t for some t ∈ S.

Definition 2.5. A subset S of C(X) is called z-subset whenever f , 1 ∈ C(X) and f ∈ S, then Z( f ) = Z(1)
implies that 1 ∈ S.

Example 2.6. The set C(X)\Zd(X) = { f ∈ C(X) : intXZ( f ) = ∅} of all non-zero-divisor elements of C(X), is
a multiplicatively closed z-subset (or briefly an m.c. z-subset) of C(X). Another example of m.c. z-subset is
U(X) = { f ∈ C(X) : Z( f ) = ∅}, the set of all units of C(X). If {Pλ}λ∈Λ is a family of prime z-ideals of C(X), then
S = C(X)\

⋃
λ∈Λ Pλ is also an m.c. z-subset of C(X). Note that whenever P is a prime ideal of C(X) which is

not z-ideal, then S = C(X)\P is a saturated m.c. subset of C(X) which is not a z-subset.

Proposition 2.7. If S is an m.c. z-subset of C(X), then the set T := { f ∈ C(X) : Z( f ) ⊆ Z(s) for some s ∈ S} is the
saturation of S.

Proof. We show that T is the smallest saturated m.c. subset containing S. First, note that T is a saturated
m.c. subset of C(X) containing S. In fact, if f , 1 ∈ T then there exist s1, s2 in S such that Z( f ) ⊆ Z(s1) and
Z(1) ⊆ Z(s2). Therefore, Z( f1) = Z( f ) ∪ Z(1) ⊆ Z(s1s2) which implies f1 ∈ T. Moreover, if f1 ∈ T then
Z( f1) ⊆ Z(s), for some s ∈ S. Thus Z( f ) ⊆ Z(s) and also Z(1) ⊆ Z(s) which imply that f , 1 ∈ T. Next, let T′ be
a saturated m.c. subset of C(X) containing S and suppose that f ∈ T. Hence Z( f ) ⊆ Z(s), for some s ∈ S and
thus Z( f s) = Z( f ) ∪ Z(s) = Z(s). Since S is a z-subset, f s ∈ S ⊆ T′ and so f ∈ T′, i.e., T ⊆ T′ which complete
the proof.

Corollary 2.8. Let S be an m.c. subset of C(X). S is a saturated m.c. z-subset if and only if for every f ∈ C(X) and
s ∈ S, the inclusion Z( f ) ⊆ Z(s) implies that f ∈ S.

Corollary 2.9. The saturation of every m.c. z-subset of C(X) is a z-subset.

Example 2.10. Let f (x) = |x| − 1 be a function of C(R). Then S1 = {1, f , f 2, ...} is an m.c. subset of X which is
not z-subset nor saturated. In fact,

S2 = {1 ∈ C(R) : Z(1) = ∅ or Z(1) = {1,−1}}

is the smallest m.c. z-subset of C(R) containing S1 and for saturation of S2 we have

S̄2 = { 1 ∈ C(R) : Z(1) ⊆ {1,−1}}.

Moreover, it is easy to see that S1 ( S2 ( S̄2.
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Similarly to the order relation ≤, for every f
r ∈ S−1C we define 0 < f

r if 0 < f on coz t for some t ∈ S.

Proposition 2.11. The set U+ = {
f
r ∈ S−1C : 0 < f

r } is closed with respect to the operations ∨ and ∧. Moreover, if S
is an m.c. z-subset, then every member of U+ is a unit of S−1C.

Proof. If f
r ,
1

s ∈ U+, then there exist t1, t2 ∈ S such that 0 < f on coz t1 and 0 < 1 on coz t2. Since 0 ≤ r, s
we have 0 < s f ∧ r1 on coz t1t2rs which implies that 0 < s f∧r1

rs =
f
r ∧

1

s . To prove the second part of the
proposition, let 0 < f

r . We have 0 < f on coz t for some t ∈ S and so coz t ⊆ coz f . Therefore, coz t = coz t f
and since S is an m.c. z-subset, then t f ∈ S. Now, f

r =
t f
tr ∈ S−1C implies that f

r is a unit.

3. The m-Topology on S−1C

Before defining the m-topology on S−1C, we note that | fr | =
f
r ∨ (− f

r ) =
f∨(− f )

r =
| f |
r . Now, for each f

r ∈ S−1C
and each u

t ∈ U+ if we consider the set B( f
r ,

u
t ) := { 1s : | fr −

1

s | <
u
t }, then clearly we have:

B(
f
r
,

u
t

) = {
1

s
: |

f
r

(x) −
1

s
(x)| <

u
t

(x) for all x ∈ coz q ⊆ coz rstu for some q ∈ S}.

The collection B = {B( f
r ,

u
t ) : f

r ∈ S−1C and u
t ∈ U+

} is a base for a topology on S−1C. In fact, f
r ∈ B( f

r ,
u
t )

and B( f
r ,

u
t ∧

v
s ) ⊆ B( f

r ,
u
t ) ∩ B( f

r ,
v
s ) for every u

t ,
v
s ∈ U+. Moreover, if 1s ∈ B( f

r ,
u
t ), then p

q := u
t − |

f
r −

1

s | ∈ U+

and we have B( 1s ,
p
q )⊆ B( f

r ,
u
t ). As the m-topology on C(X), this topology on S−1C is called the m-topology

and S−1C endowed with this topology is denoted by S−1
m C. This topology is in fact a generalization of the

m-topology on C(X). Note that whenever S = U(X) then S−1
m C = Cm(X).

Recall that a topological ring is simply a ring furnished with a topology for which its algebraic operations
are continuous, see [13]. We also notice that a Hausdorff topological ring is completely regular, see 8.1.17
in [6]. To prove that S−1

m C is a Hausdorff topological ring we need the following lemmas.

Lemma 3.1. Let S be an m.c. z-subset of C(X). For every 0 ≤ f
r ∈ S−1C there exists 1s ∈ S−1C such that 0 ≤ 1, s ≤ 1

and f
r =

1

s .

Proof. Consider s = r
1+r+| f | and 1 =

| f |
1+r+| f | . Clearly Z(s) = Z(r) implies s ∈ S and we have 1s =

| f |
r = |

f
r | =

f
r .

Lemma 3.2. If S is an m.c. z-subset of C(X), then the set {B( f
r ,

v
1 ) : f ∈ C(X), r, v ∈ S and 0 ≤ v ≤ 1} is a base for the

m-topology on S−1C.

Proof. By Lemma 3.1, for each B( f
r ,

u
t ) there exist v, s ∈ S such that 0 ≤ v, s ≤ 1, and u

t = v
s . But s(x)v(x) ≤ v(x)

for all x ∈ coz sv, then v
1 ≤

v
s and so f

r ∈ B( f
r ,

v
1 ) ⊆ B( f

r ,
v
s ) = B( f

r ,
u
t ).

Proposition 3.3. Let S be an m.c. z-subset of C(X). Then S−1
m C is a Hausdorff topological ring.

Proof. To prove the continuity of addition and multiplication, let f
r ,
1

s ∈ S−1C and u
1 ∈ U+. Then

+

(
B
(

f
r
,

u
2

1

)
× B

(
1

s
,

u
2

1

))
⊆ B

(
f
r

+
1

s
,

u
1

)

.

(
B
(

f
r
,

v
1

)
× B

(
1

s
,

v
1

))
⊆ B

(
f
r
·
1

s
,

u
1

)
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where v
1 ∈ U+ such that

(
1
1 + u

1 + |
f
r | + |

1

s |
)

v
1 < u

1 . In fact, if we consider w :=
(

1
1 + u

1 + |
f
r | + |

1

s |
)
, then

1
1 < w ∈ U+, w−1 < 1

1 and w−1
∈ U+. Now, it is enough to take v

1 = w−1 u
2 . To show that S−1

m C is Hausdorff, let
f
r ,
1

s ∈ S−1C and f
r ,

1

s . Thus, f s , r1 on coz rs and so coz rs ⊆ coz ( f s− r1). Therefore, coz rs = coz rs( f s− r1)
and since S is an m.c. z-subset and rs ∈ S, we have t := |rs( f s − r1)| ∈ S. Now, it is not hard to see that
B( f

r ,
t

2r2s2 ) and B( 1s ,
t

2r2s2 ) are disjoint.

Corollary 3.4. Let S be an m.c. z-subset of C(X). Then S−1C with the m-topology is a completely regular Hausdorff
space.

4. Connectedness of S−1
m C

In this section, in imitate of [2], we first find the component of zero in S−1
m C, where S is an m.c. z-subset.

Next using this, we give a necessary and sufficient condition for connectedness of S−1
m C.

Definition 4.1. A member f
r ∈ S−1C is called bounded if there exists k ∈N such that | fr | ≤

k
1 , i.e., | f (x)| ≤ k|r(x)|

for all x ∈ coz t for some t ∈ S.

Clearly the set (S−1C)∗ of all bounded elements of S−1C is a subring of S−1C.

Lemma 4.2. (S−1C)∗ is a clopen subset of S−1
m C.

Proof. If f
r ∈ (S−1C)∗, then B( f

r ,
1
1 ) ⊆ (S−1C)∗. In fact, | fr −

1

s | <
1
1 implies that | 1s | < |

f
r | +

1
1 ≤

k
1 + 1

1 for some
k ∈N and hence 1s is bounded. On the other hand, if f

r < (S−1C)∗, then B( f
r ,

1
1 ) ∩ (S−1C)∗ = ∅.

Lemma 4.3. Jψ = {
f
r ∈ S−1C : f

r ·
s
t is bounded for each s

t ∈ U+
} is an ideal of S−1C.

Proof. It is not hard to see that Jψ is closed with respect to addition. Let f
r ∈ Jψ,

1

s ∈ S−1C and p
q ∈ U+.

We claim that f1p
rsq is bounded and so f1

rs ∈ Jψ. Since p
q ∈ U+, 0 < p on coz t for some t ∈ S and so

0 < (1 + |1|)p on coz t. Therefore, (1+|1|)p
sq ∈ U+. Now by our hypothesis, f

r ·
(1+|1|)p

sq is bounded which implies

that f |1|p
rsq =

( f
r ·

(1+|1|)p
sq

) (
|1|

1+|1|

)
is bounded and f1p

rsq is bounded as well.

Using Lemmas 3.1 and 3.2 we have Jψ = {
f
r ∈ S−1C : f

t is bounded,∀t ∈ U+, 0 ≤ t ≤ 1}

Lemma 4.4. Let S be an m.c. z-subset of C(X) and consider f
r ∈ Jψ. The function ϕ f

r
: R −→ S−1C defined by

ϕ f
r
(a) =

a f
r is continuous.

Proof. Using Lemma 3.2, for every a ∈ R and v
1 ∈ U+, we must show that ϕ−1

f
r

(B( a f
r ,

v
1 )) contains a neigh-

borhood of a in R. Since f
r ∈ Jψ, there exists k ∈ N such that | fr

1
v | ≤

k
1 . Now, we show that the interval

(a− 1
k , a + 1

k ) is contained in ϕ−1
f
r

(B( a f
1 ,

v
1 )). In fact, b ∈ (a− 1

k , a + 1
k ) implies that |b−a|

1 |
f
r |

1
v ≤

1
k ·

k
1 = 1

1 and hence

|
b f
r −

a f
r | <

v
1 , i.e. b ∈ ϕ−1

f
r

(B( a f
r ,

v
1 )).

The following theorem is in fact a generalization of Corollary 3.3 in [2].

Theorem 4.5. Let S be an m.c. z-subset of C(X). The ideal Jψ is the component of zero in S−1
m C.
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Proof. First, since R is connected, using Lemma 4.4, ϕ f
r
(R) is a connected set containing 0 for every f

r ∈ Jψ.

Therefore, Jψ = ∪ f
r ∈Jψ

ϕ f
r
(R) is a connected set containing 0. Next, If I is the component of 0 in S−1

m C,

then Jψ ⊆ I. Moreover, since S−1
m C is topological ring, I is an ideal of S−1

m C. To complete the proof, it is
enough to show that I ⊆ Jψ. On the contrary, let f

r ∈ I\Jψ. By Lemma 4.3, there exists s
t ∈ U+ such that

f
r

s
t < (S−1C)∗. Consider the sets I ∩ (S−1C)∗ and I\(S−1C)∗. By Lemma 4.2, these two sets are open in I and

since 0 ∈ I ∩ (S−1C)∗ and f
r

s
t ∈ I\(S−1C)∗, they are non-empty disjoint open subsets of the connected set I, a

contradiction.

Corollary 4.6. Let S be an m.c. z-subset of C(X). S−1
m C is connected if and only if S−1

m C = Jψ, i.e., for every f ∈ C(X)
and each r ∈ S, there exist k ∈N and t ∈ S such that | f (x)| ≤ kr(x) for all x ∈ coz t.

Motivated by the previous corollary, we are going to investigate the connectedness of S−1
m C via topological

properties of X for some particular m.c. z-subsets of X. For example, let p ∈ βX and put Sp = C(X)\Mp or
more generally, suppose that A ⊆ βX and SA := C(X)\

⋃
p∈A Mp. Clearly SA is an m.c. z-subset of C(X) and

SA = { f ∈ C(X) : p < clβXZ( f ) for each p ∈ A} = { f ∈ C(X) : A ∩ clβXZ( f ) = ∅}. Now, it is natural to ask the
following questions.

When is the topological ring (SA)−1
m C connected? what can we say about the connectedness of (SA)−1

m C if
we replace

⋃
p∈A Mp in SA by an arbitrary union of family of particular prime ideals of C(X)? We will address

such questions in the next section.

5. Connectedness of S−1
A

C with the m-Topology

In this section, we study the connectedness of S−1
m C, where S = C(X)\

⋃
λ∈Λ Pλ, and {Pλ}λ∈Λ is a family

of prime z-ideals of C(X). Using this, we conclude that C(X) with the m-topology is connected if and only
if X is pseudocompact. Also, It is shown that the classical ring of quotients of C(X) endowed with the
m-topology, is connected if and only if every dense cozero-set of C(X) is pseudocompact.

We use the following lemma frequently. But, before that, we review some results which are needed in
sequel. First, notice that for every f ∈ C(X) we have

coz f ⊆ βX\clβXZ( f ) ⊆ clβXcoz f . (1)

The proof of the first inclusion is clear. To prove the second, let x < clβXZ( f ). There exists an open
neighborhood G of x in βX such that G ⊆ βX\Z( f ). Now, for an arbitrary open subset H of βX containing x,
we have

∅ , X ∩ (G ∩H) ⊆ (X ∩H) ∩
(
βX\Z( f )

)
= H ∩ coz f

which implies that x ∈ clβXcoz f . Next, by part (1), we conclude that

clβXcoz f = clβX(βX\clβXZ( f )) = βX\intβXclβXZ( f ). (2)

Finally, if f ∈ C∗(X), then coz f = X ∩ coz f β and in this case, we have

clβXcoz f = clβXcoz f β = βX\intβXZ( f β).

Using part (2), the next lemma is now evident.

Lemma 5.1. Let f ∈ C(X) and p ∈ βX. f < Op if and only if p ∈ clβXcoz f .

Proposition 5.2. Let S be an m.c. z-subset of C(X) and consider Sp := C(X)\Mp, for some p ∈ βX \ υX. If Sp ⊆ S
then S−1

m C is disconnected.
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Proof. Let p ∈ βX\υX. By 8.7.(b) in [7], there exists r ∈ C∗(X) such that Z(r) = ∅, while rβ(p) = 0. Since
S is a z-subset and Z(r) = Z(1), then r ∈ S and so 1

r ∈ S−1C. To complete the proof, we claim that 1
r is

unbounded on coz t for every t ∈ S. Let S̄ be the saturation of S. Recall that S̄ = C(X)\
⋃

P∩S=∅ P where
each P is a prime ideal of C(X). Furthermore, for every prime ideal P which doesn’t intersect S, we have
P ⊆ C(X)\S ⊆ C(X)\Sp = Mp.Now, for every t ∈ S, tr ∈ S ⊆ S̄ and so, there exists a prime ideal P◦ ⊆Mp such
that tr < P◦ and consequently tr < Op. Thus by Lemma 5.1, p ∈ clβXcoz tr and hence there exists a net {xλ}
contained in coz tr = coz t ∩ coz r which converges to p. Since rβ is continuous, rβ(xλ) → rβ(p) = 0 and this
implies that the function r converges to zero on coz tr ⊆ coz r and so the fraction 1

r ∈ S−1C is not bounded
on coz tr ⊆ coz r. Therefore, the claim is true and so S−1

m C is disconnected.

Proposition 5.3. Let P be a prime z-ideal of C(X) and suppose that S = C(X)\P. The topological ring S−1
m C is

connected if and only if P is a real maximal ideal.

Proof. We first prove the necessity. By contrary, assume that P is not real maximal ideal. Now, using 7.15 in
[7], let p ∈ βX and Mp be the unique maximal ideal of C(X) containing P. We consider two cases:

Case 1. p ∈ βX\υX. In this case, Proposition 5.2 implies that S−1
m C is disconnected, a contradiction.

Case 2. let p ∈ υX. In this case, using 7.9.(c) in [7], we have Mp
∩ C∗(X) = M∗p. On the other hand,

P ( Mp by our assumption. Then there exists a function r ∈ C∗(X) such that r ∈ Mp
\P and so 1

r ∈ S−1C.
Moreover, r ∈ Mp

∩ C∗(X) implies rβ(p) = 0. Now, for every t ∈ S, tr < P which shows that tr < Op

and hence p ∈ clβXcoz tr, by Lemma 5.1. Finally, similar to the proof of the Proposition 5.2, we conclude
that 1

r is unbounded on coz tr ⊆ coz t and consequently using the Corollary 4.6, S−1
m C is not connected, a

contradiction.
Next, to prove the sufficiency, let p ∈ βX, Mp be a real maximal ideal of C(X) and S = C(X)\Mp. suppose

that f
r ∈ S−1C. By Lemma 3.1, we can assume that f , r ∈ C∗(X). Since r <Mp and Mp is real, we have r <M∗P,

by 7.9.(c) in [7], and hence rβ(p) , 0. Moreover, for every f ∈ C(X), f β(p) does not approach to infinity. Now,

consider the open subset H = {x ∈ coz rβ : | f
β

rβ (x) − f β

rβ (p)| < 1} of coz rβ ⊆ βX. We observe that H is an open
neighborhood of p in βX and since {coz tβ : t ∈ C∗(X)} is a base for the space βX, there exists t ∈ C∗(X) such

that p ∈ coz tβ ⊆ H. Thus, for every x ∈ coz tβ, | f
β

rβ (x)| < | f
β

rβ (p)| + 1 and hence for every x ∈ X ∩ coz tβ = coz t,

we have | fr (x)| < | f
β

rβ (p)|+ 1 which implies that f
r is bounded on coz t. Therefore, by Corollary 4.6, S−1C with

the m-topology, i.e., S−1
m C is connected.

The following result is an immediate consequence of the previous proposition.

Corollary 5.4. Let p ∈ βX. S−1
p C with the m-topology is connected if and only if p ∈ υX.

By 8A.4 in [7], υX = βX if and only if X is pseudocompact. Using this and corollary 5.4 the following
result is now evident.

Corollary 5.5. S−1
p C with the m-topology is connected for every p ∈ βX if and only if X is pseudocompact.

Recall that whenever S̄ is the saturation of an m.c. subset S of C(X), then two rings S−1C and (S̄)−1C are
isomorphic. By Corollary 2.9, the saturation of every m.c. z-subset S of C(X) is a z-subset. If we consider
S = C(X)\

⋃
λ∈Λ Pλ where {Pλ}λ∈Λ is a family of prime ideals of C(X), then for every λ ∈ Λ,we have Pλ∩S = ∅

and conversely, for each prime ideal P disjoint from S there exists λ ∈ Λ such that P = Pλ.

Definition 5.6. An ideal I of C(X) is called real whenever every maximal ideal containing I, is real.

As 7O in [7], for an ideal I in C(X) if we define θ(I) = {p ∈ βX : I ⊆ MP
}, then θ(I) =

⋂
f∈I clβXZ( f ). Thus,

an ideal of C(X) is real ideal if and only if θ(I) ⊆ υX or equivalently
⋂

f∈I clβXZ( f ) ⊆ υX.

Proposition 5.7. Let {Pλ}λ∈Λ be a family of prime z-ideals of C(X) and take S := C(X)\
⋃
λ∈Λ Pλ. Then S is an m.c. z-

subset of C(X) and if S−1
m C is connected, then for every λ ∈ Λ the ideal Pλ is real. Moreover,

⋃
λ∈Λ Pλ =

⋃
p∈A Mp

where A =
⋃
λ∈Λ θ(Pλ).
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Proof. By contrary, suppose that S−1
m C is connected but at least one of the prime ideals is not real. Thus,

there exists λ◦ ∈ Λ and p ∈ βX\υX such that Pλ◦ ⊆ MP. Since p < υX, there is a function r ∈ C∗(X) such that
Z(r) = ∅ and rβ(p) = 0.Now, similar to the proof of Proposition 5.2, we conclude that 1

r ∈ S−1C and for every
t ∈ S we have tr < Op, since tr < Pλ◦ . So by Lemma 5.1, p ∈ clβXcoz tr. Therefore, 1

r is not bounded on coz t
and thus S−1

m C is not connected, by Corollary 4.6, a contradiction.
To prove the last part of the proposition, by contrary, let r ∈

⋃
p∈A Mp

\
⋃
λ∈Λ Pλ.As above, for every t ∈ S

it can be shown that 1
r is unbounded on coz t and so S−1

m C is disconnected, a contradiction.

Corollary 5.8. Let p ∈ βX and {Pp
λ}λ∈Λ be a family of prime z-ideals of C(X) contained in the maximal ideal Mp and

suppose that S = C(X)\
⋃
λ∈Λ Pp

λ. Then S−1
m C is connected if and only if p ∈ υX and Mp =

⋃
λ∈Λ Pp

λ.

Corollary 5.9. Let A ⊆ βX and suppose that SA = C(X)\
⋃

p∈A Mp. If S−1C with the m-topology is connected, then
A ⊆ υX.

The following theorem which is in fact a generalization of Corollary 5.4, shows that whenever A is a
compact subset of βX, the converse of the previous corollary is also true. But, we were unable to answer
the converse of the corollary.

Theorem 5.10. Let A be a compact subset of βX and consider SA = C(X)\
⋃

p∈A Mp. Then S−1
A C with the m-topology

is connected if and only if A ⊆ υX.

Proof. Necessity is clear by Corollary 5.9. To prove the sufficiency, let A be a compact subset of υX. Using
Corollary 4.6, it is enough to show that for every f

r ∈ S−1
A C, there exists t ∈ SA such that f

r is bounded on
coz t. Since r ∈ SA, then for every p ∈ A ⊆ υX, r < Mp

∩ C∗(X) = M∗p and so rβ(p) , 0. Moreover, p ∈ υX
implies that f β(p) , ∞ and thus for each p ∈ A, f β

rβ (p) is a real number. As in the proof of Proposition 5.3,

the subset H = {x ∈ coz rβ : | f
β

rβ (x) − f β

rβ (p) < 1} is an open neighborhood of p in coz rβ and hence in βX as

well. Thus, there exists t ∈ C∗(X) such that p ∈ coz tβp ⊆ H ⊆ coz rβ and so we conclude that f
r is bounded on

coz tp. In fact, for every x ∈ coz tp we have | fr (x)| < | f
β

rβ (p)| + 1. Now, since A is compact and A ⊆
⋃

p∈A coz tβp,

there are functions tp1 , ..., tpn in C∗(X) such that A ⊆
⋃n

i=1 coz tβpi
. We claim that t = t2

p1
+ ...+ t2

pn
is the function

which we look for.
First, note that for every p ∈ A we have t < Mp. Otherwise, if for some q ∈ A we have t ∈ Mq, then

Z(t) ⊆ Z(tpi ) (1 ≤ i ≤ n) implies that tpi ∈ Mq for every 1 ≤ i ≤ n, (since Mq is a z-ideal) which contradicts
q ∈ A ⊆

⋃n
i=1 coz tβpi

.

Next, because f
r is bounded on every coz tpi (1 ≤ i ≤ n), it is bounded on coz t = coz (t2

p1
+ ... + t2

pn
) =⋃n

i=1 coz tpi too, which completes the proof.

Whenever a subset A of X is completely separated from every zero-set disjoint from it, in particular, if A
is a zero-set or a C-embedded subset of X, then for every f ∈ C(X), clβXA ∩ clβXZ( f ) = ∅ if and only if
A∩ clβXZ( f ) = ∅, see Theorems 1.18 and 6.5 in [7]. Therefore, SA = SclβXA and since clβXA is a compact subset
of βX, the following result is now evident by Theorem 5.10.

Corollary 5.11. Let a subset A ⊆ X be completely separated from every zero-set disjoint from it. Then S−1
A C with the

m-topology is connected if and only if clβXA ⊆ υX.

If we consider S = C(X)\
⋃

p∈βX Mp, then S is the set of all units of C(X) and so S−1
m C = Cm(X). Therefore,

by Theorem 5.10, Cm(X) is connected if and only if βX ⊆ υX. Now, using 8A.4 in [7], the following results
is evident.

Corollary 5.12. ([2, Proposition 3.12]) C(X) with the m-topology is connected if and only if X is pseudocompact.
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Using Proposition 5.7 and Theorem 5.10, we conclude the paper by another proof for Corollary 3.11 in
[3]. First, we recall that a point p ∈ X is called an almost P-point, if every Gδ-set (zero-set) containing p has
nonempty interior and a space X is called an almost P-space if each point of X is an almost P-point. Thus, X is
an almost P-space if and only if every non-zero-divisor of C(X) is unit, i.e., U(X) = C(X)\Zd(X) = C(X)\

⋃
P,

where P is a prime ideal of C(X) contained in Zd(X). It is proved that p ∈ X is an almost P-point if and
only if whenever f ∈ C(X) and p ∈ Z( f ) imply that p ∈ clXintXZ( f ). In fact, if p is an almost P-point, then
Mp ⊆ Zd(X) and thus, for every f ∈ C(X) if p ∈ Z( f ), then the ideal (Op, f ) generated by Op∪{ f }, is contained
in Mp. Now, using Corollary 3.3 in [4] we conclude that p ∈ clXintXZ( f ). See [10] for more information
about almost P-spaces.

Corollary 5.13. ([3, Corollary 3.11]) The classical ring of quotients of C(X) with the m-topology is connected if and
only if X is a pseudocompact almost P-space.

Proof. Let S−1C be the classical ring of quotients of C(X) and for every p ∈ βX, suppose that {Pp
λ}λ∈Λp is the

family of all prime ideals of C(X) contained in Mp ⋂
Zd(X). It is not hard to see that Zd(X) =

⋃
λ∈Λp
p∈βX

Pp
λ

and so, S = C(X)\
⋃
λ∈Λp
p∈βX

Pp
λ. Now, Using Proposition 5.7, if S−1

m C is connected, then every Pp
λ is real ideal

which implies that βX ⊆ υX, i.e., X is pseudocompact. On the other hand, since for every λ ∈ Λp we
have θ(Pp

λ) = {p}, using the same proposition, we conclude that Zd(X) =
⋃

p∈βX Mp. Thus, each non-unit of
C(X) is zero-divisor and this means that X is almost p-space.

Conversely, let X be pseudocompact almost P-space. Since X is an almost P-space, Zd(X) =
⋃

p∈βX Mp

and by pseudocompactness of X we conclude that βX = υX. Now, by Theorem 5.10, S−1
m C is connected for

S = C(X)\Zd(X).
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