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Abstract. An order is presented on the rings of fractions S7'C(X) of C(X), where S is a multiplicatively
closed subset of C(X), the ring of all continuous real-valued functions on a Tychonoff space X. Using this, a
topology is defined on S™!C(X) and for a family of particular multiplicatively closed subsets of C(X) namely
m.c. 3-subsets, it is shown that S7'C(X) endowed with this topology is a Hausdorff topological ring. Finally,
the connectedness of S™'C(X) via topological properties of X is investigated.

1. Introduction

In this paper, the ring of all (bounded) real-valued continuous functions on a completely regular
Hausdorff space X, is denoted by C(X) (C*(X)). The space X is called pseudocompact if C(X) = C*(X).
For every f € C(X) the set Z(f) = {f € C(X) : f(x) = 0} is said to be zero-set of f and it’s complement which
is denoted by coz f, is called cozero-set of f. Moreover, an ideal I C C(X) is said to be z-ideal if for every
f eland g € C(X), the inclusion Z(f) C Z(g) implies that g € I. u € C(X) is a unit (i.e., u has multiplicative
inverse) if and only if Z(u) = 0 and it is not hard to see that an element f of C(X) is zero-divisor if and only
if intxZ(f) # 0. The set of all units and the set of all zero-divisors of C(X) are denoted by U(X) and Zd(X)
respectively.

Let X and vX be the Stone-Cech compactification and the Hewitt realcompactification of the space X,
respectively. For every f € C*(X) the unique extension of f to a continuous function in C(8X) is denoted by
fP and for eachp € X, MP = {f e C(X) : p € clgxZ(f)} (M* = {f € C(X) : fB(p) = 0}) is a maximal ideal
of C(X) (C*(X)) and also, every maximal ideal of C(X) (C*(X)) is precisely of the form M? (M), for some
p € BX. Moreover, for every p € X, OF = {f € C(X) : p € intgxclgxZ(f)} is the intersection of all prime ideals
of C(X) which are contained in M. In fact, we have;

Lemma 1.1. ([7, Theorem 7.15]) Every prime ideal P in C(X) contains OF for some unique p € BX, and M? is the
unique maximal ideal containing P.

Whenever p € X, the ideals M? and O will be the sets {f € C(X) : p € Z(f)} and {f € C(X) : p € intxZ(f)}
respectively and in this case, they are denoted by M, and O,. A maximal ideal M of C(X) is called real

whenever the residue class field % is isomorphic with the real field R. Thus, for every p € vX, M is a
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real maximal ideal, and conversely every real maximal ideal of C(X) is precisely of the form M for some
p € vX. Moreover, MP (| C*(X) = M if and only if p € vX, see 7.9 (¢) in [7].

Let R be a commutative ring with unity and suppose that S is a multiplicatively closed subset or briefly
an m.c.subset of R. Here S7IR is the ring of all equivalence classes of the formal fractions £ for a € R and
s € S, where the equivalence relation is the obvious one. Whenever S is the set of all non-zero-divisors of
R, then S7'R is called the classical ring of quotients of R.

Anm.c.subset T of R is called saturated whenever a,b € R and ab € T imply thata and b belong to T. For
an arbitrary m.c.subset S of R, the intersection of all saturated m.c. subsets of R which contain S, is called
saturation of S and is denoted by S. Using 5.7 in [11] we have

5 =R\ U P
PeSpec(R)
PNS=0

Lemma 1.2. ([11, Exercise 5.12(iv)]) For an arbitrary m.c. subset S of a commutative ring R with unity, two rings
SR and S~'R are isomorphic.

In sequel, for every m.c. subset S of C(X), the ring of fractions S~'C(X) is often abbreviated as S~'C.

2. An Order Relation on S™1C
The m-topology on C(X) is defined by taking the sets of the form
B(f,u) = (g € C(X) : |f(x) - g(x)| < u(x), ¥x € X}

as a base for the neighborhood system at f, for each f € C(X), where u runs through the set of all positive
units of C(X). This topology on C(X) which is denoted by C,,(X), was first introduced in [9] and studied
more in [1-3, 5, 8, 12]. To define a topology on S™'C, similar to the m-topology on C(X), we need an ordering
to make S7'C a lattice-ordered ring. We define the order relation < on S71C as follows:

Definition 2.1. For é € 571C, we define
0< ]?( if there exists t € S such that 0 < (#*rf)(x) for all x € X.

Clearly 0 < J—: if and only if 0 < (rf)(x) for all x € cozt, for some t € S. This definition is similar
to the familiar definition of order on C(X). But here we consider restriction of each Z on a cozero-set of
X instead of X itself. To see that the order < is well defined, let f Z € S7IC, L~ %ando < J—: Then

S

there exist p,q € S such that g fs = grg and 0 < p?rf. Now, the 1nequa11ty 0< (q2 )(p?rf) implies that
0 < (p*rsq)(qfs) = (p*rsq)(grg) = (p*r*g*)(sg) and since prq € S, we conclude that 0 <

Proposition 2.2. let S be an m.c. subset of C(X), then (S7'C, <) is a lattice-ordered ring.

Proof. Clearly for every €S7ICif0 < f and0 < —£ then = = 0. Now, suppose that feslco<t and
0< Z There exist t1,t, € S such that 0 S rf on coz t1 and O < sgon coztp. Therefore 0 < 12s%(s? rf + 7 sg)
and 0 < 12s%(rfsg) on coz tt, and thus, 0 < = ’fjg = J—: + % and 0 < j{—j? = % . g on coz tity. To prove that
S7IC is lattice, it can be shown that

A2
f/\g rf/\ srf/\rsg s’rf sy

ris 22 22 g s2r2
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If S is an m.c.subset of a commutative ring R, then for every n € N, the set " = {s" : s € S} is an
n-1
rrnf is an

m.c.subset of R and clearly two rings (5")"'R and S™!R are isomorphic. In fact, the map in(é) =
isomorphism from S~'R onto (S")"!R. Now we define an ordering <* on (S?)~'C as follows;

Definition 2.3. For every % € (8?)71C, we define

0 <* £ if there exists t € S? such that 0 < #(x) f(x) forall x € X.

= I

If S is an m.c. subset of C(X) then $* C {f € S: 0 < f}. Therefore 0 <* J; if and only if 0 < f on cozt for
some t € S. Similar to Definition 2.1, it can be shown that ((S?)7'C, <*) is a lattice-ordered ring. Moreover,
we have the following result whose proof is left to the readers.

Proposition 2. 4 Let S be an m.c. subset of C(X). Two rings (S7C, <) and ((S*)"'C, <*) are lattice isomorphic. In

fact, the map 12( from S71C onto (S?)™1C is an isomorphism and also order-preserving, i.e., f <1 = if and only
tf 9,

if 3 <

Now using the above proposition, without loss of generality, for every lattice-ordered ring (S™'C, <) we

can assume that each member of S is non-negative. In addition, we can consider 0 < { whenever 0 < f on
cozt for somet € S.

Definition 2.5. A subset S of C(X) is called 3-subset whenever f,g € C(X) and f € S, then Z(f) = Z(9)
implies that g € S.

Example 2.6. The set C(X)\Zd(X) = {f € C(X) : intxZ(f) = 0} of all non-zero-divisor elements of C(X), is
a multiplicatively closed 3-subset (or briefly an m.c. 3-subset) of C(X). Another example of m.c. 3-subset is
U(X) = {f € C(X) : Z(f) = 0}, the set of all units of C(X). If {P)}en is a family of prime z-ideals of C(X), then
S = C(X)\ U ea P is also an m.c. 3-subset of C(X). Note that whenever P is a prime ideal of C(X) which is
not z-ideal, then S = C(X)\P is a saturated m.c. subset of C(X) which is not a 3-subset.

Proposition 2.7. If S is an m.c. 3-subset of C(X), then the set T := {f € C(X) : Z(f) € Z(s) for somes € S} is the
saturation of S.

Proof. We show that T is the smallest saturated m.c.subset containing S. First, note that T is a saturated
m.c.subset of C(X) containing S. In fact, if f,g € T then there exist 51,5, in S such that Z(f) C Z(s1) and
Z(g) € Z(sp). Therefore, Z(fg) = Z(f) U Z(g) C Z(s152) which implies fg € T. Moreover, if fg € T then
Z(fg) € Z(s), for some s € S. Thus Z(f) € Z(s) and also Z(g) € Z(s) which imply that f,g € T. Next, let T’ be
a saturated m.c. subset of C(X) containing S and suppose that f € T. Hence Z(f) C Z(s), for some s € S and
thus Z(fs) = Z(f) U Z(s) = Z(s). Since S is a 3-subset, fs € S C T" and so f € T’, i.e,, T € T which complete
the proof. [

Corollary 2.8. Let S be an m.c. subset of C(X). S is a saturated m.c. 3-subset if and only if for every f € C(X) and
s € S, the inclusion Z(f) C Z(s) implies that f € S.

Corollary 2.9. The saturation of every m.c. 3-subset of C(X) is a 3-subset.

Example 2.10. Let f(x) = |x| — 1 be a function of C(R). Then S; = {1, f, f2, ...} is an m.c. subset of X which is
not 3-subset nor saturated. In fact,

S»=1{g € C(R) : Z(g) = 0 or Z(g) = {1, -1}}
is the smallest m.c. 3-subset of C(IR) containing S; and for saturation of S, we have

S2={g€CR): Z(g) € (1,-1)).

Moreover, it is easy to see that S; & 52 & S,.
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Similarly to the order relation <, for every ’; € STIC we define 0 < % if 0 < foncoztforsomet€S.

Proposition 2.11. The set U* = {{ eSIC:0< %} is closed with respect to the operations V and A. Moreovet, if S
is an m.c. 3-subset, then every member of U* is a unit of S*C.

Proof. 1f /—:,g € U*, then there exist t;,f, € S such that 0 < f on cozt; and 0 < g on cozt,. Since 0 < 1,5
sfArg _ j_’

rs

we have 0 < sf A rg on coz tit,rs which implies that 0 < A £. To prove the second part of the

f

proposition, let 0 < . We have 0 < f on cozt for some t € S and so cozt c coz f. Therefore, cozt = coztf

and since S is an m.c. 3-subset, then tf € S. Now, = t{ e s1Ic implies that £ s isaunit. O

3. The m-Topology on S™1C

Before defining the m-topology on S~'C, we note that |§| = é\/ (%[) = w = @ Now, for each % esIC
and each % € U* if we consider the set B(é, 8= {% : |§ - §| < %}, then clearly we have:

B, =2 f(x)

o . (x)l < %(x) for all x € cozg C cozrstu for some g € S}.

The collection 8B = {B( K f € S7IC and % € U*} is a base for a topology on S7'C. In fact, L ¢ B(f
and B(f TAZ)C B(J;, DN B( 2) for every ¥, ¢ € U". Moreover, if g € B(f ) then =4 - i - —| € LI+

t r
and we have B(%, g)g B(j—:, £). As the m—topology on C(X), this topology on S7!Cis Called the m-topology

and S7'C endowed with this topology is denoted by S;,!C. This topology is in fact a generalization of the
m-topology on C(X). Note that whenever S = U(X) then S,,!C = C,,(X).

Recall that a topological ring is simply a ring furnished with a topology for which its algebraic operations
are continuous, see [13]. We also notice that a Hausdorff topological ring is completely regular, see 8.1.17
in [6]. To prove that S,!C is a Hausdorff topological ring we need the following lemmas.

Lemma 3.1. Let S be an m.c. 3-subset of C(X). For every 0 < { € S7IC there exists £ € ST1C such that 0 < g,s < 1
f

and = = <
r

Clearly Z(s) = Z(r) implies s € S and we have <= lﬂ = Iél O

Proof. Considers = <.

andg =

1+r+|f| 1+r+|f|

Lemma 3.2. If S is an m.c. 3-subset of C(X), then the set {B(J—:, 7): f e C(X),r,v€Sand 0 < v < 1} is a base for the
m-topology on S1C.

Proof. By Lemma 3.1, for each B({, %) there exist v,s € Ssuch that0 < v,s < 1,and % = . Buts(x)v(x) < v(x)
forall x € cozso, then ¢ < Zand so £ € B(,2) ¢ B({,2) = B(, ). O

Proposition 3.3. Let S be an m.c. 3-subset of C(X). Then S;;'C is a Hausdorff topological ring.

Proof. To prove the continuity of addition and multiplication, let /;(, g € §~1C and % € U*. Then

Lt ol o1
(e(5)sC D)ol 24
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where ¥ € U* such that (% +1+ IJ—:I + |§I)§ < 1. In fact, if we consider w := (% +1+ |/;| + |%|), then
1<wel, w'!<landw™ e U". Now,itis enough to take ¢ = w™!%. To show that S,,'C is Hausdorff, let
é, fes'Cand )7( # Z. Thus, fs # rg on cozrs and so coz rs C coz (fs —rg). Therefore, coz s = coz rs(fs —rg)
and since S is an m.c. 3-subset and rs € S, we have t := |rs(fs — rg)| € S. Now, it is not hard to see that

B( ) and B(Z

) 3 , 54=) are disjoint. [

Corollary 3.4. Let S be an m.c. 3-subset of C(X). Then S™*C with the m-topology is a completely regular Hausdorff
space.

4. Connectedness of S>'C

In this section, in imitate of [2], we first find the component of zero in S,,!C, where S is an m.c. 3-subset.
Next using this, we give a necessary and sufficient condition for connectedness of S;'C.

Definition 4.1. Arnernber L e §-1Ciscalled bounded if there exists k € IN such thatl | < 1, ie, |f(x)| < klr(x)]
for all x € cozt for some t € S

Clearly the set (S7'C)* of all bounded elements of S7!C is a subring of S7!C.

Lemma 4.2. (S7'C)* is a clopen subset of S;;'C.

k
1

Proof. 1f é € (571C)", then B(f 1) € (S7'0)". In fact, |— —Z] < 1 implies thatl | < | |+ 1 1 for some
) =

< kg
k € IN and hence % is bounded. On the other hand, if J; ¢ (S71C), then B( ) 1) N (s 0. O

Lemma4.3. |, = {]7( esIC: ’—: -2 is bounded for each $ € U*} is an ideal of S~'C.

Proof. It is not hard to see that ] is closed with respect to addition. Let /—: € ]w,g € S7IC and g e Uu+.

We claim that %’ is bounded and so £ ¢ Jy. Since %’ e U*, 0 < pon cozt for some t € S and so

s
0 < (1 +|gl)p on cozt. Therefore, % € U*. Now by our hypothesis, J; . %

that fr\siq\r’ _ (J_: . (“S'q?')p) <1|+9||g|) is bounded and fgp is bounded as well. [J

is bounded which implies

Using Lemmas 3.1 and 3.2 we have [, = { esIc: is bounded, Vt € U*, 0 <t <1}

Lemma 4.4. Let S be an m.c.3-subset of C(X) and consider { € Jy. The function @; : R — S7'C defined by
§0f(ﬂ) 4 is continuous.

afy

Proof. Using Lemma 3.2, for every 2 € R and ¢ € U*, we must show that ¢ fl(B( -, 1)) contains a neigh-

borhood of @ in R. Since £ € Jy, there exists k € IN such that If 1|
(a— k,u + k) is contained in (pfl(B(”lf, 7). Infact, b € (a - Lo+ k) implies that L ”II

T Now, we show that the interval

11,k

s <107 =Tandhence

Y- i<t ie bepBE ). O

The following theorem is in fact a generalization of Corollary 3.3 in [2].

Theorem 4.5. Let S be an m.c. 3-subset of C(X). The ideal ], is the component of zero in S;,'C.
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Proof. First, since R is connected, using Lemma 4.4, ¢ (IR) is a connected set containing 0 for every ]—: € Jy.
Therefore, [, = U fe),® %(]R) is a connected set contarining 0. Next, If I is the component of 0 in S;,'C,
then J, C I. Moreover, since S,!C is topological ring, I is an ideal of 5,!C. To complete the proof, it is
enough to show that I C J;,. On the contrary, let ’; € I\Jy. By Lemma 4.3, there exists $ € U" such that
%% ¢ (S71C)". Consider the sets I N (S7!C)* and I\(S7'C)*. By Lemma 4.2, these two sets are open in I and

since 0 € IN (S7'C)* and %% € I\(S71C), they are non-empty disjoint open subsets of the connected set I, a
contradiction. O

Corollary 4.6. Let S be an m.c. 3-subset of C(X). S,,'C is connected if and only if S;;'C = ], i.e., for every f € C(X)
and each r € S, there exist k € N and t € S such that |f(x)| < kr(x) for all x € cozt.

Motivated by the previous corollary, we are going to investigate the connectedness of S, C via topological
properties of X for some particular m.c. 3-subsets of X. For example, let p € fX and put S, = C(X)\M? or
more generally, suppose that A € X and S4 := C(X)\ Upea MP. Clearly Sy is an m.c. 3-subset of C(X) and
Sa=1{f € CX):p ¢ clgxZ(f) foreachp € A} = {f € C(X) : AN clgxZ(f) = 0}. Now, it is natural to ask the
following questions.

When is the topological ring (S4);,' C connected? what can we say about the connectedness of (S4),!C if
we replace [ J,e4 MP in S4 by an arbitrary union of family of particular prime ideals of C(X)? We will address
such questions in the next section.

5. Connectedness of S[‘llC with the m-Topology

In this section, we study the connectedness of S;'C, where S = C(X)\ U,ca Pa, and {P;},ca is a family
of prime z-ideals of C(X). Using this, we conclude that C(X) with the m-topology is connected if and only
if X is pseudocompact. Also, It is shown that the classical ring of quotients of C(X) endowed with the
m-topology, is connected if and only if every dense cozero-set of C(X) is pseudocompact.

We use the following lemma frequently. But, before that, we review some results which are needed in
sequel. First, notice that for every f € C(X) we have

coz f C BX\clgxZ(f) C clgxcoz f. 1)
The proof of the first inclusion is clear. To prove the second, let x ¢ clgxZ(f). There exists an open

neighborhood G of x in X such that G € BX\Z(f). Now, for an arbitrary open subset H of fX containing x,
we have

0+XN(GNH) S (XNH)N(EX\Z(f)) = HNcoz f
which implies that x € clgxcoz f. Next, by part (1), we conclude that
clgxcoz f = clgx(BX\clgxZ(f)) = pX\intgxclgxZ(f).  (2)
Finally, if f € C*(X), then coz f = X N coz f and in this case, we have
clgxcoz f = clgxcoz ff = pX\intgx Z(fF).
Using part (2), the next lemma is now evident.
Lemma 5.1. Let f € C(X) and p € BX. f & OF ifand only if p € clgxcoz f.

Proposition 5.2. Let S be an m.c. 3-subset of C(X) and consider S, := C(X)\M?, for some p € X \ vX. IfS, C S
then S,!C is disconnected.
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Proof. Let p € pX\vX. By 8.7.(b) in [7], there exists r € C*(X) such that Z(r) = 0, while *(p) = 0. Since
S is a 3-subset and Z(r) = Z(1), then r € S and so % € S7IC. To complete the proof, we claim that % is
unbounded on cozt for every t € S. Let S be the saturation of S. Recall that S = C(X)\ Upns—g P where
each P is a prime ideal of C(X). Furthermore, for every prime ideal P which doesn’t intersect S, we have
P C C(X)\S € C(X)\S, = MP. Now, foreveryt€ S, tre S C S and so, there exists a prime ideal P, C MP such
that tr ¢ P, and consequently tr ¢ OF. Thus by Lemma 5.1, p € clgxcoztr and hence there exists a net {x,}
contained in coz tr = cozt N coz r which converges to p. Since 7 is continuous, (x;) — 7#(p) = 0 and this
implies that the function r converges to zero on coz tr C cozr and so the fraction 2 € S7!C is not bounded

on coz tr C coz r. Therefore, the claim is true and so S,,!C is disconnected. [J

Proposition 5.3. Let P be a prime z-ideal of C(X) and suppose that S = C(X)\P. The topological ring S,'C is
connected if and only if P is a real maximal ideal.

Proof. We first prove the necessity. By contrary, assume that P is not real maximal ideal. Now, using 7.15 in
[7], let p € X and M? be the unique maximal ideal of C(X) containing P. We consider two cases:

Case 1. p € X \vX. In this case, Proposition 5.2 implies that S;!C is disconnected, a contradiction.

Case 2. let p € vX. In this case, using 7.9.(c) in [7], we have MP N C*(X) = M. On the other hand,
P ¢ MP by our assumption. Then there exists a function r € C*(X) such that r € MP\P and so % € S7IC.
Moreover, r € MF N C*(X) implies #(p) = 0. Now, for every t € S, tr ¢ P which shows that tr ¢ OF
and hence p € clgxcoz tr, by Lemma 5.1. Finally, similar to the proof of the Proposition 5.2, we conclude
that 1 is unbounded on coz tr C cozt and consequently using the Corollary 4.6, S,,'C is not connected, a
contradiction.

Next, to prove the sufficiency, let p € X, M? be a real maximal ideal of C(X) and S = C(X)\M?". suppose
that J; e s71C. By Lemma 3.1, we can assume that f,7 € C*(X). Since r ¢ M? and M is real, we have r ¢ M*P,
by 7.9.(c) in [7], and hence r#(p) # 0. Moreover, for every f € C(X), f?(p) does not approach to infinity. Now,
consider the open subset H = {x € coz7* : |%(x) - /:—g(p)l < 1} of coz? € BX. We observe that H is an open

neighborhood of p in X and since {coz t# : t € C*(X)} is a base for the space BX, there exists t € C*(X) such
that p € cozt? C H. Thus, for every x € coztf, IJ:—Z(x)I < |%(p)l + 1 and hence for every x € X N coz t# = cozt,
we have Ié(x)l < I{—:(p)l + 1 which implies that )7( is bounded on coz t. Therefore, by Corollary 4.6, S™'C with
the m-topology, i.e., S;,!C is connected. [

The following result is an immediate consequence of the previous proposition.

Corollary 54. Letp € BX. S, LC with the m-topology is connected if and only if p € vX.

By 8A.4 in [7], vX = X if and only if X is pseudocompact. Using this and corollary 5.4 the following
result is now evident.

Corollary 5.5. S, LC with the m-topology is connected for every p € BX if and only if X is pseudocompact.

Recall that whenever S is the saturation of an m.c. subset S of C(X), then two rings S™'C and (5)~!C are
isomorphic. By Corollary 2.9, the saturation of every m.c. 3-subset S of C(X) is a 3-subset. If we consider
S = C(X)\ U ea Pr where {P;}1en is a family of prime ideals of C(X), then for every A € A, wehave P,NS =0
and conversely, for each prime ideal P disjoint from S there exists A € A such that P = P,.

Definition 5.6. An ideal I of C(X) is called real whenever every maximal ideal containing I, is real.

As 70 in [7], for an ideal I in C(X) if we define 6(I) = {p € X : I € M}, then O(I) = (g clpxZ(f)- Thus,
an ideal of C(X) is real ideal if and only if 8(I) € vX or equivalently () fer ClpxZ( f) S vX.

Proposition 5.7. Let {Pp}jca be a family of prime z-ideals of C(X) and take S := C(X)\ U ea Pa. Then S is an m.c. 3-
subset of C(X) and if S;;'C is connected, then for every A € A the ideal P, is real. Moreover, | J e Py = Upea MF
where A = U ep O(Pn).
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Proof. By contrary, suppose that S;'C is connected but at least one of the prime ideals is not real. Thus,
there exists A, € A and p € BX\vX such that P;, € M". Since p ¢ vX, there is a function r € C*(X) such that
Z(r) = 0 and r#(p) = 0. Now, similar to the proof of Proposition 5.2, we conclude that % € S7IC and for every
t € Swe have tr ¢ O, since tr ¢ P,,. So by Lemma 5.1, p € clgxcoz tr. Therefore, % is not bounded on coz ¢
and thus S;,!C is not connected, by Corollary 4.6, a contradiction.

To prove the last part of the proposition, by contrary, let 7 € (J,cq MP\ U, cp P1- As above, for every t € S

it can be shown that 1 is unbounded on cozt and so S;!C is disconnected, a contradiction. []

Corollary 5.8. Letp € pX and {Pﬁ} Area be a family of prime z-ideals of C(X) contained in the maximal ideal MP and
suppose that S = C(X)\ U en PZ. Then S,!C is connected if and only if p € vX and MP = | cn P’;.

Corollary 5.9. Let A € BX and suppose that Sy = C(X)\ Upea MP. If S1C with the m-topology is connected, then
AcvX

The following theorem which is in fact a generalization of Corollary 5.4, shows that whenever A is a
compact subset of fX, the converse of the previous corollary is also true. But, we were unable to answer
the converse of the corollary.

Theorem 5.10. Let A be a compact subset of X and consider Sy = C(X)\ Upes MP. Then S 7.1 C with the m-topology
is connected if and only if A C vX.

Proof. Necessity is clear by Corollary 5.9. To prove the sufficiency, let A be a compact subset of vX. Using
Corollary 4.6, it is enough to show that for every J—: € S;!C, there exists t € 54 such that ’—: is bounded on
cozt. Since r € Syu, then for every p € A C vX,r ¢ MP N C*(X) = M? and so r#(p) # 0. Moreover, p € vX
implies that fP(p) # oo and thus for each p € A4, /:—S(p) is a real number. As in the proof of Proposition 5.3,
the subset H = {x € cozrf : IJ:—S(x) - {—S(p) < 1} is an open neighborhood of p in coz* and hence in X as
well. Thus, there exists t € C*(X) such that p € coz t ¢ H C cozr# and so we conclude that J—: is bounded on
coz t,. In fact, for every x € cozt, we have IJ—:(x)I < I{—S(p)l + 1. Now, since A is compact and A C Ur,e 4 COZ tﬁ,

there are functions f,,, ..., t,, in C*(X) such that A C i coz tﬁi. We claim that t = £ +... + £ is the function
which we look for.

First, note that for every p € A we have t ¢ MP. Otherwise, if for some g € A we have t € M1, then
Z(t) € Z(t,) (1 <i<n)implies thatt, € M7 for every 1 <i < n, (since M7 is a z-ideal) which contradicts
geAcC L, coz tﬁi.

Next, because ]—: is bounded on every cozt, (1 <i < n), it is bounded on cozt = coz (t%l + ..+ t;%”) =
Ui, coz t, too, which completes the proof. []

Whenever a subset A of X is completely separated from every zero-set disjoint from it, in particular, if A
is a zero-set or a C-embedded subset of X, then for every f € C(X),clgxA N clgxZ(f) = 0 if and only if
ANclgxZ(f) = 0, see Theorems 1.18 and 6.5 in [7]. Therefore, Su4 = Sq,4 and since clgxA is a compact subset
of BX, the following result is now evident by Theorem 5.10.

Corollary 5.11. Let a subset A C X be completely separated from every zero-set disjoint from it. Then S,'C with the
m-topology is connected if and only if clgxA C vX.

If we consider S = C(X)\ U,epx MF, then S is the set of all units of C(X) and so S,1C = Cy(X). Therefore,
by Theorem 5.10, C,,(X) is connected if and only if fX C vX. Now, using 8A.4 in [7], the following results

is evident.

Corollary 5.12. ([2, Proposition 3.12]) C(X) with the m-topology is connected if and only if X is pseudocompact.
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Using Proposition 5.7 and Theorem 5.10, we conclude the paper by another proof for Corollary 3.11 in
[3]. First, we recall that a point p € X is called an almost P-point, if every Gs-set (zero-set) containing p has
nonempty interior and a space X is called an almost P-space if each point of X is an almost P-point. Thus, X is
an almost P-space if and only if every non-zero-divisor of C(X) is unit, i.e., U(X) = C(X)\Zd(X) = C(X)\ UP,
where P is a prime ideal of C(X) contained in Zd(X). It is proved that p € X is an almost P-point if and
only if whenever f € C(X) and p € Z(f) imply that p € clxintxZ(f). In fact, if p is an almost P-point, then
M, € Zd(X) and thus, for every f € C(X) if p € Z(f), then the ideal (O,, f) generated by O, U{f}, is contained
in M,. Now, using Corollary 3.3 in [4] we conclude that p € clxintxZ(f). See [10] for more information
about almost P-spaces.

Corollary 5.13. ([3, Corollary 3.11]) The classical ring of quotients of C(X) with the m-topology is connected if and
only if X is a pseudocompact almost P-space.

Proof. Let S™'C be the classical ring of quotients of C(X) and for every p € X, suppose that {PZ} Aen, is the

family of all prime ideals of C(X) contained in MF () Zd(X). It is not hard to see that Zd(X) = Ujea, Pﬁ
pepX
and so, S = C(X)\ U AeA, Pﬁ. Now, Using Proposition 5.7, if S,IC is connected, then every Pﬁ is real ideal

pepX
which implies that X C vX, i.e., X is pseudocompact. On the other hand, since for every A € A, we
have G(Pﬁ) = {p}, using the same proposition, we conclude that Zd(X) = UpeﬁX MP. Thus, each non-unit of
C(X) is zero-divisor and this means that X is almost p-space.

Conversely, let X be pseudocompact almost P-space. Since X is an almost P-space, Zd(X) = U,epx M?

and by pseudocompactness of X we conclude that X = vX. Now, by Theorem 5.10, S;,'C is connected for
S=CX\ZdX). O
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