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Abstract. We extend Lambert and zeta summability methods to space of fuzzy numbers and prove Taube-
rian theorems for Lambert and zeta summability methods of fuzzy numbers, the one for zeta summability
method providing a new proof when the sequence is of real numbers.

1. Introduction

Lambert summability method and Dirichlet series
∑

akk−s, in particular the Riemann zeta function
ζ(s) =

∑
k−s, have significant place in the advancement of Tauberian theory due to the applications to

analytic number theory. Realizing the close relation with the asymptotic distribution of primes, authors
used them as an analytic tool to handle problems in analytic theory of primes. Historically, Hardy and
Littlewood[1] proved a Tauberian theorem for Lambert summability method by use of results from number
theory and showed that their Tauberian theorem is equivalent to prime number theorem(PNT) which
describes the asymptotic density of primes. In the sequel, Wiener[2] made an autonomous proof for
Lambert Tauberian theorem by means of his general theory of Tauberians. His proof was independent from
number theory and exploited only the property of Riemann zeta function that ζ(x + iy) does not vanish on
the line x = 1, and in this way Wiener also gave a new proof of PNT. Besides Ikehara[3] proved a Tauberian
theorem known as Wiener-Ikehara theorem for Dirichlet series, which provides another proof for PNT with
use of non-vanishing property of Riemann zeta function. Following the early applications to PNT above,
many studies have been done dealing with Lambert series and Dirichlet series in number theory and in other
branches of mathematics[4–12]. Furthermore, motivated by wide-range usage of zeta and related functions
authors have recently introduced new families of generalized Riemann zeta functions and investigated
corresponding properties. They have given series-integral representations and expansion formulas for
generalized Riemann zeta functions and discussed potential applications of generalized Riemann zeta
functions in different fields of mathematics. For some of these results and applications we refer to[13–17].

Since its introduction, fuzzy set theory has fascinated many researchers from different branches of
science and engineering and become a powerful tool for modeling problems involving uncertainty and
vagueness. In mathematics, many concepts in classical analysis have been extended to fuzzy analysis. Of
these concepts, the concept of convergence of sequences and series of fuzzy numbers is also of interest
recently. Authors have examined convergence characters of sequences of fuzzy numbers from various
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aspects and come up with different types of convergence. Besides, they have used summability methods
to recover the sequences of fuzzy numbers which fails to converge in the space of fuzzy numbers and
given various Tauberian conditions under which summability of a sequence of fuzzy numbers by a certain
method implies its convergence(see [18–27]). In this paper, we extend Lambert summability method
and zeta summability method, also known as Dirichlet density, to fuzzy analysis and mainly prove two
Tauberian theorems for these methods. The one for zeta summability method provides a new proof under
weaker conditions when the sequence is of real numbers. Corollaries concerning summability of series of
fuzzy numbers have also been obtained.

2. Preliminaries

A fuzzy number is a fuzzy set on the real axis, i.e. u is normal, fuzzy convex, upper semi-continuous and
supp u = {t ∈ R : u(t) > 0} is compact [28]. E1 denotes the space of fuzzy numbers. α-level set [u]α is defined
by

[u]α :=

 {t ∈ R : u(t) ≥ α} , i f 0 < α ≤ 1,

{t ∈ R : u(t) > α} , i f α = 0.

r ∈ Rmay be seen as a fuzzy number r defined by

r(t) :=
{

1 , i f t = r,
0 , i f t , r.

Let u, v ∈ E1 and k ∈ R. The addition and scalar multiplication are defined by

[u + v]α = [u]α + [v]α = [u−α + v−α ,u
+
α + v+

α ] , [ku]α = k[u]α

where [u]α = [u−α ,u+
α ], for all α ∈ [0, 1].

Fuzzy number 0 is identity element in (E1,+) and none of u , r has inverse in (E1,+). For any k1, k2 ∈ R
with k1k2 ≥ 0, distribution property (k1 + k2)u = k1u + k2u holds but for general k1, k2 ∈ R it fails to hold. On
the other hand properties k(u + v) = ku + kv and k1(k2u) = (k1k2)u holds for any k, k1, k2 ∈ R[29]. It should be
noted that E1 with addition and scalar multiplication defined above is not a linear space over R.

The metric D on E1 is defined as

D(u, v) := sup
α∈[0,1]

max{|u−α − v−α |, |u
+
α − v+

α |},

and it has the following properties[29]

D(ku, kv) = |k|D(u, v) , D(u + v,w + z) ≤ D(u,w) + D(v, z)

where u, v,w, z ∈ E1 and k ∈ R.

Definition 2.1. [30] Let (uk) be a sequence of fuzzy numbers. Denote sn =
∑n

k=0 uk for all n ∈N, if the sequence (sn)
converges to a fuzzy number u then we say that the series

∑
uk of fuzzy numbers converges to u and write

∑
uk = u

which implies that
n∑

k=0

u−k (α)→ u−(α) and
n∑

k=0

u+
k (α)→ u+(α) (n→∞)

uniformly in α ∈ [0, 1]. Conversely, for the sequence (uk) of fuzzy numbers if
∑

k u−k (α) = β(α) and
∑

k u+
k (α) = γ(α)

converge uniformly in α, then {(β(α), γ(α)) : α ∈ [0, 1]} defines a fuzzy number u represented by [u]α = [β(α), γ(α)]
and

∑
uk = u.

Besides, we say that the series
∑

uk is bounded if the sequence (sn) is bounded. The set of bounded series of
fuzzy numbers is denoted by bs(F) and the set of bounded sequences of fuzzy numbers is denoted by `∞(F).

Theorem 2.2. [31] If
∑

uk and
∑

vk converge, then D (
∑

uk,
∑

vk) ≤
∑

D(uk, vk).

Theorem 2.3. [31] If
∑

D(uk, 0̄) < ∞, then the series
∑

uk is convergent.
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3. Lambert summability of series of fuzzy numbers

Definition 3.1. A series
∑

uk of fuzzy numbers is said to be Lambert summable to fuzzy number ν if the series∑
∞

k=1
kxkuk
1−xk converges for all x ∈ [0, 1) and

lim
x→1−

(1 − x)
∞∑

k=1

kxkuk

1 − xk
= ν.

Theorem 3.2. If series
∑

uk of fuzzy numbers converges to ν ∈ E1, then
∑

uk is Lambert summable to ν.

Proof. Suppose that series
∑

uk is convergent to ν. Then we have uk → 0̄, which implies the existence of an
M > 0 such that D(uk, 0̄) < M for all k. Since

∞∑
k=1

D
(

kxkuk

1 − xk
, 0̄

)
=

∞∑
k=1

kxk

1 − xk
D(uk, 0̄) ≤M

∞∑
k=1

kxk

1 − xk
< ∞, (0 ≤ x < 1) (1)

series
∑
∞

k=1
kxkuk
1−xk of fuzzy numbers is convergent whenever x ∈ [0, 1) by Theorem 2.3. Our aim is to prove

that limx→1− (1 − x)
∑
∞

k=1
kxkuk
1−xk = ν. It is sufficient to show that

lim
x→1−

∞∑
k=1

kxkuk∑k−1
r=0 xr

= ν.

Let define the sequence of continuous fuzzy-number-valued functions (Sn(x)) with Sn : [0, 1]→ E1 such that
Sn(x) =

∑n
k=1

kxkuk∑k−1
r=0 xr ·By a similar argument that in the expression in (1) and by the fact that

∑
un = ν , sequence

(Sn) converges for x ∈ [0, 1] and thus there exists a fuzzy-number-valued function S(x) =
∑
∞

k=1
kxkuk∑k−1

r=0 xr such that
Sn(x)→ S(x) pointwise on [0, 1]. In view of Theorem 3.3 and Theorem 3.5 in [32], function S(x) is continuous
on [0,1] if and only if sequences ([Sn(x)]∓(α)) uniformly converge to ([S(x)]∓(α)) on [0, 1] × [0, 1]. Then we

investigate the uniform convergence of the series
∑
∞

k=1
kxku∓k (α)∑k−1

r=0 xr on [0, 1] × [0, 1] by applying Abel’s uniform

convergence test with fk(x, α) = u∓k (α) and 1k(x, α) = kxk∑k−1
r=0 xr · Series

∑
fk =

∑
u∓k (α) converge uniformly on

[0, 1] × [0, 1] by the convergence of series
∑

uk of fuzzy numbers in view of Definition 2.1. Besides for all
(x, α) ∈ [0, 1] × [0, 1] condition 0 < 1k(x, α) ≤ 1 holds and (1k) is monotone decreasing since

1k − 1k+1 =
kxk∑k−1
r=0 xr

−
(k + 1)xk+1∑k

r=0 xr
= xk

 1
1
k
∑k−1

r=0 xr
−

x
1

k+1

∑k
r=0 xr


=

k(k + 1)xk(∑k−1
r=0 xr

) (∑k
r=0 xr

)  1
k + 1

k∑
r=0

xr
−

1
k

k−1∑
r=0

xr+1


=

k(k + 1)xk(∑k−1
r=0 xr

) (∑k
r=0 xr

)  1
k + 1

−
1

k(k + 1)

k∑
r=1

xr


=

kxk(∑k−1
r=0 xr

) (∑k
r=0 xr

) 1 −
1
k

k∑
r=1

xr

︸           ︷︷           ︸
≥0

≥ 0.

So by Abel’s uniform convergence test series
∑
∞

k=1
kxku∓k (α)∑k−1

r=0 xr converge uniformly on [0, 1]× [0, 1] which implies

that sequences ([Sn(x)]∓(α)) uniformly converge to ([S(x)]∓(α)) on [0, 1]× [0, 1]. Then, fuzzy-number-valued
function S(x) is continuous on [0, 1] and we have limx→1− S(x) = S(1) = ν, which completes the proof.
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A Lambert summable series is not necessarily convergent which can be seen by series
∑

uk of fuzzy numbers
whose general term uk is defined by

uk(t) =


k4(t − (−1)k), (−1)k

≤ t ≤ (−1)k + k−4

1, (−1)k + k−4
≤ t ≤ (−1)k + k−2

k2
(
(−1)k

− t
)

+ 2, (−1)k + k−2
≤ t ≤ (−1)k + 2k−2

0, (otherwise).

Series
∑
∞

k=1 uk of fuzzy numbers is Lambert summable to fuzzy number

ν(t) =


90(t−1/2)

π4 , 1/2 ≤ t ≤ 1/2 + π4

90

1, 1/2 + π4

90 ≤ t ≤ 1/2 + π2

6
6((1/2)−t)

π2 + 2, 1/2 + π2

6 ≤ t ≤ 1/2 + π2

3

0, (otherwise),

but it is not convergent.

Theorem 3.3. If series
∑

uk is Lambert summable to fuzzy number ν and kD(uk, 0̄) = o(1) then
∑

uk = ν.

Proof. Suppose that series
∑

uk is Lambert summable to ν. Since
∑

uk is Lambert summable, series
∑ kxkuk

1−xk

exists in E1 for x ∈ [0, 1) and limx→1− (1 − x)
∑ kxkuk

1−xk = ν. So we obtain

D

 n∑
k=1

uk, ν

 ≤ D

 n∑
k=1

uk, (1 − x)
∞∑

k=1

kxkuk

1 − xk

 + D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν


≤ D

 n∑
k=1

uk, (1 − x)
n∑

k=1

kxkuk

1 − xk

 + D

(1 − x)
∞∑

k=n+1

kxkuk

1 − xk
, 0̄

 + D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν


≤ (1 − x)

n∑
k=1

D(uk, 0̄)

∣∣∣∣∣∣ 1
1 − x

−
kxk

1 − xk

∣∣∣∣∣∣ + (1 − x)
∞∑

k=n+1

kD(uk, 0̄)
xk

1 − xk
+ D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν

 .
≤ (1 − x)

n∑
k=1

kD(uk, 0̄) +

∞∑
k=n+1

kD(uk, 0̄)
{

xk

1 − xk
−

xk+1

1 − xk

}
+ D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν

 .
By the assumption kD(uk, 0̄) = o(1), for given ε > 0 we have an n1 ∈ N such that kD(uk, 0̄) < ε/4 for k > n1
and an M > 0 such that kD(uk, 0̄) < M for all k. Then we get

D

 n∑
k=1

uk, ν

 ≤ (1 − x)
n1∑

k=1

kD(uk, 0̄) + (1 − x)
n∑

k=n1+1

kD(uk, 0̄)

+

∞∑
k=n+1

kD(uk, 0̄)
{

xk

1 − xk
−

xk+1

1 − xk+1

}
+ D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν


< (1 − x)n1M +

ε
4

(1 − x)(n − n1) +
ε
4

xn+1

(1 − xn+1)
+ D

(1 − x)
∞∑

k=1

kxkuk

1 − xk
, ν

 .
Taking x = 1 − 1/n, it gives

D

 n∑
k=1

uk, ν

 ≤
n0M

n
+
ε
4

(n − n0)
n

+
ε
4

(1 − 1/n)n+1

(1 − (1 − 1/n)n+1)
+ D

1
n

∞∑
k=1

k(1 − 1/n)kuk

1 − (1 − 1/n)k
, ν


<

ε
2

+
n0M

n
+ D

1
n

∞∑
k=1

k(1 − 1/n)kuk

1 − (1 − 1/n)k
, ν

 .
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In view of the facts that n0M
n → 0 ∧ D

(
1
n
∑
∞

k=1
k(1−1/n)kuk
1−(1−1/n)k , ν

)
→ 0,

• there exists n2 ∈N such that n0M
n < ε

4 whenever n > n2,

• there exists n3 ∈N such that D
(

1
n
∑
∞

k=1
k(1−1/n)kuk
1−(1−1/n)k , ν

)
< ε/4 whenever n > n3.

So we conclude that D(
∑n

k=1 uk, ν) < ε whenever n > max{n1,n2,n3}, which completes the proof.

Corollary 3.4. If series
∑

uk of fuzzy numbers is Lambert summable to fuzzy number ν and kD(uk, 0̄) = O(1), then
(uk) ∈ bs(F).

4. Zeta Summability of Sequences of Fuzzy Numbers

Definition 4.1. A sequence (uk) of fuzzy numbers is said to be zeta summable to a fuzzy number µ if series
∑
∞

k=1
uk
ks

of fuzzy numbers converges for all s > 1 and

lim
s→1+

1
ζ(s)

∞∑
k=1

uk

ks = µ.

Remark 4.2. It should be noted that a sequence (uk) of fuzzy numbers is zeta summable to µ iff

lim
s→1+

(s − 1)
∞∑

k=1

uk

ks = µ

in view of the fact that lims→1+ ζ(s)(s − 1) = 1.

Theorem 4.3. If sequence (uk) of fuzzy numbers converges to a fuzzy number µ, then (uk) is zeta summable to µ.

Proof. Suppose that uk → µ. Then (uk) is bounded, which implies the existence of an M > 0 such that
D(uk, 0̄) ≤M for all k. So, for s > 1 we obtain

∞∑
k=1

D
(uk

ks , 0̄
)

=

∞∑
k=1

D(uk, 0̄)
ks ≤M

∞∑
k=1

1
ks < ∞

and series
∑
∞

k=1
uk
ks converges for s > 1 by Theorem 2.3. Besides, given ε > 0 there exists n0 = n0(ε) such that

D(uk, µ) < ε
2 for k > n0. By properties of metric D and by Theorem 2.2 we get

D

 1
ζ(s)

∞∑
k=1

uk

ks , µ

 = D

 1
ζ(s)

∞∑
k=1

uk

ks ,
1
ζ(s)

∞∑
k=1

µ

ks


≤

1
ζ(s)

∞∑
k=1

D(uk, µ)
ks

=
1
ζ(s)

n0∑
k=1

D(uk, µ)
ks +

1
ζ(s)

∞∑
k=n0+1

D(uk, µ)
ks

<
1
ζ(s)

n0∑
k=1

D(uk, µ)
ks +

ε
2
·

Since lim
s→1+

1
ζ(s)

∑n0
k=1

D(uk,µ)
ks = 0, we have a δ > 0 such that 1

ζ(s)

∑n0
k=1

D(uk ,µ)
ks < ε

2 whenever s ∈ (1, 1 + δ). So we

have

D

 1
ζ(s)

∞∑
k=1

uk

ks , µ

 < ε
whenever s ∈ (1, 1 + δ) and the proof is completed.
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A zeta summable sequence is not necessarily convergent which can be seen by sequence (uk) of fuzzy
numbers defined by

uk(t) =


t + (−1)k, (−1)k−1

≤ t ≤ (−1)k−1 + 1
−t + (−1)k−1 + 2, (−1)k−1 + 1 ≤ t ≤ (−1)k−1 + 2
0, (otherwise).

Sequence (uk) of fuzzy numbers is zeta summable to fuzzy number

µ(t) =


t, 0 ≤ t ≤ 1
2 − t, 1 ≤ t ≤ 2
0, (otherwise),

but it is not convergent.
We now give a Tauberian condition for zeta summability method of sequences of fuzzy numbers. In

real case, this condition is obtained by means of the equivalence theorem of zeta summability method
and logarithmic summability method proved by Persi Diaconis[5, Theorem 1] on bounded sequences. We
obtain the Tauberian condition for zeta summability method of sequences of fuzzy numbers directly and
use no further condition on the sequence, thus providing also an alternative proof with weakened condition
in the special case that sequence is of real numbers.

Theorem 4.4. If sequence (uk) of fuzzy numbers is zeta summable to a fuzzy number µ and (k ln k)D(uk−1,uk) = o(1),
then (uk) converges to µ.

Proof. Suppose that (un) is zeta summable toµ and (n ln n)D(un−1,un) = o(1). Since D(un−1,un) = o(1/(n ln n)),
we have D(uk,un) = o(1)| ln(ln n) − ln(ln k)|. Then we conclude

D(un, µ) ≤ D

un,
1
ζ(s)

∞∑
k=1

uk

ks

 + D

 1
ζ(s)

∞∑
k=1

uk

ks , µ


≤

1
ζ(s)

∞∑
k=1

D (un,uk)
ks + D

 1
ζ(s)

∞∑
k=1

uk

ks , µ


≤ (s − 1)

5∑
k=1

D (un,uk)
ks + (s − 1)

∞∑
k=6

D (un,uk)
ks + D

 1
ζ(s)

∞∑
k=1

uk

ks , µ

 (
taking s = 1 +

1
ln n

)
= o(1)

1
ln n

 ∞∑
k=6

| ln(ln n) − ln(ln k)|
k(1+1/ ln n)

 +
1

ln n

5∑
k=1

D (un,uk)
k(1+1/ ln n)

+ D

 1
ζ(1 + 1

ln n )

∞∑
k=1

uk

k(1+1/ ln n)
, µ

︸                                                              ︷︷                                                              ︸
=o(1) as n→∞.

= o(1)
1

ln n

ln(ln n)
n∑

k=6

1
k(1+1/ ln n)

−

n∑
k=6

ln(ln k)
k(1+1/ ln n)

+

∞∑
k=n+1

ln(ln k)
k(1+1/ ln n)

− ln(ln n)
∞∑

k=n+1

1
k(1+1/ ln n)


= o(1)

1
ln n

{
ln(ln n)

(
1

6(1+1/ ln n)
+

∫ n

6

dx
x(1+1/ ln n)

)
−

∫ n

6

ln(ln x)
x(1+1/ ln n)

dx

+
ln(ln(n + 1))

(n + 1)(1+1/ ln n)
+

∫
∞

n+1

ln(ln x)
x(1+1/ ln n)

dx − ln(ln n)
∫
∞

n+1

dx
x(1+1/ ln n)

}
= o(1)

{
ln(ln n)

(ln n)6(1+1/ ln n)
+

ln(ln n)
6(1/ ln n)

−
ln(ln n)

e
+

ln(ln n)
e

+ Ei
(
−

ln 6
ln n

)
− Ei(−1) −

ln(ln 6)
6(1/ ln n)

+
ln(ln(n + 1))

(ln n)(n + 1)(1+1/ ln n)
+

ln(ln(n + 1))
(n + 1)(1/ ln n)

− Ei
(
−

ln(n + 1)
ln n

)
−

ln(ln n)
(n + 1)(1/ ln n)

}
= o(1) as n→∞,
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which completes the proof.

Theorem 4.5. If sequence (uk) of fuzzy numbers is zeta summable to a fuzzy numberµ and (k ln k)D(uk−1,uk) = O(1),
then (uk) ∈ `∞(F).

Proof. Suppose that sequence (un) of fuzzy numbers is zeta summable to µ and (n ln n)D(un−1,un) = O(1).
Then, as in the proof of Theorem 4.4, we get

D(un, 0̄) ≤ D

un,
1
ζ(s)

∞∑
k=1

uk

ks

 + D

 1
ζ(s)

∞∑
k=1

uk

ks , µ

 + D(µ, 0̄)

=
O(1)
ln n

 ∞∑
k=6

| ln(ln n) − ln(ln k)|
k(1+1/ ln n)

︸                                  ︷︷                                  ︸
=O(1)

+
1

ln n

5∑
k=1

D (un,uk)
k(1+1/ ln n)

+D

 1
ζ(1 + 1

ln n )

∞∑
k=1

uk

k(1+1/ ln n)
, µ

+D(µ, 0̄)︸                                                                         ︷︷                                                                         ︸
=o(1)

= O(1) as n→∞

and the proof is completed.

Definition 4.6. A series
∑

uk of fuzzy numbers is said to be zeta summable to fuzzy number ν if the sequence of
partial sums of the series

∑
uk is zeta summable to ν.

Corollary 4.7. If series
∑

uk of fuzzy numbers converges to fuzzy number ν, then it is zeta summable to ν.

Corollary 4.8. If series
∑

uk of fuzzy numbers is zeta summable to fuzzy number ν and (k ln k)D(uk, 0̄) = o(1), then∑
uk = ν.

Corollary 4.9. If series
∑

uk of fuzzy numbers is zeta summable to fuzzy number ν and (k ln k)D(uk, 0̄) = O(1), then
(uk) ∈ bs(F).
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