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The Global Dynamics of Stochastic Holling Type II Predator-Prey
Models with Non Constant Mortality Rate

Xinhong Zhang?

College of Science, China University of Petroleum (East China), Qingdao 266555, PR China

Abstract. In this paper we study the global dynamics of stochastic predator-prey models with non constant
mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction
and persistence in the mean of autonomous stochastic model and obtain a critical value between them.
Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic
solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate
the results developed.

1. Introduction

In the ecological sciences, dynamic of predator-prey system is one of the dominant themes in both
ecology and mathematical ecology due to its universal existence and importance [1]. In [2], Cavani and
Farkas introduced the following predator-prey model

{ N(l’) = eN(f) (1 - %) _ aP®N()

B+N() 7 1)

P(t) = P() (-M(P()) + Fixgs)

where N(t) and P(t) are the quantities of prey and predator, respectively. From [2] it follows that ¢ is specific
growth rate of prey in the absence of predation and without environment limitation; K is the carrying
capacity of the prey in the absence of predators; the functional response of the predator is of Holling type II;
a, B and b are satiation coefficients or conversion rates; and function M(P) is the mortality rate of predators
in the absence of prey. If M(P) = n, model (1) is exactly the classic predator-prey model with Holling type-II
response. Here the mortality rate of predators

y+0P y—0

5P T T
is non constant and depends on the quantity of predator, y is the mortality at low density, and 6 is the
maximal mortality with the natural assumptiony < 6. All the parameters are assumed to be positive. Many
results on this model and its deformations have been reported, see [3-5].

M(P) =

0<y<o
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However, in the real life situations, population systems are always affected by environmental noise, and
stochastic population systems have been studied by many authors [6-14]. Up to now, few papers have
considered Holling type II predator-prey model with non constant mortality rate in random environments,
namely

B+N(E)

OP
dP(t) = P(t) (- 53 + mangy ) dt + 02P(HdBs (1),

{ dN(t) = (eN(®) (1 - 52) - 55 ) dt + 01N()dBi (8), o

where Bi(t), By(t) are mutually independent Brownian motions defined on a complete probability space
(Q, F,{Ftl=0, P) with a o—field filtration {F¢}:>o satisfying the usual conditions, and positive constants O%,
05 are their intensities. In this paper, we aim to study persistence and extinction of stochastic model (2),
and analyze the effect of environmental noise on the dynamics of the system (2).

On the other hand, due to the seasonal variation, food supplies and harvesting and so on, ecological
environments change significantly through the year. So it is reasonable and important to consider the
non-autonomous population systems. In particular, many authors addressed the effect of periodic fluctu-
ations because, as mentioned by Vance and Coddington [15], “periodic time variation holds considerable
promise as a means to explore time-varying ecological processes”[16]. Recently, according to the theory
of Has'minskii [17], progress has been made in stochastic population systems with periodic parameters.
For example, papers [18-20] obtained the existence of periodic solutions to stochastic non-autonomous
population systems. Motivated by above analysis, in this paper, we also consider the following stochastic
periodic system

(H+N(t)

O(t) P!
dP(t) = P(t) (-””1*;152) O 4 ﬁ‘;gm) )dt + o2(t)P(t)dBy(H),

3)

{ dN() = (eON®) (1 - 13) - “Rrexor) df + o(ON(dBi (2),

where &(t), K(t), a(t), B(t), y(t), 6(t), b(t) and of(t) are all positive continuous 6-periodic functions, i = 1, 2.
We also assume that y(t) < 6(f) holds for all f > 0. The existence of periodic solution to stochastic model (3)
will be discussed.

The remainder of the paper is organized as follows. In Section 2, we mainly prove the existence and
uniqueness of the global positive solution to model (2). In Section 3, we investigate persistence in the
mean and extinction of model (2) and furthermore, we try to obtain the critical value between them. The
existence of nontrivial positive periodic solution to non-autonomous model (3) is obtained in Section 4 and
the existence of ergodic stationary distribution of autonomous model (2) is also deduced. Finally, numerical
simulations illustrate our theoretical results in Section 5.

2. Existence and Uniqueness of the Global Positive Solution

For simplicity, we introduce the following notations.
R2 :={x=(x;,x0) € R?:x;>0,i =1,2}.

¢
(=1 J flo)ds.

If £(t) is a continuous bounded function, define f' = infie[g o) f(#), f* = SUP;0,00) f (B)-
The following theorem is fundamental in this paper.

Theorem 2.1. For any initial value (N(0), P(0)) € R2, there is a unique positive solution (N(t), P(t)) of system (2)
ont > 0, and the solution will remain in R with probability 1.

Proof. Obviously, the coefficients of model (2) are locally Lipschitz continuous, so there is a unique local
solution (N(t), P(t)) on t € [0, p) for any given initial value (N(0), P(0)) € R?, where p is the explosion time.
If p = o0 a.s., then this local solution is global. Let kg be sufficiently large for every component of (N(0), P(0))
lying within the interval [1/ko, ko]. For each integer k > ko, define the stopping time

7 = inf{t € [0, p)IN(t) ¢ (1/k, k)or P(t) ¢ (1/k, k)},
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where throughout this paper we set inf () = co. Clearly, 7y is increasing as k — oo0. Set 7o = limy_,o Tx, Which
implies 7o, < p a.s. If we show that 7, = 0 a.s., then p = o a.s. This means that (N(t), P(t)) € R? a.s. for all
t > 0. If 7 < o0 a.s., then there is a pair of constants T > 0 and € € (0, 1) such that

Pt < T} >€

Hence there is an integer ki > ko such that

P{ty < T} = e for all k > k. 4)
Define a C3-function V : R2 — R, as follows:
4b Bo  BO  4DN\ 2a g6 B6 .  2aP
V(N,P) = ﬂé(N o —1 ﬁé) ﬁ_é(P 5 —l ﬁé
Applying Itd’s formula we have
4boq po 25102 po
dV(N,P) = LV(N,P)dt + 5 (N )dBl(t) B % dBs(t),
in which
_4b( B ¢ aP '\ o7
2a P [3_6 5 y-0 6 bN _%
ﬁ(S 2a T+DP B+N) 2
_ e, 4be _4ab PN P 0]
BOK S Bo B+ N T B+N 2
2 6 o— o2
—2—aP a( 7/) P +2ab PN Y bN Lo 2
B By 1+P BSP+N 1+P B+N 2
4be 2, 4be ¢ 2ab PN
=TpK T (ﬁ_5+_)N_ﬁ_5ﬁ+N
2a o] L
+ 2P p e Lo+ 2422
BB 2 2 p
4be ., (4be € U% 0%
__ﬁé_I<N (ﬁ—6+E)N—€+7+6+?+—
<M,
where M is a positive constant. We therefore obtain
EV(N(tx A T), P(te A T)) < V(N(0), P(0)) + ME(tx A T) < V(N(0), P(0)) + MT. )

Set O = {1 < T} for k > k; and by (4), P(()x) > €. Note that for every w € (), there is at least one of

N(tx, w), P(1x, w) equals either k or 1/k, therefore

VN(zy, @), Py, @) > (k ( B Boy 4—bk)/\ %(k_ oy,

4 85 )" po
(1 P56 BS.  4b\ 2
e 5 - e 5

255

k40 4b 8 pok

g5 P Zak)

885
Bd /36 2a )

2a 8 sk
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It then follows from (5) that
V(N(0), P(0)) + MT >E (I, V(N(tk, @), P(ty, w)))
>{4b( Bo ﬁél 4bk)/\2a(k Bd  Bo 2ak)

“\po\" "4 "85 | ps\" 20 20 Bps
4b Bo PO 4b\ 2a(1 BO ﬁé 2a
k-5 - o) i

kK~ 4b 4b 8 ok
Letting k — oo leads to the contradiction
oo > V(N(0), P(0)) + MT = oo,

20 2098 55k

so we must have 7o, = o0 a.s. The proof is complete. [J

3. Discussion on the Persistence and Extinction

In this section, we investigate the persistence and extinction of autonomous stochastic predator-prey
model (2) under certain conditions. Furthermore, by using the ergodic property of stochastic Logistic
model, we try to give the critical value which determines the extinction and persistence of model (2). To
this end, we quote some concepts and lemmas.

Definition 3.1. [9]

(1) If limie P(t) = 0 a.s., then model (2) is said to be extinctive almost surely.
(2) If liminf;,o(P); > 0 a.s.,then model (2) is said to be persistent in the mean.

Lemma 3.2. [9] Suppose that Z(t) € C(Q X [0, ), R,).

(I) If there are two positive constants T and 9y such that
t n
InZ(#) < 6t — 8o f Z(s)ds + Z a;B(t) as.
0 i=1

for all t > T, where a;, 6 are constants, then

limsup,_, (Z); < 6 as., if6>0;
lim;0 Z(t) = 0a.s., if 6 <O0.

(IT) If there exist three positive constants T, 6, 0g such that
t n
InZ(t) > ot — 6 f Z(s)ds + Z a;B(t) as.
0 i=1

for all t > T, then lim inf;,co(Z); > 3 2 > 4.5..
Lemma 3.3. [10] Consider the followmg one—dimensional stochastic Logistic model

dX(t) = eX() (1 - %) dt + o1 X(H)dBi(t), (6)

with X(0) = N(0). If £ — 07/2 > 0, model (6) has a unique ergodic stationary distribution v(-) with stationary

262

density p(x) = Cx T ¢ 1, where C = (2/6%)@)/% /T((2 - 6%)/02), and

t
P{grg% | rexepas= | +f(x)u(x)dx}:1,

where f is a function integrable with respect to the measure v.
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Remark 3.4. From stochastic comparison theory it follows that N(t) < X(t) a.s. and

1P bXG) (T
it ﬁ+X(S)ds_fo 5

Lemma 3.5. Let X(t) be the solution of stochastic Logistic model (6) with initial value X(0) = N(0) and & — af/Z > 0.

bx
- xy(x)dx, a.s. (7)

Denote Y(t) = = then the following properties hold:

B+X(1)”
_a
liminf(Y), > —-, as. ®)
&+ i
and
,_a
limsup(Y); < = 2 as 9)
t—o0 & — 1 + E
2 TK

Proof. An application of Itd’s formula yields

(B (i X\__B paX
dY() = ((5+—X)25X (1 K) TS G%XZ) at+ o B

- (gm -Y)- %gyz —-02Y?(1 - Y)) dt + o1 Y(1 = Y)dBy(b),

and

( e 2 o] 2]
dlog Y(t) =|e(1 = V) = ¥ = a2¥(1 - ) - 21 - V2 |dt + 011 - V)dBi (1)
(10)

o pe o 2
=le- S - (e+ B )y + S |dt + i1 - VB

Since Y(t) = X(t)/(B + X(t)), s0 0 < Y(t) < 1. On the one hand, from (10) it follows that
log Y(#) — log Y(0) a2 ( ﬁe) M(t)
2e———|e+

t I S A

where M(t) = fot 01(1 = Y(s))dBi(s) is a real-valued continuous local martingale and (M, M); = fot a%(l -

Y(s))?ds < G%t. By strong law of large numbers [21], we have lim;_,« A@ = 0 a.s.. Applying (II) in Lemma
3.2, one can derive that the assertion (8) holds.
On the other hand, from Y? < Y and (10) it follows that

G% G% Be
dlogY(t) <|e = = —|e = = + = |Y|dt + 01(1 = Y)dBy(t),
2 2 K
which implies that

log Y()) ~log Y(0) _ 9} _ (g %, ﬁ—f]mt + 20
= 2 K

t 2 t

Applying (I) in Lemma 3.2 we obtain

& —

NN

limsup(Y); <

t—o0 & —

NS
+
~®

This completes the proof. [
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Theorem 3.6. Assume that ¢ — G%/Z > 0. Let (N(t), P(t)) be a positive solution of model (2) with initial value
(N(0), P(0)) € R2.

o2
,  ble—2
(i) If Ay ==y — % + ( - ) < 0, then the predator populations go to extinction a.s..

(ii) If Ay == —y — o_2§ + o > 0, then system (2) will be persistent in the mean.

Proof. (i). An application of It6’s formula to the second equation of (2) shows that
_( v+OP(t)  BN() 03
dlogp(t)‘( 1+P()  B+N(G) 2

(9 (0=pP®)  bN@
- 2 1+P(H)  B+N(@

) dt + 0,dBs(t)
(11)

) dt + g,dBy(1).

Integrating above inequality from 0 to t and dividing t on both sides, we get

log P(t) — log P(0) a5 1 (" bN(s) My(t)
f STVT oty Oﬁ+N(s)dSJr t
2 t
o 1 bX(s) My (1)
STV ) Bex@®Et T

where M;(t) = j(;t 0;dBi(t) ,i = 1,2 are real-valued continuous local martingales. By strong law of large

numbers [21], we have lim;_, w =0a.s., i =1,2. From (9) it follows that
2
log P(t o2 e—2
lim sup g()s— -2 2
t—oo t 2 - O‘% .BS
& — 5 + e

Obviously, the predator populations P(t) tends to zero a.s. when A; < 0.
(ii). Applying It6’s formula to the first equation of (2) and (6) respectively, we have

logN() —logN(0) o7 1 (¢ 1 (" aP(s) Mi()
t _5_?_?[)?]\](5)‘13 t Oﬁ+N(s)dS+ t
and
log X(t) — log X(0 2 t
X0 ogX0) 1 ' ygqs 4 M)
t 2ty K t
These imply that
logN(t) —log X(t) 1 (T e 1 (" aP(s)
0= t ‘_?fo gINE) = X(©)ds = 7 o B+NE

> = N = X0 = 5P,

that is to say,

(X =Ny < §<P>f. (12)
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From (11) we obtain

2
dlog P(t) = (—7/ - % ‘BZNIS()t) - (6117/135;0)& + 02dBs(t)
~ a3 bX() bX(t) bN(t) (© - 7)P(t)
) (‘y C2 X0 (ﬁ +X(0) B+ N(t)) 14RO )dt Fodil) 13
o3 . bX(H)  bB(X() - N(t)
> (‘y "2 T pexe  GexoeNm O (”) A+ 2Bl
> bX b
> (—)/ - % + 5+ }((t()t) — E(X(t) —N()) - (- y)P(t)) dt + 0,dBs(t).

Integrating (13) from O to ¢, combining (12) and (8), one can derive that

log P(t) - log P(0) a3 abK My(t)
; Z—V_E+b<y>t— $+5_V (P +
2 b(s - ﬁ)
05 2 (abK ) My(t)
>y 2ot —Z (= 45—y |(P) + —=
y 2 &+ % Eﬁz y ! t
abK My(t)

:Az—e—(e—ﬁ2+6—y)<P)t+ ;

for sufficiently large t. By virtue of the arbitrariness of € and (II) in Lemma 3.2, we derive that

.. Ao
hg_l);nf(P)t > >0, as.

ep?

That is to say model (2) will be persistent in the mean when A, > 0. The proof is complete. O

Remark 3.7. From [4] it follows that if b—y < 0 or bos K, point (K, 0) of deterministic system (1) is global

b—y
asymptotically stable; while system (1) is uniformly persistent if and only if b —y > 0 and b’% < K. Theorem 3.6
‘ o =3
shows that if \y = —y — % + =+

e—

< 0, the predator populations of stochastic system (2) will be extinctive and

by b L’—ﬁ
as.. If Ay == -y — % + (+:) > 0, then system (2) will be

&rx
persistent in the mean. Obuviously, the conditions which guarantee the persistence and extinction of deterministic
system (1) coincide with those in stochastic system (2) if there is no white noise.

N
A

+

S}
the prey population satisfies lim;_,«(N); = - - i

Remark 3.8. Expressions of A1 and Ay show that A, < Aq. Note that there is a gap between A1 and A,, hence Theorem
3.6 only gives the sufficient conditions for the persistence and extinction of model (2).

From the proof of Theorem 3.6, we observe that A1 = Ay = A 1= —y — % + fom [% p(x)dx if we use (7) to

;;?22) ds. In other words, the following theorem gives the threshold between persistence

in the mean and extinction of model (2).

. . t
estimate lim;_,q, fo

Theorem 3.9. Assume that ¢ — G% /2 > 0. Then, for any initial value (N(0), P(0)) € R2, we have

(i) if A <0, then the predator populations go to extinction a.s.;
(ii) if A > 0, then system (2) will be persistent in the mean.
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4. Existence of Periodic Solution of Non-Autonomous Model

In this section, we mainly give sufficient conditions for the existence of periodic solution to non-
autonomous stochastic model (3) according to the theory of Has'minskii. For the sake of convenience, we
introduce some results concerning the periodic Markov processes in Appendix.

Theorem 4.1. If p := ﬁ(e - Ué>g —(y + 6—22)9 > 0 (i = 1,2), then model (3) admits a nontrivial positive
et =T
O-periodic solution. )

Proof. By similar proof of Theorem 2.1 we obtain that non-autonomous stochastic model (3) has a unique
global positive solution (N(t), P(t)) for any initial value (N(0), P(0)) € IR2. In order to prove Theorem 4.1, it
suffices to find a C?-function V(t, N, P) which is 6-periodic in t and a close set U C R2 such that (27) and
(28) hold.

Define a C2-function

v logN —log(g" + N t)y+ HP W+ Z_LP)SH
W(Og 0g(p" + N)) +w(t) + HP | + —<———

=M(V1(N, P) + w(t) + HP) + V»(N, P),

V(t,N,P) =M|~-logP -

here 9 € (0,1), H and M are positive constants satisfying the following conditions respectively

9
703" <=7, (14)
ut,l
H =) — — % 0,
6-v) e”ﬁl(1+%) >
LS p]2 <ap|HE-yy - —2E (15)
guﬁl ( ﬁu) u‘BI ( ﬁ“)
-AM + '+ g" < -2, (16)

and positive constant A, functions f(x), g(x) and 6-periodic function w(t) € C!(R+;R) will be determined
later. It is obvious that condition (27) is satisfied. Hence we only confirm condition (28) in Lemma 5.4.
Applying Itd” formula, we obtain

Yy +0(OP  bHN a3(t)
1+P ﬁ(t) +N + 2
o) ©-p'P  ¥N
2 "T1+P PN
o1(t) e(t) . _a®P

L(-logN) = — (f)+T K@ ﬁ(t)+N

( e(t) - ()]+ BOyi®p

L(-logP) =

<y(t) +

> | TroN T F
and
u _ ( ) ﬂ(t)PN Oi(t) N?
Llog(F"+N) =5y ( D) ) FINEOIN) 2 GNP

e(N &) N2 B" N e(t) 0NN
P +N KOP+N ()( K@) p*+N K@)
" Y\ N e(t)
(1 K’)ﬁ”+N Ko™

<&
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Therefore we have

a3 (t) b o))  (6-p)P up!
Lnm Py @+ 20— (e(t) w ] L 7
e (1+ %) ep(1+5)
Let
o2 B! o? bl a2(t) a2(b)
W'(H) =~y + 5o+ ——le = 5o + |~ (s(t) - 1—) - (y(t) + 2—)
v oi(t) a3 (t)
=-p+ —l;u[(t) ] ((f) )
e (1 + )
Then w(t) is a O-periodic function. This, together with (17), implies that
©-9P
LR ) < -p+ S+ (18)
Furthermore
©-yrp a“b! &) —yE)P  b(HN
LOAN P+ + P < =p+ =+ o Go) A R T RS
— V)P upl H(S — ) P? u
S—p+(6 Y) N a'b _p- ©=-v) +HIbPN
1+P 81151(14_%) 1+P B+ N
F(P)  HV'PN
1+P B+N’
where
a”b’ aubl
F(P) = [HO - ) - ~|P* - ~+tO=y)"-p|P+p.
epl(1+5) ep(1+5)
2
Note that ( 51(1 ) +(O6-y) - p) —4p (H((S ) - uﬁ,("b’ - )) < 0 when condition (15) holds. This implies
that F(P) > 0 for all P € (0, o). Therefore, define a positive constant A = infpe(g o) %, then one derives
L(Vi(N,P) + w(t) + HP) < -A + I;Ibfﬁl. (19)
Also
LVZ(N/ P)
a \° e(f) a)PN  a _y(t)+6(t)P  a'b(t)PN
:(N+b_ ) ((t)N_%N TBOHIN B 1xP TGO N (20)

9 4\ 2\
E(N+ b—P) (G%(t)Nz + (b_u) ag(t)zﬂ)
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4 \° ! (5 — ) P2 ! Iy
P e”N—S—N2—a—( yYP*  aPN N a'b"PN
K b* 1+P B(t)+N  b*(B(t) + N)

a\° e, d G-y 9 A\ 2\
< — U N _ ‘7 _ —_P 2unNT12 * ZuPZ
<(N+ P) (éN K“N o 1xp |2 N+ o ) 0'N +(b”) 05

1y\Y 1\Y 1 5 1p2
<N+ g—P) s“N—(N+ g—P) %Nz—(N+ ZP) g%
+ g (N + g—P) [of“Nz + (Z—) agusz
1 9 1 1\ 9+1 2+9 1\ 9+1
stguN[NS+(Z_uP) ]_%Nzw_(‘bl_u) © _y)llp P ‘9 2uN1+9+§(Z_u) G%up\9+1
l I 9
SZSEMN1+S +2\9—1€u(b_) NZ UN2+S+ EG%uNl-FS
1 1 S+1 1 9+1 2+9
Slu a 29 dfa 2u 1+S_a_ lP
o a1 S e
=:f(N) + g(P).

Clearly
f(N) = —o00, as N — +oco.

Applying inequalities 0 < 9 < 1 and (14) yields
g(P) — —oo0, as P — +oo.

From (19) and (20), we obtain

Hb'PN

LV(N, P)<M(—A+ N

)+f(N)+9(P),

where M satisfy
-AM+ f" +g" < -2

To confirm condition (28) in Lemma 5.4, we consider the following bounded subset

where ¢4, € € (0,1) are sufficiently small positive constants satisfying the following inequalities

-MA + MHb" &5 + f* + g < -1, (22)
v+ MEY e e g, (23)
Fe

ﬂ] 9+1
-MA+ f*+B-— (b ) <-1, (24)

U
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I
-MA + (MHbV'P + g(P))" + C - !
1

— 2
&1 =&,

< —
Ku 249 = L

5821

(25)

where inequality (22) can be derived from (16), the constants 1, B and C will be determined later. Then

2
Ri\U=UjuU;UU5U U,
with

1
u;:{(N,P)emi|0<p<ez} {(NP)GIR2|O<N<51, e <P<—|,

_ {((N,P)) eR2|P> glz} e =

Case 1. If (N, P) € U, (22) implies that

LV < -MA + MHb"P + f(N) + g(P) < —MA + MHV"&; + f* + g < 1.

Case 2. If (N, P) € US, we obtain that

LV <-MA+ MHY” Zifagt,
e
Choosing &1 = e%, combining (23), we have

Uu

MHb
LV<-MA+ ——&+f'+g" <-1

Case 3. If (N, P) € U5, we have

P2+S

ﬂl 9+1
LVS_MA‘FfM'i‘B—?](b—u)

1+P

{(N,P) e RN > gl}
1

<-MA+f"+B- (

which follows from (24), where 1 and B satisfy S0 505" < (0 - yy —

1
B= sup {MHbP +2° ”(”u) P2 4
Pe(0,00) b

Case 4. If (N, P) € U, we have by (25)

LV < -MA + MHV'P + g(P) + C — N2+S < -MA + (MHbB"P + g(P))" + C — —
where ,
! 1 2+9
_ S NI+ 4 991 a , & N 92u 1+8
C= sup {2 "NV +2 (b”) N iy t30 N

Ne(0,00)

From the above discussion it follows that

LV<-1, (NP eR:\U

)

bu

9+1
a) n
DT
2,52

n and

9 ﬂl 9+1 ot ﬂl 9+1 l P
(bu) 02 P+ _(b_u) ((6_V) _n)l P

Thus, condition (28) is verified. From Lemma 5.4 it follows that stochastic model (3) has a nontrivial positive

periodic solution. The proof is complete. [

Remark 4.2. Theorem 4.1 shows that stochastic periodic model (3) admits a nontrivial positive periodic solution

under condition ( ﬁu ) (e-5 )9 —(y+ 62—§>9 > 0 by using theory of Has'minskii. According to the proof of Theorem

4.1, we can similarly “derive that the autonomous stochastic model (2) has an ergodic stationary distribution when

b o a o2 .
e(1+%) (é - Tl) - (y + ?2) > 0, that 18, /\2 > 0.
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5. Numerical Examples

In this section, we will introduce some numerical simulations to illustrate our main results by using the
method developed in [22].

Example 5.1. In autonomous stochastic model (2), let ¢ = 0.08, K=100,a=1,=2,y=01,06=03,b =09
and the initial value (N(0), P(0)) = (0.9,0.7).
Case 1. Let the environmental noise intensities be 61 = 0, = 0.1. Then ¢ > o% /2 and

A=—-y—-—=—+——7—=07222>0.

From Theorem 3.6 it follows that stochastic model (2) is persistent in the mean. See Fig.1.

Deterministic system Stochastic system

2 2
N(t) N(t)
1.8} P(t) H 1.8} P(t) H
1.6} 1 1.6} 1
1.4} 1 1.4} 1
1.2} 1 1.2} 1
1} 1 1t 1
0.8} 1
0.6 1
0.4
0.2 8
0 1 1 1 1 0 1 1 1 1
0O 100 200 300 400 500 0O 100 200 300 400 500
Time T Time T

Figure 1: The left figure is the solution (N(t), P(f)) of deterministic model (1). The right figure is the solution of autonomous stochastic
model (2) with 07 = 02 = 0.1.
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5 ble-
Case 2. We choose environment noisec, = 0.1,00, = 1.3. Then ¢ > o%/z and Ay = _7/_02_2-'-(02—) =-0.034 < 0.
-3+

Theorem 3.6 implies that the predator populations go to extinction and the prey is persistent in the mean. Fig. 2
confirms this. This also shows that large environmental noise can make population species extinct.

NS

Deterministic system Stochastic system
2 ; ; : : 150 : : ; ;
N(t) N(t)
1.8} P() [ P(t)
16f -
141 1
100}
1.2 1
1 - .
50
0 ' ' ' ' 0 ' ' ' '
0 100 200 300 400 500 0 100 200 300 400 500
Time T Time T

Figure 2: The left figure is the solution (N(¢), P(t)) of deterministic model (1). The right figure is the solution of autonomous stochastic
model (2) with 07 = 0.1 and o2 = 1.3. Hence large environmental noise can make population species extinct.

Example 5.2. In non-autonomous stochastic model (3), let the parameters be (t) = 0.08 + 0.06 sint, K(t) = 100 +
90sint, a(t) = 1+0.5sint, f(t) = 2+0.8sint, y(t) = 0.1+ 0.05sint, 6(t) = 0.3+ 0.1sint and b(t) = 0.9+ 0.6 sin t.
We choose o1(t) = 02(t) = 0.03 + 0.01 sin t, and then

: ol o3
— (e - 3>6 —{y+ ?>e > 0.
eH (1 + ﬁ)

From Theorem 4.1 it follows that model (3) has a positive nontrivial periodic solution. Fig.3 confirms this.
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Deterministic system Stochastic system

2 2
N(t) N(t)
1.8r P 18r PQ) |
16 1 16 1
1.4y . 1.4+ _
1.2¢ 1 12¢ 1

0 1 1 1 0 1 1 1
0 100 200 300 400 0 100 200 300 400
Time T Time T

Figure 3: The right figure is the solution of stochastic model (3) and the left figure is corresponding solution of deterministic system.

Appendix
In this section, we will summarize some facts contained in [17].

Definition 5.3. A stochastic process x(t, w) is said to be periodic with period O if its finite dimensional distributions
are periodic with period 6, i.e., for any positive integer m and any moments of time t1, ..., t,, the joint distributions
of the random variables x(t14x0, @), . .., X(tmsko, @) are independent of k, (k = £1,+2,...).

The transition function of a Markov process, p (v, x(v), t,A) = P (x(t) € A|x(v)), a.s., is called periodic if
p (v, x(v), t + v, A) is periodic in v.
Consider the following periodic stochastic equation

dx(t) = f(t, x(t))dt + g(t, x(t))dB(t), x € R", (26)
where functions f and g are 0-periodic in .

Lemma 5.4. Assume that system (26) admits a unique global solution. Suppose further that there exists a function
V(t,x) € C* in R" which is O-periodic in t, and satisfies the following conditions

inf V(t,x) > c0 as R — oo, (27)
|x|>R

and
LV(t,x) < -1 outside some compact set, (28)

where the operator L is defined by

LV(t,x) = Vit x)+ Vi(t,x)f(t,x) + %trace(gT(t, X) Vi (t, x)g(t, X)).
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Then system (26) has a O-periodic solution.
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