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Abstract. Let G = (V, E) be a simple connected graph. Denote by D(G) the diagonal matrix of its vertex
degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of graph G is L(G) = D(G) − A(G).
Let a(G) and α(G), respectively, be the second smallest Laplacian eigenvalue and the independence number
of graph G. In this paper, we characterize the extremal graph with second minimum value for addition of
algebraic connectivity and independence number among all connected graphs with n ≥ 6 vertices (Actually,
we can determine the p-th minimum value of a(G)+α(G) under certain condition when p is small). Moreover,
we present a lower bound to the addition of algebraic connectivity and radius of connected graphs.

1. Introduction

Let G be a simple connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G), and let G
denote its complement graph. Denote by dG(vi) the degree of vertex vi, and denote by NG(vi) the neighbor
set of the vertex vi, where i = 1, 2, . . . , n. Hereafter, if there is no confusion, we always simply dG(vi) and
NG(vi) as d(vi) and N(vi), respectively. Let N[vi] = N(vi) ∪ {vi} and let |X| be the number of elements in the
set X. Then |N(vi)| = d(vi) and |N[vi]| = d(vi) + 1, where i = 1, 2, . . . , n. If vertices vi and v j are adjacent, we
denote that by viv j ∈ E(G). The adjacency matrix A(G) of G is defined by its entries ai j = 1 if viv j ∈ E(G) and
0 otherwise, and the degree matrix D(G) of G is the diagonal matrix whose entries are the degrees of the
vertices of G. The Laplacian matrix of graph G is L(G) = D(G) − A(G). Let µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0
denote the Laplacian eigenvalues of G. Recently, the Laplacian eigenvalues of graphs attract more and
more attentions [6, 7]. Among all eigenvalues of the Laplacian matrix of a graph G, the most studied is the
second smallest, which is denoted by a(G) hereafter. It is well known that a graph G is connected if and
only if a(G) > 0, and hence Fiedler called a(G) the algebraic connectivity of G [5, 8]. From the definition, it
easily follows that a(G) = µn−1(G).

The independent set S of G is a set of vertices such that any two vertices of S are not adjacent. An
independent set of G is called maximum if G contains no larger independent set. Hereafter, the cardinality

2010 Mathematics Subject Classification. Primary: 05C50; Secondary: 15A18
Keywords. Graph; Laplacian matrix; Algebraic connectivity; Independence number; Radius; Lower bound
Received: 15 October, 2016; Revised: 27, June, 2017, Accepted: 28 June, 2017.
Communicated by Francesco Belardo
Corresponding author: Muhuo Liu
Research supported by NSFC project 11571123, the Training Program for Outstanding Young Teachers in University of Guangdong

Province (No. YQ2015027), and Guangdong Engineering Research Center for Data Science (No. 2017A-KF02), and the National
Research Foundation of the Korean government with grant No. 2017R1D1A1B03028642.

Email addresses: kinkardas2003@gmail.com (Kinkar Ch. Das), liumuhuo@163.com (Muhuo Liu)



K. Ch. Das, M. Liu / Filomat 31:18 (2017), 5545–5551 5546

of a maximum independent set of G is called the independent number of G and denoted by α(G). As usual,
Kn and Kp, q (p + q = n) denote respectively the complete graph and the complete bipartite graph with n
vertices.

In [1, p. 408], it is conjectured that (See Conjecture A. 368 (SO,T)):

Conjecture 1.1. [1] If G is a connected graph with n vertices, then a(G) + α(G) is minimum for the graph composed
of 2 cliques with d n

2 e and b n
2 c vertices, respectively, and linked with a single edge.

One of the present authors proved Conjecture 1.1 [4]. Motivated from these results, we characterize
the extremal graph with second minimum value for addition of algebraic connectivity and independence
number among all connected graphs (Actually, our method is effective to determine the p-th minimum
value of a(G) + α(G) under certain condition when p is small). Moreover, we present a lower bound to the
addition of algebraic connectivity and radius of connected graphs.

2. Lower Bound for Algebraic Connectivity and Independence Number of Connected Graphs

Suppose that X ⊆ V(G) and v ∈ V(G). Then, we use the symbol NX(v) to denote the neighbor set of v,
which is belonged to X. Let F be a semiregular bipartite graph with bipartition {U,W}. Denote by F+ the
supergraph of F with the following property: if uv ∈ E(F+), then either uv ∈ E(F) or u, v ∈ U (respectively
W) with NW(u) = NW(v) (respectively NU(u) = NU(v)). Set

F+ = {F+ : F is a semiregular bipartite graph}.

Kp Kq Kp Kq

rK1

Hp,q G0

Figure 1: Graphs Hp, q and G0.

Lemma 2.1. [3] Let G (� Kn) be a graph on vertex set V(G) = {v1, v2, . . . , vn}. Then

a(G) ≥ min
viv j<E(G)

{
d(vi) + d(v j) + 2 − |N[vi] ∪N[v j]|

}
. (1)

Moreover, if G is connected, then the equality holds in (1) if and only if G ∈ F+.

Let Hp, q (q ≥ p ≥ 1) be a graph of order p + q obtain from Kp and Kq by adding an edge between one
vertex from Kp to any one vertex in Kq (see, Figure 1). That is, Hp, q = Kp, q\{e}, e is any edge in Kp, q, where
q ≥ p ≥ 1.

Lemma 2.2. If n = p + q, q ≥ p + 2 and p ≥ 1, then

a(Hp, q) > a(Hp+1, q−1) > · · · > a
(
Hb n

2 c−1, d n
2 e+1

)
> a

(
Hb n

2 c, d
n
2 e

)
.

Proof. One can easily see that a
(
Hp, q

)
satisfies the following system of equations:

(x − p) x1 = −(p − 1) x2 − x3,

(x − 1) x2 = −x1,

(x − q) x3 = −x1 − (q − 1)x4,

(x − 1) x4 = −x3.
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Thus, a
(
Hp, q

)
satisfies f (x; p, q) = 0, where

f (x; p, q) = x3
− (p + q + 2) x2 + (pq + p + q + 2) x − (p + q).

Similarly, a
(
Hp+1, q−1

)
satisfies f (x; p + 1, q − 1) = 0, where

f (x; p + 1, q − 1) = x3
− (p + q + 2) x2 + (pq + 2q + 1) x − (p + q).

Let t = a
(
Hp, q

)
> 0. Then

t3
− (p + q + 2) t2 + (pq + p + q + 2) t − (p + q) = 0, i.e., t3

− (p + q + 2) t2 = −(pq + p + q + 2) t + (p + q).

Using the above result, we have
f (0; p + 1, q − 1) = −(p + q) < 0

and
f (t; p + 1, q − 1) = t3

− (p + q + 2) t2 + (pq + 2q + 1) t − (p + q) = (q − p − 1) t > 0.

Hence 0 < a
(
Hp+1, q−1

)
< t = a

(
Hp, q

)
. This completes the proof.

Corollary 2.3. If n ≥ 7, then

a
(
Hb n

2 c−1, d n
2 e+1

)
<

18
4n + 9

. (2)

Proof. From the proof of Lemma 2.2, we can conclude that a
(
Hb n

2 c−1, d n
2 e+1

)
satisfies f (x; b n

2 c − 1, d n
2 e + 1) = 0,

where
f
(
x;

⌊n
2

⌋
− 1,

⌈n
2

⌉
+ 1

)
= x3

− (n + 2) x2 +
(⌊n

2

⌋ ⌈n
2

⌉
+ 2

⌊n
2

⌋
+ 1

)
x − n.

Let s =
18

4n + 9
. Since n ≥ 7, we have f (0; b n

2 c − 1, d n
2 e + 1) = −n < 0 and

f
(
s;

⌊n
2

⌋
− 1,

⌈n
2

⌉
+ 1

)
=

5832
(4n + 9)3 −

324(n + 2)
(4n + 9)2 +

18
4n + 9

− n +
18

4n + 9

⌊n
2

⌋ (⌈n
2

⌉
+ 2

)

≥
5832

(4n + 9)3 −
324(n + 2)
(4n + 9)2 +

18
4n + 9

− n +
18(n − 1)

4n + 9
+

18(n2
− 1)

4(4n + 9)

=
16n4 + 360n3

− 1359n2
− 10206n − 729

2(4n + 9)3 > 0,

which implies inequality (2).

Let Hp, q be the graph as defined before, and let v and w be two vertices in Hp, q such that dHp, q (v) = p
and dHp, q (w) = q. Let G0 (see, Figure 1) be a graph with n vertices obtained from Hp, q (q ≥ p ≥ 2) such that
V(G0) = V(Hp, q) ∪U and E(G0) = E(Hp, q) ∪ {vvi : vi ∈ U} ∪ {wvi : vi ∈ U}, where U = {v1, v2, . . . , vn}\V(Hp, q)
and |U| = r ≥ 1.

Lemma 2.4. Let G0 be a graph as defined above. If n ≥ 6, then

a(G0) > a
(
Hb n

2 c−1, d n
2 e+1

)
.
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Proof. When n = 6, since n = p + q + r and q ≥ p ≥ 2, there are exactly two graphs for G0. By ‘Sage’, we can
easily check that

a(G0) > 0.63 > 0.49 > a(H2, 4) (3)

Thus, we may suppose that n ≥ 7 in the sequel. By Corollary 2.3, it suffices to show that

a(G0) >
18

4n + 9
. (4)

To prove inequality (4), we first prove the following claim:

Claim 1.
n(4n + 9)(r + 2) > 36(n − p)(n − q) + 18(3n − 10) .

Proof of Claim 1: Since n = p + q + r, we have

9(n + r)2 = 9(n − p + n − q)2
≥ 36(n − p)(n − q).

Thus, it suffices to show that

n(4n + 9)(r + 2) > 9(n + r)2 + 18(3n − 10). (5)

For this let us consider a function

1(x) = −9x2 + n(4n − 9)x − n2
− 36n + 180 for 1 ≤ x ≤ n − 4.

Then 1′(x) = n (4n − 9) − 18x ≥ 4n2
− 27n + 72 > 0 for n ≥ 7. Therefore 1(x) is an increasing function on

1 ≤ x ≤ n − 4 and hence 1(x) ≥ 1(1) = 3(n2
− 15n + 57) > 0 for n ≥ 7. Therefore,

n(4n + 9)(r + 2) − 9(n + r)2
− 18(3n − 10) = −9r2 + n(4n − 9)r − n2

− 36n + 180 > 0 ,

which implies that (5) holds. This completes the proof of Claim 1.

One can easily see that a (G0) satisfies the following system of equations:

(x − p − r) y1 = −(p − 1) y2 − y3 − ry5,

(x − 1) y2 = −y1,

(x − q − r) y3 = −y1 − (q − 1)y4 − ry5,

(x − 1) y4 = −y3,

(x − 2) y5 = −y1 − y3.

Thus, a (G0) satisfies h(x; p, q, r) = 0, where

h(x; p, q, r) = x4
− (p + q + 2r + 4) x3 + ((q + r)(p + r) + 3(p + q) + 6(r + 1)) x2

− (2(q + r)(p + r) + 3(p + q) + 2(3r + 2)) x + (r + 2)(p + q + r).

Let s =
18

4n + 9
. Since n = p + q + r and q ≥ p ≥ 2, we have

s2
(
s2
− (n + r + 4) s + (p + r)(q + r) + 6(r + 1) + 3(p + q)

)
− s(3r + 14)

≥s2
(
s2
− (n + r + 4) s + 4 + (n − r)r + r2 + 6(r + 1) + 3(n − r)

)
− s(3r + 14)

=
18

(4n + 9)4

(
(96n3 + 864n2 + 1134n − 729)r − 32n3

− 576n2
− 4374n − 1458

)
≥

18(64n3 + 288n2
− 3240n − 2187)

(4n + 9)4 > 0.
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Combining this with n = p + q + r, we have

h
(
s; p, q, r

)
= s2

(
s2
− (n + r + 4) s + (p + r)(q + r) + 6(r + 1) + 3(p + q)

)
− (2(q + r)(p + r) + 3(p + q) + 2(3r + 2)) s + n (r + 2)

≥ s(3r + 14) + n (r + 2) − s(2(n − p)(n − q) + 3n + 3r + 4)
= n (r + 2) − 2s(n − p)(n − q) − s(3n − 10).

Thus, by Claim 1, it follows that h
(
s; p, q, r

)
> 0.

Moreover, since h(1; p, q, r) = −(p−1)(q−1) < 0, h(2; p, q, r) = (n−2)r > 0, h(q+r+1; p, q, r) = −(q−1)(p−1) < 0
and h(n; p, q, r) = (q − 1)(p − 1)n(n − 2) > 0, we can conclude that inequality (4) holds.

Theorem 2.5. If G � Hb n
2 c, d

n
2 e

is a connected graph with n ≥ 6 vertices and independence number α(G) = 2, then

a(G) ≥ a
(
Hb n

2 c−1, d n
2 e+1

)
> a

(
Hb n

2 c, d
n
2 e

)
(6)

with equality holding if and only if G � Hb n
2 c−1, d n

2 e+1.

Proof. By Lemma 2.2, we have a
(
Hb n

2 c−1, d n
2 e+1

)
> a

(
Hb n

2 c, d
n
2 e

)
. Thus, it suffices to show that a(G) ≥ a

(
Hb n

2 c−1, d n
2 e+1

)
with equality holding if and only if G � Hb n

2 c−1, d n
2 e+1.

Let d(G) be the diameter of graph G. For d(G) ≥ 4, then one can easily see that α(G) ≥ 3, a contradiction.
For d(G) = 1 and hence G � Kn. By Corollary 2.3 and inequality (3), a(G) = n > a

(
Hb n

2 c−1, d n
2 e+1

)
and

inequality (6) holds. For d(G) = 2, by Lemma 2.1, Corollary 2.3 and inequality (3), a(G) ≥ 1 > a
(
Hb n

2 c−1, d n
2 e+1

)
and inequality (6) holds. Otherwise, d(G) = 3.

Since d(G) = 3, we must have {u, v, w, z} ⊆ V(G) such that {uv, vw,wz} ⊆ E(G) and the distance between
u and z, denoted by d(u, z), is equal to three. Combining this with α(G) = 2, we must have Hp, q ⊆ G
(q ≥ p ≥ 2, p + q ≤ n), dHp, q (v) = p and dHp, q (w) = q. Denote by W = NG(v) ∩ NG(w) and U = NG(v) ∪ NG(w).
We now divided the proof into the following two cases:

Case (i) : |U| < n.

Then, |V(G)\U| ≥ 1. Since d(u, z) = 3, we have {u, z} ∩W = ∅. If there exists some vertex u1 ∈ V(G)\U
such that uu1 < E(G), then {u, w, u1} is an independent set of G, a contradiction. Thus, u is adjacent to every
vertex of V(G)\U. Similarly, z is adjacent to every vertex of V(G)\U. In this case, d(u, z) = 2, a contradiction.
Case (ii) : |U| = n.

We first suppose that |W| = 0. Then, Hp, q ⊆ G, where q ≥ p ≥ 2, and p + q = n. If G � Hb n
2 c−1, d n

2 e+1, then
the equality holds in (6). Otherwise, G � Hb n

2 c−1, d n
2 e+1. Then by Lemma 2.2 and interlacing theorem,

a(G) ≥ a(Hp, q) > a(Hp+1, q−1) > · · · > a
(
Hb n

2 c−1, d n
2 e+1

)
> a

(
Hb n

2 c, d
n
2 e

)
.

Now, we consider the case of |W| , 0. In this case, we have G0 ⊆ G, where 2 ≤ p ≤ q, and p + q < n. By
interlacing theorem, we have a(G) ≥ a(G0). By Lemma 2.4, we can conclude that

a(G) ≥ a(G0) > a
(
Hb n

2 c−1, d n
2 e+1

)
.

This completes the proof of this result.

We now give the main result of this paper.
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Theorem 2.6. If G � Hb n
2 c, d

n
2 e

is a connected graph with n ≥ 6 vertices, independence number α(G) and algebraic
connectivity a(G), then

a(G) + α(G) ≥ a
(
Hb n

2 c−1, d n
2 e+1

)
+ 2 > a

(
Hb n

2 c, d
n
2 e

)
+ 2 (7)

with equality holding if and only if G � Hb n
2 c−1, d n

2 e+1.

Proof. For α(G) = 1, we have G � Kn and hence the inequality (7) is strict by Corollary 2.3, Lemma 2.2 and
inequality (3). For α(G) ≥ 3, one can easily see that the inequality (7) is also strict by Corollary 2.3, Lemma
2.2 and inequality (3). Otherwise, α(G) = 2. Now, the result follows from Theorem 2.5.

Remark 2.7. Let s = 18
4n+9 . From the proof of Corollary 2.3 and Theorem 2.6, if f

(
s; p, n − p

)
= s3

− (n + 2) s2 +(
p(n − p) + n + 2

)
s−n > 0, then Hb n

2 c, d
n
2 e
,Hb n

2 c−1, d n
2 e+1, . . ., Hb n

2 c−p, d n
2 e+p have the first to (p + 1)-th minimum values

for addition of algebraic connectivity and independence number among connected graphs with n vertices, where
1 ≤ p ≤ b n

2 c − 2. For instance, when n ≥ 11, since

f
(
s;

⌊n
2

⌋
− 2,

⌈n
2

⌉
+ 2

)
≥

16n4 + 360n3
− 3663n2

− 20574n − 12393
2(4n + 9)3 > 0,

we can conclude that Hb n
2 c, d

n
2 e
, Hb n

2 c−1, d n
2 e+1, Hb n

2 c−2, d n
2 e+2 have the first to third minimum values for addition of

algebraic connectivity and independence number among connected graphs with n ≥ 11 vertices.

3. Lower Bound for Algebraic Connectivity and Radius of Connected Graphs

In this section, we shall give a lower bound to the addition of algebraic connectivity and radius of
connected graphs. The following result will play an important role in our proof.

Lemma 3.1. [2] Let G = (V, E) be a graph with a vertex subset V′ = {v1, v2, . . . , vk} having the same set of neighbors
{vk+1, vk+2, . . . , vk+N}, where V(G) = {v1, . . . , vk, . . . , vk+N, . . . , vn}. Also let E+ = E ∪ E′, where E′ ⊆ V′ × V′. If
G′ = (V′, E′) has eigenvalues a1 ≥ a2 ≥ · · · ≥ ak = 0, then the eigenvalues of L(G+), where G+ = (V, E+) are as
follows: those eigenvalues of the graph G = (V, E) which are equal to N (k − 1 in number) are incremented by ai,
i = 1, 2, . . . , k − 1 and the remaining eigenvalues are the same.

The join of two graphs H and G, denoted by H ∨ G, is a graph obtained from H and G by joining each
vertex of H to all vertices of G. We are now ready to give a lower bound to the addition of algebraic
connectivity and radius of connected graphs and characterize the corresponding extremal graphs.

Theorem 3.2. If G is a connected graph with n ≥ 3 vertices, radius r(G) and algebraic connectivity a(G), then

a(G) + r(G) ≥ 2 (8)

with equality if and only if G is isomorphic to K1 ∨ (H1 ∪H2), where H1 and H2 are graphs with n1 and n2 vertices,
respectively, such that n1 + n2 = n − 1.

Proof. Since G is connected and since r(G) is the radius of G, we have a(G) > 0 and r(G) ≥ 1. If r(G) ≥ 2,
then the inequality in (8) is strict. Otherwise, r(G) = 1. Then there exists a vertex v in G being adjacent to
all other vertices and hence dG(v) = n − 1. Thus we have G � K1 ∨ G1, where G1 is a graph of order n − 1.
By Lemma 3.1, we have

µ1(G) = n, µi+1(G) = µi(G1) + 1, i = 1, 2, . . . , n − 2, µn(G) = µn−1(G1) = 0.

First we assume that G1 is connected. Then µn−2(G1) > 0, that is, a(G) = µn−1(G) > 1 and hence the
inequality in (8) is strict. Next we assume that G1 is disconnected. Thus we have G1 � H1 ∪H2 , where H1
and H2 are graphs of order n1 and n2, respectively, such that n1 + n2 = n − 1. In this case µn−2(G1) = 0, that
is, µn−1(G) = 1 and hence the equality holds in (8). This completes the proof of this theorem.
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February, 2006.

[2] K. C. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715–724.
[3] K. C. Das, Proof of conjectures involving algebraic connectivity of graphs, Linear Algebra Appl. 438 (2013) 3291–3302.
[4] K. C. Das, A conjecture on algebraic connectivity of graphs, Taiwanese J. Math. 19 (2015) 1317–1323.
[5] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
[6] X. -Y. Yuan, Proof of a problem on Laplacian eigenvalues of trees, Linear Algebra Appl. 503 (2016), 180–189.
[7] X. -Y. Yuan, Y. Liu, M. Han, The Laplacian spectral radius of trees and maximum vertex degree, Discrete Math. 311 (2011),

761–768.
[8] X.-Y. Yuan, J.-Y. Shao, L. Zhang, The six classes of trees with the largest algebraic connectivity, Discrete Appl. Math. 156 (2008),

757–769.


