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Abstract. The aim of this paper is to study the warped product semi-invariant submanifolds in a normal
paracontact metric space form. We obtain some characterization and new geometric obstructions for
the warped product type M, Xy Mr. We establish a general inequality among the trace of the induced
tensor, laplace operator, the squared norms of the second fundamental form and warping function . These
inequalities are discussed and we obtain some new results.

1. Introduction

The geometric inequalities of warped product submanifolds have been studied since B-Y. Chen
introduced the notion of a CR-warped product submanifold in a Kaehler manifold and established
inequalities for the fundamental form in terms of warping function[3].

In a natural way, warped products appeared in differential geometry generalizing the class of
Riemannian product manifolds to much larger one, called warped product manifolds, which are applied
in general relativity to model the standard space time.

Recently, Uddin, et al [6, 9] obtained some inequalities of warped product submanifolds in cosymplectic
and nearly trans-Sasakian manifolds. They obtained an inequality for the length of the second fundamental
form of the warped product submanifold a nearly cosymplectic manifold in terms of warping function,
discussed this inequality and found some new results.

In [4], authors obtained a characterization for warped product submanifolds in terms of warping
function and shape operator and gave an inequality for squared norm of the second fundamental form.

Motivated by the studies of the above authors, in this paper, we extend this idea into a normal paracontact
metric manifold, which has not been attempted so far, and derive the geometric inequalities of non-trivial
warped product semi-invariant submanifold and obtain an inequality involving the trace of the induced
tensor and warping function.
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2. Preliminaries

Let M be an n-dimensional almost contact metric manifold with structure tensors (¢, &, 17, g), where ¢ is
(1,1)-type tensor field, & is a vector field, n is dual of £ and g is also Riemannian metric tensor on M. If we
have

P*X =X -n(X)E, $E=0, n¢pX) =0, nE&) =1, (1)
and
9(OX, ¢Y) = g(X,Y) = n(X)n(Y), n(X) = g(X, &), 2)

for any vector fields X, Y on M, then M is called almost paracontact metric manifold. An almost paracontact
metric manifold M is said to be normal if

(Vx@)Y = —g(X, V)& = n(V)X + 2n(X)n(Y)<, (3)
for any vector fields on M, where V denotes the Riemannian connection on M[7]. (3) implies that
Vxé =¢X and (Vxn)Y = g(¢oX, Y). 4)

On the other hand, if a normal paracontact metric manifold M has a constant-c, denoted by M(c), then its
the Riemannian curvature tensor R is given by

R(X, Y)Z

i(c +3){g(Y, 2)X - 9(X, 2)Y}

+ }L(C = DinXn2)Y = n(n(2)X + 9(X, Z)n(Y)&
= 9, DNX)E + g(@Y, 2)pX = g(oX, Z)pY = 29(pX, Y)PZ}, ()
for any vector fields X, Y, Z on M[7].

Now, let M be an isometrically immersed submanifold in a normal paracontact metric manifold M
and denote by the same symbol g the Riemannian metric induced on M. Let I'(TM) and I'(T+M) be the
differentiable vector fields set tangent and normal to M, respectively. Also we denote by V and V+ induced
connections on I'(TM) and I'(T*M), respectively. Then the Gauss and Weingarten formulas are given by

VxY = VxY + h(X,Y) (6)
and
VXV =-AyX + V?V, (7)

for any X,Y € I(TM) and V € T(T*M), where h and Ay are the second fundamental form and shape
operatory for the immersed of M into M, respectively. They are related as

g(h(X,Y), V) = g(AvX, Y). (8)
By R, we denote the Riemannian curvature tensor of V, then we have

RX,Y)Z = R(XY)Z+ AuxzY —AnyznX + (Vxh)(Y,Z) — (Vyh)(X, Z), 9)
where the covariant derivative of & is defined by

(VxI)(Y, Z) = Vxh(Y, Z) = h(VxY, Z) = h(Y, VxZ), (10)
forany X, Y, Z € I'(TM).



M. Atgeken et al. / Filomat 31:19 (2017), 6233-6240 6235

Let M be an immersed submanifold of a normal paracontact metric manifold M. For any X € I['(TM),
we can set

¢X =TX + NX, (11)

where TX and NX denote the tangential and normal components of ¢ X, respectively. In the same way, for
any V € I'(T*M), we can write

¢V =BV +CV, (12)

where BV (resp. CV) are the tangential(resp. normal) components of ¢pV.
The squared norm and trace of T at p € M are, respectively, defined by

ITIP = Z 7(Tei,ep), trace(T) = Z 9(Tei ei), (13)
i=1

ij=1
where {e, e, ..., €4} is an orthonormal basis of the tangent space I'(TM).

Definition 2.1. A submanifold M of a normal paracontact metric manifold M is said to be semi-invariant submanifold
if there exist two orthogonal distributions D* and DT such that

i) TM =D* e DT,

ii.) D* is anti-invariant distribution under ¢, i.e., (D*+) € T+M,

iii.)DT is an invariant distribution ¢, i.e., p(DT) C TM.

Next, let us suppose that M be a semi-invariant submanifold of a normal paracontact metric manifold M,
then the normal bundle T-M can be decomposed as follow as;

T*M = $p(DH) &y, (14)

where y is an invariant subbundle of T+ M.

For a differentiable function f on M, the gradient and Hessian form are, respectively, defined by
Xf=g(Vf,X), Vf = gradf, (15)
and
H/(X,Y) = X(Yf) = (VxV)f = g(Vxgradf, ), (16)

for any X, Y € I'(TM). As a consequence, we have

VAR =) () (17)
i=1

The laplacian of f is defined by

n

Y (Veedf —eeif)l = = Y g(Vegradf,e)
i=1

i=1

Af

- Z Hlnf(ei, ei). (18)
i=1

From the integration on the manifolds theory, for M is a compact, orientable Riemannian manifold without
boundary, we have

f AfdV =0, (19)
M

where dV denote the volume element of M[8].
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3. Warped Product Manifolds

Bishop and O’Neill defined the notion of warped product manifolds to construct examples of Rieman-
nian manifolds with a negative curvature. These manifolds are naturel generalizations of Riemannian
product manifolds. Let (Mj, g1) and (M, g») be two Riemannian manifolds and f be a positive defined
differentiable function on M;. Consider the product manifold M; X M, with its canonical projections

T My XMy, > My, 10 : My XMy — M.

The warped product M = M; XM, is the product manifold M; X M, equipped with the Riemannian structure
such that

IXIP =l (X)IP + 2 p)lima I, (20)

for any X € I'(TM), where « is the stand for the tangent map. So we have g = 7}g1 + (f o m1)*7;g2. The
function f is called the warping function on M[2].

Next we will give the following Lemma for later use.

Lemma 3.1. Let M = My Xy M, be a warped product manifold. We have

i.) VxY e T(TM,)

ii.) VzX =VxZ =X(In f)Z

iii.) V;W = V'ZW - g9(Z, W)VInf,

forany X, Y € I'(TM,) and Z, W € I'(TM,), where V and V' denote the Riemannian connections on M and My,
respectively.

We note that a warped product manifold M = M; X £ M, is characterized by the fact that M; and M, are
totally geodesic and totally umbilical submanifolds of M, respectively. If warped function f is constant,
then warped product manifold is said to be Riemannian product.

4. Warped Product Semi-Invariant Submanifolds of A Normal Paracontact Metric Manifold

In this section, we establish warped product semi-invariant submanifolds which are form M = M, XyMr,
where M, and Mr are anti-invariant and invariant submanifolds of M, respectively. Furthermore, the
co-vector field £ is tangent to M, . Otherwise, the warping function f is constant.

Next, we will give an example for the method presented in this paper is effective.

Example 4.1. Let M be a submanifold of R” with coordinates
(x1, X2, X3, Y1, Y2, Y3, t) given by

X1 =u,xp =ucos0,x3=usin0,y; = ucosa,y, = usina, y3 = —u,t = 2s,

where u, 0, a and s denote the arbitrary parameters. It is easy to check that the tangent bundle of M is spanned by the
vectors

ep = —+cos€i +sir16i +cosoz—+sir10c——i
= 8x1 3.‘>C2 8x3 83/1 8y2 8_1/3
e = —usin@i +ucos@i e3 = —usina=— +ucosa=—
2= 8x2 8x3' 37 a]/l a]/2
d
= &=2=.
ey < T
Now, we define the almost paracontact metric structure ¢ of R” by

J 0 0
Qb(a—xi) = o (5=

Jd J 1 ‘
o) = "oy G =0 =it 1sisn,
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then we have p*X = X — n(X)&, g(0X, Y) = g(X, Y) — n(X)n(Y), & = 0 and n(E) = 1. On the other hand, with
respect to the almost paracontact metric structure ¢ of R’, the ¢pI'(TM) becomes

e1 = —+cos@i+sinei—cosoz——sinck—+i
qb = (9x1 (9x2 8X3 ayl Byz (9]/3
q5€2 = @y, q5€3 = —e3 qf)é =0.

Since ey is orthogonal to M, ¢ey and ¢es are tangent to M, I'(TM,) and I'(TMr) can be choosen subspace
I'(TM,) = splei1, es} and T(TMr) = sple1, e2}. Furthermore, the metric tensor of M is given by

g = 4(du? + dt?) + uA(d6* + da?) = dgu, ©.2 Gu,-
Thus M is a 4-dimensional warped product semi-invariant submanifold of R with warping function f = u?.

Lemma 4.2. Let M = M, Xy Mr be a semi-invariant submanifold of a normal paracontact metric manifold M such
that £ e T(TM_,). Then we have

g(h(X,Y), oU) = g(X, Y)n(U) — g(TX, Y)UIn f, (21)

g, V), pW) = —g(h(U, W), pV), U, V,WLE (22)
and

g(h(U, X),pV) =0, (23)

forany X,Y e [(TMrt) and U, V, W € I(TM,).

Proof. By using (3), (6) and Lemma 3.1, we have

g(h(X,Y), oU) g(VxY,olU) = g(@VxY, U) = g(VxpY — (Vxo)Y, U)
g(VxTY, U) - g(Vxp)Y, U)
= —g9X,TY)UIn f + g(X, Y)n(UD),

which gives us (21). In the same way, we have
g V), W) = g(VuV,eW) = —g(VugW,V)
= —g(Vu@)W + pVuW, V)
= —g(=gU,W)& —n(WMU + 2n(W)n(t)<, V)
- g(VuW,¢V)
= —g((U, W), ¢V)

and

g, X),dV) = g(VuX,¢V) = g(¢VuX,V)
= g(VupX - (Vup)X, V)
= gVupX, V) = g(=g(U X) - n(X)U
+ 2n(X)n(U)E, V)
= Ulnfg(¢pX, V) =0.
Thus the proof is complete. [

Lemma 4.3. Let M = M, Xy Mt be a warped product semi-invariant submanifold of a normal paracontact metric
manifold M. Then we have

g(h(@X, ), ph(X, U) = [Ih(X, W), (24)
forany X € T(TMr) and U e I'(TM,).
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Proof. Making use of (3),(6) and from Lemma 3.1, we have

g(h(pX, U), ph(U, X)) g(VupX = VudX, ph(X, U))

= g(Vup)X + ¢VuX, ph(U, X))

- gUIn foX, ph(X, U))

= —g(g(X, )& + n(X)U - 2n(X)n(U)E, ph(U, X))
+  g(VuX, (X, 1)) = g(h(X, U), h(X, U)),

forany X e I'(TMr)and U € I(TM,). O

Theorem 4.4. Let M = M, Xy Mr be a warped product semi-invariant submanifold of a normal paracontact metric
manifold M such that ¢ # 1. Then we have

U = g% 0{ 76~ Dg@U oW + B (U, 1) - (Un f7)
+ gXTX)n(U)UIn f, (25)

forany X € I(TMr) and U € I'(TM ).

Proof. By using (9), (10) and taking into account of Lemma 3.1, we have

gRU X)X, pU) = g(Vul)(X, X) = (Vx)(U, pX), pU)
= g(Vuh(X, pX) — h(VuX, $X)
- (X, VupX), pU) - g(Vxh(U, $X)

— W(VxU,¢X) — h(U, VxpX), dU).

By virtue of (21) and (23), we obtain

gRU, X)X, pU)

Ug(h(X, $X), pU) = g(VudpU h(X, pX))

— g((VuX, X), pU) — g(h(Vu¢X, X), pU)
Xg(h(U, $X), pU) + g(h(U, $X), VxpU)

Uln fg(h(X, pX), pU) + g(h(VxpX, U), pUI)
U[g(X, TX)n(U) - g(X, X)U In f]

- 9(@Vul, (X, X)) — Uln fg(h(X, $X), pU)
g(h(U, X), pVxU)

+ g(h(VxdpX, U), oU) — Uln fg(h($X, X), pUD).

nm +

+
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Also considering Lemma 4.2 and M, is totally geodesic in M, we reach
gRU, X)pX, pU) 9(X, TX)n(Vul) - g(X, X)U?(In f)
= g(@Vul, (X, ¢X)) — Uln f{g(X, TX)n(U)
- 9(X, X)Uln f} + [|h(X, )|
+ gh(VxpX = g(X, oX)VIn £, U), pU)
= g(X, TX)n(Vyl) - g(X, X)U?*(In f)
- gX TX)n(Vul) + g(X, X)(Vul) In f
- gX, TX)UIn fn(U) + g(X, X)(UIn f)?
+ g(h(VydX, U), ¢U) — g(X, TX)g((V In £, U), pU)
+  [l(X, U)IP
= g(X, X){(Vul - U*(In ) In f}
- g(TX, X)UIn fn(U) + g(X, X)(U In f)>
+ [I(X, U)IP
= — g(X,X)H™(U,U) - ¢(TX, X)UIn fn(LI)
+ (X, X)(UlIn f)? + |[(X, U)|%.

On the other hand, from (5), we conclude

gR(U X)OX, GUD) = 7(c = Dg(X, X)L, 4L, 26)
which proves our assertion. [J

Now, let {e1, e, ...ep, p11 = &, el,é?,...,e" be an orthonormal basis of T'(TM) such thate;, 1 < i < g+1, are
tangent to M, and ¢/, 1 < j < g, are tangent to Mr. Substituting (25) into X =e¢/ and U =¢;, for 1 <i<p+1
and 1 < j < g, we obtain

p+1

9 p+l p+1 q
Y Y ke, ehF = g {i(c ~Dp+ Y H(e;e)+ ) (eiln f)2} + Y g1, e)ein f. 27)
i=1 i=1 j=1

i=1 j=1

By means of (6) and taking account of M = M, Xy Mr being warped product semi-invariant submanifold,
we have

¢In fg(X, X) = 9(TX, X),

which implies that
1
Elnf = Etr(T).

Thus by using (18), (27) becomes

p+l g

Z (e, eNl? = q {i(c -p+ ||gmdlnf||2 - Alnf} + %trz(T). (28)
1

i=1 j=
From the (28), we have the following Theorems.

Theorem 4.5. Let M be a warped product semi-invariant submanifold of a normal paracontact metric manifold M(c)
such that c # 1. The squared of norm of the second fundamental form h satisfies the condition

Hl? > q{i(c —1p +|lgradIn f]I> — Alnf} + %trz(T). (29)
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Theorem 4.6. Let M be a compact orientable warped product semi-invariant submanifold of a normal paracontact
metric manifold M(c) such that ¢ # 1. M is a semi-invariant Riemannian product if and only if the second fundamental
form h of M satisfies

+1 ¢

Z Ih(e;, e = }I(C - Dpq + %(trZ(T)). (30)
=1

=

1

I
—_

Proof. From (19) and (28), we conclude

p+1

q
f {lgradn fI* ~ L lI(ei, NI + (1tr(T))2}dV = Vol(M)l(C = Dpg. (31)
M 1= 3 q 4

Here if (30) is satisfied, the we can derive grad In f is constant. The converse is obvious. This proves our
assertion. [J
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