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Abstract. In this paper, we establish atomic decompositions for the martingale Hardy-Lorentz spaces.
As an application, with the help of atomic decomposition, some interpolation theorems with a function
parameter for these spaces are proved.

1. introduction and preliminaries

The main result of this paper is the atomic decompositions of martingale Hardy-Lorentz spaces which
is a martingale function spaces built on the “classical” Lorentz spaces. The martingale Hardy type spaces is
a main topic for theory of martingale function spaces. There are several generalizations obtained recently
such as the martingale Hardy-Orlicz spaces [15], martingale Hardy-Morrey spaces [9] and martingale Hardy
spaces with variable exponents [12]. Therefore, the martingale function spaces introduced in this article
gives further generalizations on this topic.

Atomic decomposition plays a fundamental role in the classical martingale theory and harmonic analy-
sis. For instance, atomic decomposition is a powerful tool for dealing with duality theorems, interpolation
theorems and some fundamental inequalities both in martingale theory and harmonic analysis. In [3]
Coifman used the Fefferman-Stein theory of H” spaces [5] to decompose the functions of these spaces into
basic building blocks (atoms). Coifman and Weiss have provided a comprehensive treatment of these ideas
and many applications to harmonic analysis in [4]. In [11], Jiao et al. proved that the Lorentz martingales
spaces also have an atomic decomposition. Hou and Ren [10] considered weak atomic decomposition of
weak martingale Hardy spaces. Recently, Ho introduced the martingale Hardy-Lorentz-Karamata spaces
and proved atomic decomposition of these martingale function spaces [7]. In this article, the atomic de-
composition for the martingale Hardy-Lorentz spaces is established in section 2 which is the main result
of this paper. By using these decompositions, we obtain the interpolation of the the martingale Hardy-
Lorentz spaces by using the interpolation functor with function parameter. Notice that the interpolation
functor used in this paper is a special case of a general family of interpolation functors appeared in [8]. To
achieve our goal we first fix our notations and terminology. Let us denote the set of integers and the set of
non-negative integers, by Z and N, respectively.
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Let (Q, ¥, P) be a probability space. A filtration (¥, )sen is a non-decreasing sequence of sub-o-algebras
of ¥ such that ¥ = 0(UnenT ). We denote by E and E, the expectation and the conditional expectation
operators with respect to (¥,)en. For simplicity, we assume that E,, f = 0if n = 0.

For a martingale f = (f,, n € N) relative to (QQ, , P), denote the martingale differences by d,.f := f, — fu-1
with convention dyf = 0. For an arbitrary stopping time v and a martingale f, " = (fy, n € N) is defined by

ﬂ = ZX(V = m)dmf-
m=0

The conditional square function of f is defined by

1/2 1/2
sm(f>:=[ZEn_1|dnf|2] : s(f):=[ZEn_1|dnf|2].

n<m neN

Let us recall briefly the construction of Lorentz spaces and the real interpolation method. For measurable
function f, we define a distribution function m(s, f) by setting m(s, f) = P({w € Q : |f(w)| > s}). The function

() =inf{s > 0:m(s, f) <t}, (t=0),

is called the decreasing rearrangement of f.
we say that a nonnegative function is a weight, if it is locally integrable. Let ¢ be a weight. The classical
Lorentz spaces A4(¢) is defined to be the collection of all measurable functions f for which the quantity

Ifllayep) = { (5 roem)y £) ©<q<o),
" sup, f*(H)p(t) (g = o),

is finite. Recall that for 0 < g < oo, ||.||o,(p) is only a quasi-norm. Also A4(¢) is a quasi-Banach space with
the quasi-norm

I =1 [ ety iy, 0 <q <)

where w(t) = ( fot o1 (s)ds—s)a is a non-decreasing weight and satisfies the Ay-condition, w(2t) < Cw(t), for some
C > 0 (see [2]).
For g = co we have

lflAw(p) = sup sw(m(s, f)).

For 0 < q < eo, martingale Hardy-Lorentz spaces Aj(¢) is defined by:

A (@) = {f = (fulnen t 1fllase) = IS(A)llaye) < o0}
Note that if ¢(t) = t%, then Aq(p) = Ly and A(p) = H;,. In particular, if ¢(t) = t%, then Ay(p) = L, and
(@) = H,
Let (Ao, A1) be a quasi—Banach couple, that is, two quasi-Banach spaces Ay, A; which are continuously
embedded in a Hausdorff topological vector space A. The K—functional is defined by

K(t, f, Ao, A1) = K(t, f) := _inf A{llfolla, + HIfilla, }
foth=f
fort > 0and f € Ag + A1, where f; € A;,i =0, 1.

For 0 < g < co and each measurable function g, the real interpolation space (Ao, A1), consists of all elements
of f € Ag + A such that the quantity

1
(fooo (Kg(ég))q %)1, (0<g <o),

SUpy g(;) (q = Oo)r

||f||(A0/A1)£W =
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is finite. Let a and b be real numbers such that a < b. Following Persson’s convention [16], we adopt
the following notations. The notation ¢(t) € Q[a, b] means that g(t)t™* is non-decreasing and ¢(f)t™? is
non-increasing for all t > 0. Moreover, we say that ¢(t) € Q(a, b), wherever ¢(t) € Q[a + €,b — €] for some
€ > 0. The notation ¢(t) € Q(a, —) (or @(t) € Q(—, b)) means that ¢(t) € Q(a, c) (or ¢(t) € Q(c, b)) for some real
number ¢ and by ¢(t) € Q(—, —), we mean that ¢(f) € Q(c, ¢’) for some real numbers ¢, ¢’ such thatc < ¢’. In
this paper we shall consider the interpolation spaces (Ao, A1), with a parameter function ¢ = ¢(t) € Q(0, 1)
where Ag and A; are the martingale spaces.

It is easy to see that o(f) = t?(0 < 6 < 1) belongs to Q(0, 1), so by replacing measurable function g = o(t)
with ¥ we obtain (A, A1),

Let0 <p < 0,0 < g < ooand p € Q0,1). It was proved by Persson [16, Lemma 6.1] that

(L, Leo)gg = Aq(7 [0(E7)). (1)

We shall need the following well-known result due to T. Aoki and S. Rolewicz, which states that every
quasi-normed vector space can be equipped with an equivalent r—norm [13].

Theorem 1.1. (Aoki-Rolewicz). Let X be a quasi-normed vector space. Then thereis a C > 0 and 0 < r < 1 such

that for any x1, ..., x, € X,
1
n r
< C(Z ||x1-||;(] :
X i=1

In what follows, a < b means thata < Cb for some positive constant C independent of the quantities a and b.
If botha < band b < a are satisfied (with possibly different constants), we write a = b. We use C to denote a
constant, which may be different in different places. Throughout this article, by w we mean

e
at)=( [ 0], <,

for a given weight ¢ in Ai(p), and w € A,.

n

in

i=1

2. Atomic Decomposition

In this section, we provide an atomic decomposition for the martingale Hardy-Lorentz spaces A} (¢),
which is an extension of the atomic decomposition of the martingale Hardy spaces H,, that was proved by
Weisz [18].

Definition 2.1. A measurable function a is called a (p, oo) atom if there exists a stopping time v such that
1.a,:=Eua=0 if vn.

2. 1 5(a) llo< P(v # c0) ™77

Theorem 2.2. If f = (f,,n € N) € Aj(p) (0 < g < 00), then there exists a sequence {(a*, vi)lkez of (p, o0) atoms

(0 < p < 00) such that
Z pkEnd" = f,
k=—co
where wy = 2¥3P(vy # 00)/ and
{2 w(P(vk # co)lkezll, < I fllaz(e)-
Moreover, if 0 < q < 1, then
I fllasp) = inf [1{250(P(vk # 00)hiezll,

where the infimum is taken over all the preceding decompositions of f.
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Proof. Let f = (fu,n € N) € Ai(¢p). For any k € Z, define
Vg 1= inf{n e N :s,41(f) > Zk}.

Then vy is a stopping time and non-decreasing with respect to k and vy — co when k — oo. It is easy to see
that

Y (=g =), (Z (X(i = m)di f = x(ve > m)dmf))

keZ keZ \m=0
n
=), (Z X <m < vk+1)dmf} = fu
m=0 \ keZ
Now let
Vel _ £Vk
k _ n n
n Lk

We assume that aﬁ = 0 if yr = 0. It is clear that for a fixed k € Z, (aﬁ,n € N) is a martingale. Since
S(f¥) = sy, (fu) < 2F, then

s(fa!) + s(fa")
ik

s(@k) < < P(vg # )", (neN).

Consequently, (a’,‘l) is Ly-bounded and so there exists af € L, such that E,a* = aﬁ. If n < v, then a’,‘, =0and
| s(a) llo< P(v # 00)~V/7. Therefore, a* is a (p, c0) atom and

fu= Z (i = fi") = Z pak = Z urEqa.

keZ keZ keZ

Let 0 < g < oo. It follows from {vy # oo} = {s(f) > 2K} for any k € Z, that
Y 2P £ 00) =Y 2T(P(s(f) > 2)

keZ keZ

2k
Y, ka Ay (Pl ) > 2)
kez

2k
Y [ e > iy

keZ

1%\

N

N

fo AP > Yy

I
For g = co we have

2"w(P(ve # 00)) = 25w(P(s(f) > 2)) I s(F) llawi)=: lfllas )

which implies sup,, 2w(P(vg # o)) < £ 1Az (p)-
Now we prove the last part of the theorem. Since a% = E,a* = 0 on the set {v; > n},

Xk 2 n)E,—1 | dna |2: Ep-1x(vk 2 n) [ dna |2: 0.

Hence, s(a*) = 0 on the set {1} = oo}.
So, we have

P(s(a") > y) < P(s(a") # 0) < P(vy # o). )
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It follows from ||s(a")||e < P(vg # ©0)"YP and (2) that

Q.0 = g |y (P(s@) > y))dy
3(p) 0

lla

P(vy#00)~ 1P
=9 f Y wi(P(s(@") > y)dy
0

P(vy#00) 1P

< quwi(P(vg # 00)) f(; v ldy
< wI(P(vg # 00))P(vy # 00)™P.

Finally, since for 0 < g4 < 1 by Theorem 1.1, the quasi-normed ||.|| AS(@) is equivalent to a g—norm,

Z ws(a) S Z Hy “S(ak)“qu(@
9)

q

q

keZ Ayl keZ

N Wl (P # o)) Pl # 00) 17 5 Y 240 (P(vy # o0).
kez kez

IA

The proof is complete. [

3. Interpolation

5925

As an application of atomic decomposition, the interpolation spaces with a function parameter between

the martingale Hardy-Lorentz spaces are identified.

Theorem 3.1. Let0 <p <1,0 < g < ooand g € Q(0,1) be a parameter function. Then
1,1
(H3, ) = A5 [0(t)).

In order to prove the theorem 3.1, the authors of paper [17] used a standard method: their method needs a
decreasing rearrangement function inequality. Our approach differs from their method: we will use atomic

decomposition method. To prove Theorem 3.1, we need the following lemmata.

Lemma3.2. Let f € Ai(p), 0 < g < oo, y>0andfix0<p <1 Then f can be decomposed into the sum of two

martingales g and h such that

llgllms, < 6y

and
1

v
s, < ( f s(f)pdp) .
{s()>yt
Proof. Let f € A(¢). For any fixed y > 0, choose j € Z such that 2/"! < y < 2/ and let

j-1 o
f= Zykak = Z ykak+Zykak =g+h,
kezZ k=—co k=j

where stopping times vy, atoms a* and numbers i (k € Z) are as in Theorem 2.2. Now we have

j-1
Y wes(@)
k=—c0

j-1

Y lls@)ll

gllms, < <
00 k=—00
j-1 j-1
< ) wP# o)< Y 23 <23 <6y,

k=—00 k=—00
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Since s(@*) = 0 on the set {1 = oo} and ||s(a")||ee < P(vx # 00)~1/7, then

[l
P

Lemma 3.3.
on (0, o).

N

IN

IA

N

A

Z P # 00) 7 P(vy # o0)
=

3 Z 2% P(vy # o)

=
3 Y 27.P(s(f) > 24
k=i
f s(f)’dP, (by Abel rearrangement)
{s(f)>2/}
f s(f) dP.
{s(f)>y}

5926

O

[16] Let 0 < g < 00,0 < p < coand P(t) € Q(—,—). Let h(t) be a positive and non-increasing function

1. If p(t) € Q(—,0), then

co ‘ g % . %
[f (g”(”’q(fo (h‘”)“’(“))pdzu) %] Sc(fo <<0<t>h<t>¢<t>>"?) |

2. If p(t) € Q(0,—), then

Uo ([ ooy %)#] <c( [ wonwor ).

(C depends only on q and the constants involved in the definition of ¢ and 1.)

Proof of Theorem 3.1. Let f be a function in A’(¢) and s* be the non-increasing rearrangement of s(f) and
choose y in Lemma 3.2 such that y = s*(#’). First we prove that

P P
K(t, f,HS,H;)gc( f s*(x)ﬂdx) . (t>0).
0

For a fixed t > 0 set E = {s(f) > s*(t")}.

m (s*(#),s(f)) < t# and since s* is constant on [P(E), #], henceforth

P(E) t”
fs(f)de = f s*(x)Pdx < f s*(x)Pdx.
E 0 0

)

Using the inequality m(f*(s), f) < s we obtain P(E) =

(4)
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Using inequality (4) and Lemma 3.2, we get
K, f,Hy Hy,) < lhlleg + Hlgllee,

[(f[;(f)>y}5(f) ) e )]
; o ;
14 (AP
C[(f{;(fbs*(tn)}S(f) dP) * (fo s'(x) dx) ]' (by (4))

g ;
< C(f s*(x)”dx) .
0

Let 0 < g < oo. It is easy to see that l/g(t%’) € Q(—%,O) [16, Lemma 1.1]. So we have

foo (K(t,f, HS,H;))‘? dt
0 o(t) t

IN

q
dlt 5 g

q

q P »
ﬁ) ( fo s*(x)*’dx) T ey

T, 1
1 copdy]
[ (L rere 5
|

IA
(@)
° 8

IA
(@]
© 8

00 q
< C f L is@pr®, (by Lemma3.3)
o \o(t?) t
= ClstHi" , , =Clfr’ , .
Ag(tP [o(tP)) AP [o(tP))

To prove the converse, we consider the operator T : f + s(f). The sublinear operators T : H}, — Lo and
T : H, — L, are bounded. By [16, Theprem 2.2] , the operator

T: (H;,H;)M - (L, Lm)w = A(t7 o(t?))

is bounded in which the equality follows from (1). So we have
”f”/\; =1s(HAI, » ) < Cllf ez bz, -

(t? Jot?) A ot
The proof is complete for 0 < g < co. Let g = co. Since g € Q(0,1), then o(f)t™¢ is non—decreasing for some
€ > 0. So we have

Il K(t, f, H;, H,)
s LIS = sup—mM3M38M8M
R = o0 =5
ﬂ’ 5
(fo s*(x)pdx)
< Csup——, (by (3
o o) by )
t - :
e by
t>0 Q(t)
t 1
xs*(xF) Q(t)t_e(_[) xPetdx)y
< Csu .su
x>0 Q(x) t>(I)) Q(t)
< Cifll

AP Jot7))’
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To prove the converse, we consider the operator T : f — s(f). The sublinear operators T : HS, — Lo and
T: H, — L, are bounded. By [16, Theprem 2.2] , the operator

T:(H, H: Ly L) = Ault? folt?

(B3 HL) = Ly L), = A0 0(t1)

is bounded in which the equality follows from (1). Hence
||f||As )= IsCOHII < Cllf 1l H) oo

The proof is complete.
If we take o(t) = 7 in Theorem 3.1, then we get the following result, which has proved by Weisz [18].

(P /ol Awlt? [g(t7))

Corollary 3.4. If0 <0 <1,0<py<1and0 < g < oo, then
1_1-6

PP

Applying the Theorem 3.1 we get the next theorem.

( Po’ fx:)eq H‘f} q’

Theorem 3.5. Let @;i(t) € Q(0,-),i = 0,1, 0 < go, 91,9 < o0 and o € Q(0,1). If @o(t)/p1(t) € Q(0,-) or
po(t)/p1(t) € Q(=,0), then

(A5, (00), A5, (00),, = A5(@),
where ¢(t) = o(t)/ p(Po(t)/1(F))-

Proof. Put gi(t) = t/@;(t) and choose p so small that g;(t) € Q(0,1),i = 0,1. According to [16, Corollary 4.4]
and Theorem 3.1 we get

(50 A5 (0),,, = ( H s (Fy He)onn),
(. )
o1/ 9)4

A(p),
where ¢(t) = @o(t)/p(po(t)/p1(t). O

The following result is a simple application of Theorem 3.5, if we take ¢;(t) = t?’lz‘,i =01

Corollary 3.6. Let 0 < p; < 00,0<g;,9<00,i=0,1and o€ Q0,1). If po # p1, then
(H;o qo’H;h’h)Q,q = A;(t%/g(t%fﬁ))

and , L
(3 H3, ), = A3t Jot770).
In particular, if o(t) = t, then
Hs) =, 1.1-6,9
p Po p1

According to Theorem 3.5 we have the following corollary.

(HZO’
Corollary 3.7. Under the hypothesis of Theorem 3.5, we have
(A5 (@0), 45, (@0),,, = Asl5 D).
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