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Abstract. In this paper, we consider a partial differential equation with a piecewise constant argument. We
study existence and uniqueness of the solutions of this equation. We also investigate oscillation, instability
and stability of the solutions.

1. Introduction

Since the early 1980’s, differential equations with piecewise constant arguments have attracted great
deal of attention of researchers in science. Differential equations with piecewise constant arguments appear
in diverse areas such as engineering, physics and mathematics. The work [1] covers a systematical study on
mathematical models with piecewise constant arguments. Differential equations with piecewise constant
arguments are closely related to difference and differential equations. Therefore, they are stated as hybrid
dynamical systems [2]. The qualitative works such as oscillation, periodicity and convergence of solutions
of ordinary differential equations with piecewise constant arguments have been studied in ([3]-[11]) .

But, there are only a few papers ([12]-[24]) for partial differential equations with piecewise constant
arguments. The first fundamental paper [12] in this direction appeared in 1991. It has been shown
that partial differential equations (PDE) with piecewise constant time naturally arise in the process of
approximating PDE by using piecewise constant arguments. Thus, if in the equation

ut = a2uxx − bu,

which describes heat flow in a rod with both diffusion a2uxx along the rod and heat loss (or gain) across the
lateral sides of the rod, the lateral heat change is measured at discrete times, then we get an equation with
piecewise constant argument (EPCA) for t ∈ [nh, (n + 1)h] , n = 0, 1, . . . ,

ut(x, t) = a2uxx(x, t) − bu(x,nh),

where h is a positive constant. This equation can be written in the form

ut(x, t) = a2uxx(x, t) − bu(x, [t/h] h).

2010 Mathematics Subject Classification. Primary 35B05, 35B35; Secondary 35K05
Keywords. Partial differential equation, piecewise constant arguments, oscillation, stability
Received: 27 September 2016; Accepted: 09 April 2017
Communicated by Marko Nedeljkov
Email addresses: bereket@science.ankara.edu.tr (Huseyin Bereketoglu), mlafci@ankara.edu.tr (Mehtap Lafci)



H. Bereketoglu, M. Lafci / Filomat 31:19 (2017), 5931–5943 5932

In [13], it is considered the diffusion-convection equation

ut(x, t) = a2uxx(x, t) − rux(x, [t/h] h)

which describes, for instance, the concentration u(x, t) of a pollutant carried along in a stream moving
with velocity r. The term a2uxx is the diffusion contribution and −rux is the convection component which is
measured at discrete times nh.

In 1992, Wiener and Debnath [14] considered partial differential equations with piecewise constant
argument of the form

ut(x, t) = a2uxx(x, t) + buxx(x, [t]) (1)

and

utt(x, t) = a2uxx(x, t) − buxx(x, [t]). (2)

They investigated qualitative properties of the solution u(x, t) = 0 of Eq. (1) and Eq. (2).
In 1997, the same authors [15] studied the following equations

ut(x, t) = a2uxx(x, t) − bu(x, [t])

and

ut(x, t) = a2uxx(x, t) − bu(x, [t +
1
2

])

and compared the behavior of solutions to these equations. In addition they considered the equation of
neutral type

ut(x, t) = a2uxx(x, t) + but(x, [t])

and studied the behavior of the solutions.
In 1999, Wiener and Heller [16] studied the system of neutral type

Ut(x, t) = AUxx(x, t) + BUt(x, [t +
1
2

])

and investigated, oscillatory and periodic solutions in the scalar case of this system with respect to different
values of A and B.

In 2014, Wang and Wen [17] investigated the asymptotic stability of the analytic solutions and the
numerical solutions of

ut(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx(x, [t + 1]).

In 2015, Veloz and Pinto [18] studied the following equation with piecewise constant argument of
generalized type of the form

ut(x, t) = a2(t)uxx(x, t) − b(t)u(x, γ(t)),

where γ(t) is a step function.
Wiener’s book [13] is a useful source with respect to both ordinary and partial differential equations

with piecewise constant arguments.
It is well known that if in an insulated rod of length l the temperature flows from x = 0 to x = l provided

that the heat energy is neither created nor destroyed in the interior of the rod, then the temperature satisfies
the heat equation. Such an equation becomes more meaningful but more complicated when the diffusion
term depends on the present time and also time delays. Moreover, as we know, there is not much work
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in PDE with piecewise constant arguments. Due to these reasons, we have been motivated to consider the
following initial boundary value problem (IBVP)

ut(x, t) = a2uxx(x, t) + buxx(x, [t − 1]), t ≥ 1, (3)
u(0, t) = u(1, t) = 0, (4)
u(x, 0) = f (x), (5)

where a, b ∈ R and a , 0, u : Ω = [0, 1]× ({0} ∪ [1,∞))→ R, [.] denotes the greatest integer function and f is
continuous function on [0, 1] .

This paper is organised as follows. In Section 2, we obtain the existence of solutions. In Section 3, we
get some results about asymptotic stability, instability and oscillation properties.

2. Existence of Solutions

Definition 2.1. A function u(x, t) is called a solution of IBVP (3) − (5) if it satisfies the following conditions:

(i) u(x, t) and
∂u
∂x

are continuous in Ω = [0, 1] × ({0} ∪ [1,∞)) ,

(ii)
∂u
∂t

and
∂2u
∂x2 are continuous in Ω, with the possible exception at the points (x, [t]) ∈ E = [0, 1] × N,

N = {0, 1, 2, . . .}, where one-sided derivatives exist with respect to second argument,
(iii) u(x, t) satisfies Eq. (3) in Ω, with the possible exception at the points (x, [t]) ∈ E and conditions (4) , (5)

Theorem 2.2. If f (x) is a continuously differentiable function on the interval 0 ≤ x ≤ 1 and satisfies the conditions
f (0) = f (1) = 0, then a formal solution of IBVP (3) − (5) has the form

u(x, t) =

∞∑
k=1

AkXk(x)Tk(t),

where

Ak =
2

T0

1∫
0

f (ξ) sinπkξdξ,

Xk(x) = sinπkx, 0 ≤ x ≤ 1, k = 1, 2, . . . , and

Tk(t) = e−a2π2k2(t−[t])T[t] −
b
a2

(
1 − e−a2π2k2(t−[t])

)
T[t]−1, 1 ≤ t < ∞, (6)

here T[t], for t ∈ [n,n + 1) , is the unique solution of the difference equation

Tn+1 − e−a2π2k2
Tn +

b
a2

(
1 − e−a2π2k2

)
Tn−1 = 0, n ≥ 1, (7)

with the initial conditions T(0) = T0 , 0, T(1) = T1.

Proof. By using the method of separation of variables, we seek the nonzero solution of (3) − (5) in the form

u(x, t) = X(x)T(t). (8)

Substituting (8) into Eq. (3) , we have

X(x)T
′

(t) = X
′′

(x)(a2T(t) + bT([t − 1]))
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or

T′ (t)
a2T(t) + bT([t − 1])

=
X′′

(x)
X(x)

= −λ2.

Therefore, we generate, respectively, the BVP{
X′′

(x) + λ2X(x) = 0,
X(0) = X(1) = 0, (9)

and the differential equation with piecewise constant argument

T
′

(t) + a2λ2T(t) = −bλ2T([t − 1]), t ≥ 1. (10)

The general solution of the equation in (9) is

X(x) = c1 cosλx + c2 sinλx,

where c1 and c2 are arbitrary constants. From X(0) = X(1) = 0, we get

λk = πk, (11)

and

Xk(x) = sinπkx, k = 1, 2, . . . , (12)

that are eigenfunctions of (9) . On the interval [n,n + 1) , n ≥ 1, by (11) , the equation (10) takes the form

T
′

(t) + a2π2k2T(t) = −bπ2k2T(n − 1). (13)

The solution of (13) with the condition T(n) = Tn is

T(t) = e−a2π2k2(t−n)T(n) −
b
a2

(
1 − e−a2π2k2(t−n)

)
T(n − 1), n ≤ t < n + 1, (14)

which implies (6) for t ∈ [1,∞) when we replace n by [t] . Furthermore, on the interval n + 1 ≤ t < n + 2, we
get from (10)

T
′

(t) + a2π2k2T(t) = −bπ2k2T(n)

which has the solution

T(t) = e−a2π2k2(t−n−1)T(n + 1) −
b
a2

(
1 − e−a2π2k2(t−n−1)

)
T(n), (15)

where T(n + 1) = Tn+1. Let us denote the solutions (14) and (15), respectively, by Tn(t) and Tn+1(t). Since T(t)
is continuous at t = n + 1,

Tn(n + 1) = Tn+1(n + 1).

Hence, we obtain the second order difference equation

Tn+1 − e−a2π2k2
Tn +

b
a2

(
1 − e−a2π2k2

)
Tn−1 = 0, n ≥ 1, (16)

which is Eq. (7). It is noted that for the unique solution of (16) , we need the initial conditions

T(0) = T0, T(1) = T1. (17)
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The characteristic equation of (16) is

λ2
− e−a2π2k2

λ +
b
a2

(
1 − e−a2π2k2

)
= 0. (18)

Now, let us investigate the solutions of Eq. (16) with respect to the characteristic roots λ1 and λ2 of Eq. (18) .
(i) If

b
a2 <

e−2a2π2k2

4(1 − e−a2π2k2 )
, (19)

then the discriminant of Eq. (18) ∆ is positive and therefore the roots λ1 and λ2 of (18) are real and distinct.
In this case, the general solution of (16) is

Tn = k1λ
n
1 + k2λ

n
2 , (20)

where k1 and k2 arbitrary constants. Applying the initial conditions (17) to (20),

T0 = k1 + k2, T1 = k1λ1 + k2λ2

and so

k1 =
T0λ2 − T1

λ2 − λ1
, k2 =

T1 − T0λ1

λ2 − λ1
.

Substituting k1 and k2 into (20) , we get the unique solution of the difference equation (16) with subject to
the initial conditions (17) as

Tn =
T0λ2 − T1

λ2 − λ1
λn

1 +
T1 − T0λ1

λ2 − λ1
λn

2 . (21)

Putting (21) into (14) , we have on the interval n ≤ t < n + 1

Tk(t) = e−a2π2k2(t−n)
[T0λ2 − T1

λ2 − λ1
λn

1 +
T1 − T0λ1

λ2 − λ1
λn

2

]
−

b
a2

(
1 − e−a2π2k2(t−n)

) [T0λ2 − T1

λ2 − λ1
λn−1

1 +
T1 − T0λ1

λ2 − λ1
λn−1

2

]
, k = 1, 2, . . . .

This Tk(t) can be written on the interval 1 ≤ t < ∞ as

Tk(t) = e−a2π2k2(t−[t])
[T0λ2 − T1

λ2 − λ1
λ[t]

1 +
T1 − T0λ1

λ2 − λ1
λ[t]

2

]
−

b
a2

(
1 − e−a2π2k2(t−[t])

) [T0λ2 − T1

λ2 − λ1
λ[t]−1

1 +
T1 − T0λ1

λ2 − λ1
λ[t]−1

2

]
, k = 1, 2, . . . . (22)

(ii) If

b
a2 =

e−2a2π2k2

4(1 − e−a2π2k2 )
,

then ∆ = 0. Hence λ1 = λ2 = λ, the general solution of (16) is

Tn = (k1 + k2n)λn, (23)

where k1, k2 arbitrary constants. Applying the initial conditions (17) to (23),

k1 = T0, k2 =
T1 − T0λ

λ
.
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Hence, we have the unique solution of (16) − (17) as

Tn =
[
T0 +

(T1 − T0λ
λ

)
n
]
λn, (24)

which is also the limiting case of (21) as λ1 → λ2. Combining (24) and (14) , we get

Tk(t) = e−a2π2k2(t−n)
[
T0 +

(T1 − T0λ
λ

)
n
]
λn

−
b
a2

(
1 − e−a2π2k2(t−n)

) [
T0 +

(T1 − T0λ
λ

)
(n − 1)

]
λn−1, n ≤ t < n + 1.

This Tk(t) can be calculated on the interval 1 ≤ t < ∞ similar to (22) .
(iii) If

b
a2 >

e−2a2π2

4(1 − e−a2π2 )
,

then ∆ < 0. So λ1 and λ2 are complex conjugate roots. Let us take λ1,2 = α ± iβ. The general solution of (16)
is

Tn = rn(k1 cos nθ + k2 sin nθ), (25)

where r =
√
α2 + β2, θ = tan−1

(
β

α

)
, α, β ∈ R, β , 0 and θ , mπ, m = 0, 1, 2, . . . . Using initial conditions (17)

in (25) , the unique solution of IVP (16) − (17)

Tn = rn
[
T0 cos nθ +

(T1 − rT0 cosθ
r sinθ

)
sin nθ

]
. (26)

Combining (26) and (14) , we get, n ≤ t < n + 1,

Tk(t) = e−a2π2k2(t−n)rn
[
T0 cos nθ +

(T1 − rT0 cosθ
r sinθ

)
sin nθ

]
−

b
a2

(
1 − e−a2π2k2(t−n)

)
rn−1

[
T0 cos(n − 1)θ +

(T1 − rT0 cosθ
r sinθ

)
sin(n − 1)θ

]
.

This Tk(t) can be found on the interval 1 ≤ t < ∞ similar to (22) . So, for k = 1, 2, . . . ,

uk(x, t) = Xk(x)Tk(t) (27)

satisfy both Eq. (3) and the boundary conditions (4). Also, by virtue of the principle of superposition, the
series

u(x, t) =

∞∑
k=1

Ak sinπkx Tk(t) (28)

is a solution of BVP (3)− (4) ,where the coefficient Ak are arbitrary constants. Applying the initial condition
(5) to (28), we obtain

u(x, 0) = f (x) =

∞∑
k=1

Ak sinπkx Tk(0), 0 ≤ x ≤ 1,

where

AkTk(0) = 2

1∫
0

f (ξ) sinπkξdξ.
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Since Tk(0) = T0 , 0 in three cases (i), (ii) and (iii), Ak are calculated uniquely as

Ak =
2

T0

1∫
0

f (ξ) sinπkξdξ. (29)

Therefore, the series (28) with (29) denotes the formal solution of IBVP (3) − (5) .

3. Main Results

In this section, we study asymptotic stability, instability and oscillation of the solutions. We construct
our results with respect to the characteristic roots λ1 and λ2 of (18) .

3.1. λ1 and λ2 are Real

We give the following theorems under the condition

b
a2 <

e−2a2π2k2

4(1 − e−a2π2k2 )
. (30)

Theorem 3.1. If

−1 <
b
a2 < 0, (31)

then the solution Tn = 0 of difference equation (16) and the solution Tk = 0 of Eq. (10) are asymptotically stable.

Proof. Since the characteristic roots of (18) are real, we have

∣∣∣λ1,2

∣∣∣ =

∣∣∣∣∣∣∣∣∣
e−a2π2k2

2
±

√
e−2a2π2k2

− 4 b
a2 (1 − e−a2π2k2 )

2

∣∣∣∣∣∣∣∣∣ . (32)

From (31) , we get

∣∣∣λ1,2

∣∣∣ <
1
2

∣∣∣∣∣∣∣e−a2π2k2
+

√(
e−a2π2k2

− 2
)2

∣∣∣∣∣∣∣
=

1
2

∣∣∣e−a2π2k2
+ (−e−a2π2k2

+ 2)
∣∣∣

and ∣∣∣λ1,2

∣∣∣ < 1.

It is well-known that the solution Tn = 0 of difference equation (16) is asymptotically stable if and only if

|λ1| < 1 and |λ2| < 1. (33)

Therefore the solution Tn = 0 of Eq. (16) is asymptotically stable.
Next we prove that the solution Tk = 0 of Eq. (10) is also asymptotically stable. If the solution Tk = 0 of

Eq. (10) is stable and lim
t→∞
|Tk(t)| = 0, then the solution Tk = 0 is asymptotically stable.

The solution Tk = 0 of Eq. (10) is stable if, for every ε > 0, there is a δ > 0 such that whenever |T0| < δ
and |T1| < δ, |Tk(t)| < ε.
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From (6) and (21),

|Tk(t)| =

∣∣∣∣∣e−a2π2k2(t−[t])
[T0λ2 − T1

λ2 − λ1
λ[t]

1 +
T1 − T0λ1

λ2 − λ1
λ[t]

2

]
−

b
a2

(
1 − e−a2π2k2(t−[t])

) [T0λ2 − T1

λ2 − λ1
λ[t]−1

1 +
T1 − T0λ1

λ2 − λ1
λ[t]−1

2

]∣∣∣∣∣ .
(34)

Since e−a2π2k2(t−[t]) < 1 and by (31) , (34) is written as

|Tk(t)| < |T0| |λ1| |λ2|

∣∣∣∣∣∣∣λ
[t]−1
1 − λ[t]−1

2

λ2 − λ1

∣∣∣∣∣∣∣ + |T1|

∣∣∣∣∣∣∣λ
[t]
2 − λ

[t]
1

λ2 − λ1

∣∣∣∣∣∣∣
+ |T0| |λ1| |λ2|

∣∣∣∣∣∣∣λ
[t]−2
1 − λ[t]−2

2

λ2 − λ1

∣∣∣∣∣∣∣ + |T1|

∣∣∣∣∣∣∣λ
[t]−1
2 − λ[t]−1

1

λ2 − λ1

∣∣∣∣∣∣∣ . (35)

We know 0 < λ1 < 1 and −1 < λ2 < 0. So, from (35) , we get

|Tk(t)| < 2 |T0| + 2 |T1|

or

|Tk(t)| < 4δ = ε.

So, Tk = 0 is stable.
Now, we show that lim

t→∞
|Tk(t)| = 0. From (35) , we have

0 < lim
t→∞
|Tk(t)|

< lim
t→∞

1
|λ2 − λ1|

(∣∣∣λ[t]−1
1

∣∣∣ (|T0| |λ1| |λ2| + |T1|) +
∣∣∣λ[t]−1

2

∣∣∣ (|T0| |λ1| |λ2| + |T1|)

+
∣∣∣λ[t]

1

∣∣∣ |T1| +
∣∣∣λ[t]

2

∣∣∣ |T1| +
∣∣∣λ[t]−2

1

∣∣∣ |T0| |λ1| |λ2| +
∣∣∣λ[t]−2

2

∣∣∣ |T0| |λ1| |λ2|
)
.

(36)

Also,

|λ1| < 1 =⇒ lim
[t]→∞

λ[t]
1 = 0,

(37)
|λ2| < 1 =⇒ lim

[t]→∞
λ[t]

2 = 0

and so (36) implies

lim
t→∞
|Tk(t)| = 0.

Therefore, the solution Tk = 0 is asymptotically stable.

Theorem 3.2. The condition

b
a2 < −1 (38)

is necessary and sufficient so that the solution Tn = 0 of difference equation (16) is unstable.
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Proof. First, let

b
a2 < −1.

Then the characteristic roots of (18) are real. So we have

λ1 =
e−a2π2k2

2
+

√
e−2a2π2k2

− 4 b
a2 (1 − e−a2π2k2 )

2

>
1
2

(
e−a2π2k2

+

√
e−2a2π2k2 + 4(1 − e−a2π2k2 )

)
> 1

and

λ2 =
e−a2π2k2

2
−

√
e−2a2π2k2

− 4 b
a2 (1 − e−a2π2k2 )

2

<
1
2

(
e−a2π2k2

−

√
e−2a2π2k2 + 4(1 − e−a2π2k2 )

)
< 0.

Hence we find that at least one of the characteristic roots (λ1 and λ2) is bigger than 1. It is known that the
solution Tn = 0 of difference equation (16) is unstable if and only if

|λ1| > 1 or |λ2| > 1.

So the solution Tn = 0 of difference equation (16) is unstable.
Now, assume that the solution Tn = 0 of difference equation (16) is unstable, i.e, λ1 > 1. So

e−a2π2k2

2
+

√
e−2a2π2k2

− 4 b
a2 (1 − e−a2π2k2 )

2
> 1. (39)

From (39) , we get (38) .

Theorem 3.3. If (38) holds, then the solution Tk = 0 of Eq. (10) is unstable.

Proof. Under this condition we know, from Theorem 3.2, that the solution Tn = 0 of the difference equation
(16) is unstable, i.e,

∣∣∣T[t]

∣∣∣→∞ and
∣∣∣T[t]−1

∣∣∣→∞ as t→∞with T0 , 0 or T1 , 0, considering (6) gives us

Tk(t) = e−a2π2k2(t−[t])T[t] −
b
a2

(
1 − e−a2π2k2(t−[t])

)
T[t]−1 (40)

and so, Tk(t)→∞ as t→∞. Hence the solution Tk = 0 of Eq. (10) is unstable.

3.2. λ1 and λ2 are Equal

Theorem 3.4. If

b
a2 =

e−2a2π2k2

4(1 − e−a2π2k2 )
, k = 1, 2, . . . , (41)

then the solution Tn = 0 of difference equation (16) is asymptotically stable, while the solution Tk = 0 of Eq. (10) is
unstable.



H. Bereketoglu, M. Lafci / Filomat 31:19 (2017), 5931–5943 5940

Proof. From (41), we get ∆ = 0, where ∆ is the discriminant of Eq. (18) . So we get

λ1,2 = λ =
e−a2π2k2

2
.

Since 0 < e−a2π2k2
< 1, we have

0 < λ <
1
2
.

Hence, the solution Tn = 0 is asymptotically stable.
Next we prove that the solution Tk = 0 of Eq. (10) is unstable. In this case, from (6) and (24) , we get

Tk(t) = (T0λ + (T1 − T0λ) [t])λ[t]−2

(
λe−a2π2k2(t−[t])

−
b
a2

(
1 − e−a2π2k2(t−[t])

))
+

b
a2

(
1 − e−a2π2k2(t−[t])

)
(T1 − T0λ)λ[t]−2. (42)

The term [t] in (42) makes Tk(t) unbounded, since t ∈ [1,∞) . Hence Tk = 0 is unstable.

3.3. λ1 and λ2 are Complex
We give the following theorems under the condition

b
a2 >

e−2a2π2

4(1 − e−a2π2 )
. (43)

Theorem 3.5. The condition

b
a2 <

1
1 − e−a2π2k2 (44)

is necessary and sufficient so that the solution Tn = 0 of difference equation (16) and also the solution Tk = 0 of
differential equation (10) are asymptotically stable.

Proof. From (43) , we know that ∆ < 0, so we have

λ1,2 =
e−a2π2k2

2
±

i
√
−e−2a2π2k2 + 4 b

a2 (1 − e−a2π2k2 )

2
(45)

and

r =

√
1
4

[
e−2a2π2k2 +

(
−e−2a2π2k2 + 4

b
a2 (1 − e−a2π2k2 )

)]
=

√
b
a2 (1 − e−a2π2k2 ). (46)

From (46) and (44) , we have

0 < r < 1

and the solution Tn = 0 of difference equation (16) is asymptotically stable.
Now, let the solution Tn = 0 of difference equation (16) is asymptotically stable. So we have∣∣∣∣∣∣∣

√
b
a2 (1 − e−a2π2k2 )

∣∣∣∣∣∣∣ < 1.
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By using the condition (43) , we get√
b
a2 (1 − e−a2π2k2 ) < 1.

Taking square both side, we obtain (44) .
Next we prove that the solution Tk = 0 of Eq. (10) is asymptotically stable. From (6) and (26) , we have

|Tk(t)| =

∣∣∣∣∣e−a2π2k2(t−[t])r[t]−1
(
rT0 cos ([t]θ) +

(T1 − rT0 cosθ
sinθ

)
sin ([t]θ)

)
−

b
a2

(
1 − e−a2π2k2(t−[t])

)
r[t]−2

(
rT0 cos(([t] − 1)θ) +

(T1 − rT0 cosθ
sinθ

)
sin(([t] − 1)θ)

)∣∣∣∣∣ . (47)

Since e−a2π2k2(t−[t]) < 1, sin ([t]θ) < 1, cos ([t]θ) < 1 and (44) , we get

|Tk(t)| <
∣∣∣r[t]−1

∣∣∣ (|r| |T0| + |T1|

∣∣∣∣∣ 1
sinθ

∣∣∣∣∣ + |r| |T0| |cotθ|
)

+
1

1 − e−a2π2k2

∣∣∣r[t]−2
∣∣∣ (|r| |T0| + |T1|

∣∣∣∣∣ 1
sinθ

∣∣∣∣∣ + |r| |T0| |cotθ|
)
. (48)

Since |r| < 1, |T0| < δ and |T1| < δ,

|T(t)| <
(
1 +

1
1 − e−a2π2k2

) (
1 + |cotθ| +

∣∣∣∣∣ 1
sinθ

∣∣∣∣∣) δ = ε.

Hence Tk = 0 is stable.
We show lim

t→∞
|Tk(t)| = 0. If we take limit of (48) , then we get

0 < lim
t→∞
|Tk(t)|

< lim
t→∞

[∣∣∣r[t]−1
∣∣∣ (|r| |T0| + |r| |T0| |cotθ| + |T1|

∣∣∣∣∣ 1
sinθ

∣∣∣∣∣)
+

1
1 − e−a2π2k2

∣∣∣r[t]−2
∣∣∣ (|r| |T0| + |r| |T0| |cotθ| + |T1|

∣∣∣∣∣ 1
sinθ

∣∣∣∣∣)] = 0, (49)

since

|r| < 1⇔ lim
[t]→∞

r[t] = 0. (50)

So, the solution Tk = 0 of Eq. (10) is asymptotically stable.
Conversely, if Tk = 0 is asymptotically stable, then, from (49) and (50) , |r| < 1. Hence we get (44) .

Theorem 3.6. The condition

b
a2 >

1
1 − e−a2π2 (51)

is necessary and sufficient so that the solution Tn = 0 of difference equation (16) is unstable.

Proof. From (43) , we know that ∆ < 0, so we have (45) and (46). Since (51) is hold, we get

b
a2 >

1
1 − e−a2π2k2 , k = 1, 2 . . . . (52)

In view of (52) , (46) yields

r > 1. (53)
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We know that the solution Tn = 0 of difference equation (16) is unstable if and only if

|r| > 1.

Hence the solution Tn = 0 of Eq. (16) is unstable.
Now, let the solution Tn = 0 of difference equation (16) is unstable. So we have (53) and√

b
a2 (1 − e−a2π2k2 ) > 1.

Hence we get

b
a2 >

1
1 − e−a2π2k2 , k = 1, 2 . . . . (54)

Since the function
1

1 − e−a2π2k2 is decreasing, we get (51).

Theorem 3.7. If the inequality (51) is satisfied, then the solution Tk = 0 of Eq. (10) is unstable.

Proof. Let (51) is satisfied. From Theorem (3.6) , we get
∣∣∣T[t]

∣∣∣→ ∞ and
∣∣∣T[t]−1

∣∣∣→ ∞ as t→ ∞ with T0 , 0 or
T1 , 0. Hence, from (40) , |Tk(t)| → ∞ as t→∞. So the solution Tk = 0 of Eq. (10) is unstable.

Theorem 3.8. If (43) is satisfied, then the solutions Tn of difference equation (16) are oscillatory.

Proof. By (43), we get

4b
a2 >

e−2a2π2

1 − e−a2π2 ≥
e−2a2π2k2

1 − e−a2π2k2 , k = 1, 2, . . . , (55)

From (55),

∆ =

√
e−2a2π2k2

− 4
b
a2 (1 − e−a2π2k2 ) < 0

and the characteristic roots λ1, λ2 are conjugate complex. So the solutions are oscillatory.
Hence the solutions Tk(t) of Eq. (10) are oscillatory.

Theorem 3.9. If
b
a2 > 0, then the solutions Tn of difference equation (16) are oscillatory, for sufficiently large k.

Proof. For sufficiently large k, we have

λ1,2 = ±

√
−

b
a2 .

Since −
b
a2 < 0, λ1 and λ2 are conjugate complex. So the solutions Tn of Eq. (16) and the solutions T(t) of Eq.

(10) are oscillatory.

Remark 3.10. Since |sinπkx| < 1, asymptotic stability or instability of solution u(x, t) = 0 of BVP (3)− (5) coincide
with asymptotic stability or instability of solution Tk(t) = 0 of differential equations (10) .

Remark 3.11. Since |sinπkx| < 1, oscillation of the solutions u(x, t) of BVP (3)− (5) coincide with oscillation of the
solutions Tk(t) of differential equations (10) .
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