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Abstract. This paper concerns the relationship between uniform boundedness and convergence of various
generalized inverses. Using the stable perturbation for generalized inverse and the gap between closed
linear subspaces, we prove the equivalence of the uniform boundedness and convergence for generalized
inverses. Based on this, we consider the cases for the Moore-Penrose inverses and group inverses. Some
new and concise expressions and convergence theorems are provided. The obtained results extend and
improve known ones in operator theory and matrix theory.

1. Introduction and Preliminaries

Let X and Y be Banach spaces and B(X,Y) the Banach space of all bounded linear operators from X into
Y. We write B(X) as B(X,X). For any T ∈ B(X,Y), we denote by N(T) and R(T) the null space and the range
of T, respectively. The identity operator will be denoted by I.

Definition 1.1. Let X and Y be Hilbert spaces. An operator S ∈ B(Y,X) is called the Moore-Penrose inverse of
T ∈ B(X,Y) if S satisfies the four Penrose equations:

(1) TST = T; (2) STS = S; (3) (TS)∗ = TS; (4) (ST)∗ = ST,

where T∗ denotes the adjoint operator of T. The Moore-Penrose inverse of T is always written by T†, which is uniquely
determined if it exists.

Definition 1.2. Let X and Y be Banach spaces. An operator S ∈ B(Y,X) is called a generalized inverse of T ∈ B(X,Y)
if S satisfies:

(1) TST = T and (2) STS = S,

The generalized inverse of T is always denoted by T+. Furthermore, if X = Y and S also satisfies

(5) TS = ST,

the corresponding generalized inverse is called the group inverse, denoted by T], which is unique if it exists.
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Generalized inverses, Moore-Penrose inverses and group inverses have lots of applications in many
fields, such as optimization, statistics and singular linear equations (see[3, 16, 17, 24]). For instance, let
T ∈ B(X,Y) and b ∈ Y. To consider the linear equation

Tx = b (1.1)

with the unknown x ∈ X, we can investigate the approximating equation

Tnx = bn (1.2)

where Tn ∈ B(X,Y) with Tn → T in the usual operator norm of B(X,Y) and bn ∈ Y with bn → b in Y as
n→ +∞. It is natural to ask whether the approximating solution (1.2) converges to the real solution of (1.1).
For example, if Tn and T are invertible, does T−1

n bn → T−1b or T−1
n → T−1 hold? The following theorem is

well-known.

Theorem 1.3. Let T ∈ B(X,Y) be invertible and T−1 its inverse. If Tn ∈ B(X,Y) satisfies Tn → T, then there exists
N ∈ N, such that for all n ≥ N, Tn is invertible and

T−1
n → T−1.

In this case, sup
n≥N
‖T−1

n ‖ < +∞. Conversely, if Tn is invertible and sup
n∈N
‖T−1

n ‖ < +∞, we have

Theorem 1.4. Let Tn and T ∈ B(X,Y) satisfy Tn → T. If Tn is invertible and sup
n∈N
‖T−1

n ‖ < +∞, then T is invertible

and
T−1

n → T−1.

It can be claimed that in the case of invertible operators, the uniform boundedness of ‖T−1
n ‖ can imply

the invertibility of T and the convergence T−1
n → T−1, i.e., under the condition of uniform boundedness,

the approximating solution does converge to the real solution. If T is not invertible, what happens?
Particularly, does Theorem 1.4 hold for the case of Moore-Penrose inverses, group inverses or generalized
inverses? Much attention has been paid to the perturbation and convergence problem for Moore-Penrose,
group and Drazin inverses [1, 2, 4–8, 10, 13–15, 19–23, 25]. For instance, J. Koliha [13], J. Benı́tez, D.
Cvetković-Ilić and X. Liu [1] gave the following theorems (in C∗-algebra).

Theorem 1.5. [13] Let X,Y be Hilbert spaces and Tn,T ∈ B(X,Y) with Tn → T. If Tn is Moore-Penrose invertible
and sup

n∈N
‖T†n‖ < +∞, then T is Moore-Penrose invertible and

T†n → T†.

Theorem 1.6. [1] Let X be Banach space and Tn,T ∈ B(X) with Tn → T. If the group inverse T]n exists and
sup
n∈N
‖T]n‖ < +∞, then T] exists and

T]n → T].

That is, Theorem 1.4 holds for the Moore-Penrose inverses and group inverses. How about the general-
ized inverses?

Example 1.7. Let

Tn =

(
1 − 1

n 0
1
n 0

)
and T =

(
1 0
0 0

)
,

then Tn → T, the Moore-Penrose inverse T†n and the group inverse T]n are

T†n =

(
n2
−n

n2−2n+2
n

n2−2n+2
0 0

)
and T]n =

( n
n−1 0

n
(n−1)2 0

)
,
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respectively, which converge to the Moore-Penrose inverse and group inverse of T,

T† = T] =

(
1 0
0 0

)
.

It is easy to verify that

T+
n =

(
1 1
αn αn

)
(∀ αn ∈ R)

is a generalized inverse of Tn. Let αn = (−1)n, then {T+
n } is uniformly bounded but not convergent, i.e.,

sup
n∈N
‖T+

n ‖ < +∞ does not imply T+
n → T+,

although Rank Tn= Rank T.

It can be said that the case of generalized inverses is totally different from that of Moore-Penrose inverses
and group inverses. In this paper, we shall use the stable perturbation to investigate the link between the
uniform boundedness and convergence of generalized inverses. For the stable perturbation of generalized
inverses, we have

Theorem 1.8. [Finite Rank Theorem][16] Let T ∈ B(X,Y) be of finite rank and T+ a generalized inverse of T. Let
T = T + δT ∈ B(X,Y) with ‖T+δT‖ < 1. Then B = (I + T+δT)−1T+ is a generalized inverse of T if and only if

Rank T = Rank T < ∞.

Theorem 1.9. [16] Let T ∈ B(X,Y) with a generalized inverse T+
∈ B(Y,X) and δT ∈ B(X,Y) with ‖T+δT‖ < 1.

Then the following statements are equivalent:
(1) B = (I + T+δT)−1T+ is a generalized inverse of T = T + δT;
(2) R(T) ∩N(T+) = {0};
(3) Y = R(T) ⊕N(T+);
(4) X = N(T) ⊕ R(T+);
(5) (I + δTT+)−1TN(T) ⊂ R(T).

In the next section, we first give an equivalent condition for the uniform boundedness and convergence
of generalized inverse. Applications to the Moore-Penrose inverse and group inverse are also considered.
It is worth mentioning that our proof is brief and some concrete expressions are provided. Our results
extend and improve many known ones in operator theory and matrix theory.

2. Main Results

Following T. Kato[12], for any closed linear subspaces M and N of X, we define the gap between M and
N by

gap(M,N) = max{δ(M,N), δ(N,M)}

where δ({0},N) = 0 and
δ(M,N) = sup{d(u,N) : u ∈M, ‖u‖ = 1}, M , {0},

and d(u,N) = inf{‖u − x‖ : x ∈ N}.

Lemma 2.1. Let Tn,T ∈ B(X,Y) have generalized inverses T+
n ,T+

∈ B(Y,X), respectively. Then

δ(R(Tn),R(T)) ≤ ‖I − TT+
‖‖Tn − T‖‖T+

n ‖.
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Proof. If R(Tn) = {0}, then Tn = 0. Hence T+
n = 0 and the inequality holds. If R(Tn) , {0}, let u ∈ R(Tn) and

‖u‖ = 1, then

d(u,R(T)) = inf{‖u − TT+y‖ : y ∈ Y}
≤ ‖u − TT+u‖
= ‖(I − TT+)u‖
= ‖(I − TT+)TnT+

n u‖
= ‖(I − TT+)[T + (Tn − T)]T+

n u‖
= ‖(I − TT+)(Tn − T)T+

n u‖
≤ ‖I − TT+

‖‖Tn − T‖‖T+
n ‖‖u‖

= ‖I − TT+
‖‖Tn − T‖‖T+

n ‖.

Thus we get what we desired.

Theorem 2.2. Let Tn,T ∈ B(X,Y) be generalized invertible and Tn → T. If the generalized inverse T+
n satisfies

sup
n∈N
‖T+

n ‖ < +∞, then for any generalized inverse T+, there exists a generalized inverse T⊕n of Tn, such that

T⊕n → T+.

Proof. From Theorem 1.9, it is enough to prove that for all sufficiently large n,

R(Tn) ∩N(T+) = {0}. (2.1)

In fact, if so,
T⊕n = T+[I + (Tn − T)T+]−1 = [I + T+(Tn − T)]−1T+

is a generalized inverse of Tn and obviously, T⊕n → T+. Assume that (2.1) does not hold, then for any k ∈ N,
there always is an nk > k, such that

R(Tnk ) ∩N(T+) , {0}.

We can take some ynk ∈ R(Tnk )∩N(T+) satisfying ‖ynk‖ = 1. Hence (I−TT+)ynk = ynk , 0, and so I−TT+ , 0.
Thus for all x ∈ X,

‖ynk − Tx‖ ≥ ‖I − TT+
‖
−1
‖(I − TT+)(ynk − Tx)‖

= ‖I − TT+
‖
−1
‖ynk‖

= ‖I − TT+
‖
−1.

This means
d(ynk ,R(T)) ≥ ‖I − TT+

‖
−1

and therefore
δ(R(Tnk ),R(T)) ≥ ‖I − TT+

‖
−1.

Combining it with Lemma 2.1, we can obtain

‖I − TT+
‖‖Tnk − T‖‖T+

nk
‖ ≥ δ(R(Tnk ),R(T)) ≥ ‖I − TT+

‖
−1,

which implies
‖Tnk − T‖‖T+

nk
‖ ≥ ‖I − TT+

‖
−2.

Noting sup
n∈N
‖T+

n ‖ < +∞, we get a contradiction.

Remark 2.3. Even if sup
n∈N
‖T+

n ‖ < +∞, {T+
n } may not be convergent. But we can find another convergent generalized

inverses {T⊕n }.
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Example 2.4. In Example 1.7, {T+
n } (αn = (−1)n) is uniformly bounded and not convergent, but

T⊕n = T†[I + (Tn − T)T†]−1 =

(
n

n−1 0
0 0

)
is a generalized inverse of Tn and converges to T†.

Corollary 2.5. Let T ∈ B(X,Y) be of finite rank. If Tn ∈ B(X,Y) and Tn → T, then the following statements are
equivalent:
(1) Rank Tn = Rank T for all sufficiently large n;
(2) there exists N ∈ N, such that for all n ≥ N, Tn has a generalized inverse T+

n satisfying

sup
n≥N
‖T+

n ‖ < +∞;

(3) for any generalized inverse T+ of T, there exists N ∈ N, such that for all n ≥ N, Tn has a generalized inverse T+
n

satisfying
T+

n → T+.

Proof. It is enough to prove (1) ⇔ (3). Noting that (1) ⇒ (3) comes from Theorem 1.8, we only need to
show (3) ⇒ (1). If Tn has a generalized inverse T+

n satisfying T+
n → T+, then projectors TnT+

n → TT+.
Hence by Lemma 4.10 in [12], there exists N ∈ N, such that for all n ≥ N, dim R(TnT+

n ) = dim R(TT+), i.e.,
Rank Tn = Rank T.

Remark 2.6. It should be noted that in (2) of Corollary 2.5, not every generalized inverse T+
n satisfies sup

n∈N
‖T+

n ‖ < +∞.

Example 2.7. In Example 1.7, if we take αn = n, then

T+
n =

(
1 1
n n

)
is a generalized inverse of Tn and sup

n∈N
‖T+

n ‖ = +∞, although Rank Tn = Rank T.

It should be pointed out that the generalized invertibility of T in Theorem 2.2 can not be deleted. But in
the case of Hilbert space, it can be done.

Lemma 2.8. [11] Let X,Y be Hilbert spaces and T ∈ B(X,Y) with a generalized inverse T+
∈ B(Y,X). Then T has

the Moore–Penrose inverse T† and

T† = [I − T+T − (T+T)∗]−1T+[I − TT+
− (TT+)∗]−1.

Theorem 2.9. Let X,Y be Hilbert spaces and Tn,T ∈ B(X,Y) with Tn → T. If Tn has a generalized inverse T+
n

satisfying sup
n∈N
‖T+

n ‖ < +∞, then T has a generalized inverse. Moreover, for any generalized inverse T+, there exists a

generalized inverse T⊕n of Tn such that
T⊕n → T+.

Proof. By Lemma 2.8, the Moore-Penrose inverse T†n exists. It follows from

T†n = T†nTnT†n = T†nTnT+
n TnT†n

that ‖T†n‖ ≤ ‖T†nTn‖‖T+
n ‖‖TnT†n‖ = ‖T+

n ‖ and so sup
n∈N
‖T†n‖ < +∞. Utilizing the equality (2.1) in [11], i.e.,

T†m − T†n = −T†m(Tm − Tn)T†n + (I − T†mTm)(T∗m − T∗n)(T†n)∗T†n + T†m(T†m)∗(T∗m − T∗n)(I − TnT†n),

we know that {T†n} is a Cauchy sequence in B(Y,X). Assuming T†n → S ∈ B(Y,X), we take the limit in the
four Penrose equations and hence S is the Moore-Penrose inverse of T. By Theorem 2.2, we can get the
conclusion.
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In fact, we have proved Theorem 1.5 and obtained the expression of the Moore-Penrose inverse T†n.

Theorem 2.10. Let X,Y be Hilbert spaces and Tn,T ∈ B(X,Y) with Tn → T. If Tn is Moore-Penrose invertible and
sup
n∈N
‖T†n‖ < +∞, then T is Moore-Penrose invertible,

T†n → T†

and for all sufficiently large n,

T†n = [I − BnTn − (BnTn)∗]−1Bn[I − TnBn − (TnBn)∗]−1,

where Bn = [I + T†(Tn − T)]−1T†.

Proof. From Theorem 2.9, T is generalized invertible and then it is Moore-Penrose invertible. Then by the
proof of Theorem 2.2, Bn = [I + T†(Tn − T)]−1T† is a generalized inverse of Tn. It follows from Lemma 2.8
that

T†n = [I − BnTn − (BnTn)∗]−1Bn[I − TnBn − (TnBn)∗]−1

and obviously, T†n → T†.

For finite-rank operators between Hilbert spaces, we have

Corollary 2.11. Let X,Y be Hilbert spaces and T ∈ B(X,Y) be of finite rank. If Tn ∈ B(X,Y) and Tn → T, then the
following statements are equivalent:
(1) Rank Tn = Rank T for all sufficiently large n;
(2) there exists N ∈ N, such that for all n ≥ N, Tn is Moore-Penrose invertible and the Moore-Penrose inverse T†n
satisfies T†n → T†;
(3) there exists N ∈ N, such that for all n ≥ N, Tn is Moore-Penrose invertible and the Moore-Penrose inverse T†n
satisfies

sup
n∈N
‖T†n‖ < +∞;

(4) there exists N ∈ N, such that for all n ≥ N, Tn has a generalized inverse T+
n satisfying

sup
n∈N
‖T+

n ‖ < +∞;

(5) for any generalized inverse T+ of T, there exists N ∈ N, such that for all n ≥ N, Tn has a generalized inverse T+
n

satisfying
T+

n → T+.

Proof. Obviously, (1)⇔ (5)⇒ (2)⇒ (3)⇒ (4)⇒ (5) ((5)⇒ (2) comes from Lemma 2.8).

Next we shall discuss the uniform boundedness and convergence of group inverse. We first prove the
following convergence theorem which is parallel to Theorem 2.3 in [9].

Theorem 2.12. Let X be a Banach space and T ∈ B(X) be group invertible. Let Tn ∈ B(X) satisfy Tn → T. Then the
following statements are equivalent:
(1) for all sufficiently large n,

R(Tn) ∩N(T]) = {0};

(2) there exists N ∈ N, such that for all n ≥ N, Tn is group invertible with

T]n → T].

In this case, for all sufficiently large n,

T]n = BnW−1
n + (I − BnTn)W−1

n BnW−1
n , (2.2)

where Bn = [I + T](Tn − T)]−1T] and Wn = BnTn + TnBn − I.
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Proof. (1)⇒ (2). It follows from Theorem 1.9 that for all sufficiently large n,

Bn � T][I + (Tn − T)T]]−1 = [I + T](Tn − T)]−1T]

is a generalized inverse of Tn. Noticing (2TT] − I)2 = I, we get that 2TT] − I is invertible and (2TT] − I)−1 =

2TT] − I. Since

BnTn + TnBn − I = [I + T](Tn − T)]−1T]Tn + TnT][I + (Tn − T)T]]−1
− I

= [I + T](Tn − T)]−1
{T]Tn[I + (Tn − T)T]] + [I + T](Tn − T)]TnT]

−[I + T](Tn − T)][I + (Tn − T)T]]}[I + (Tn − T)T]]−1

= [I + T](Tn − T)]−1[T]T + TT] − I + T](T2
n − T2)T]][I + (Tn − T)T]]−1

= [I + T](Tn − T)]−1[2TT] − I + T](T2
n − T2)T]][I + (Tn − T)T]]−1,

we know that for all sufficiently large n, Wn � BnTn + TnBn − I is invertible. In the following, we shall show
that

Sn � BnW−1
n + (I − BnTn)W−1

n BnW−1
n = TnBnW−1

n BnW−1
n

is the group inverse of Tn. In fact, if we set Pn = BnTn and Qn = TnBn, then Pn and Qn are idempotent
operators, and

PnWn = PnQn = WnQn,

QnWn = QnPn = WnPn,

WnTn = BnT2
n = PnTn.

Hence
W−1

n Pn = QnW−1
n , W−1

n Qn = PnW−1
n , PnQnW−1

n = Pn, W−1
n PnTn = Tn.

Therefore, by the definition of Sn, we obtain TnSn = TnBnW−1
n = QnW−1

n ,

TnSnTn = QnW−1
n Tn = W−1

n PnTn = Tn,

SnTnSn = SnTnBnW−1
n

= Sn(TnBnW−1
n − I) + Sn

= Sn(TnBn −Wn)W−1
n + Sn

= Sn(I − BnTn)W−1
n + Sn

= TnBnW−1
n BnW−1

n (I − BnTn)W−1
n + Sn

= TnBnW−1
n BnQnW−1

n (I − BnTn)W−1
n + Sn

= TnBnW−1
n BnW−1

n Pn(I − BnTn)W−1
n + Sn

= Sn

and BnW−1
n Tn = BnQnW−1

n Tn = BnW−1
n PnTn = BnTn = Pn,

SnTn = BnW−1
n Tn + (I − BnTn)W−1

n BnW−1
n Tn

= Pn + W−1
n BnW−1

n Tn − PnW−1
n BnW−1

n Tn

= Pn + W−1
n Pn − PnW−1

n Pn

= Pn + W−1
n Pn − PnQnW−1

n

= Pn + W−1
n Pn − Pn

= W−1
n Pn

= QnW−1
n

= TnSn.
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Thus we have concluded that Sn is the group inverse of Tn and obviously,

Sn → T](2TT] − I)−1 + (I − T]T)(2TT] − I)−1T](2TT] − I)−1

= T](2TT] − I) + (I − T]T)(2TT] − I)T](2TT] − I)
= T].

(2)⇒ (1). Without loss of generality, we can suppose that

‖T]nTn − T]T‖ < 1 and ‖Tn − T‖‖T]‖ < 1.

Then I − (T]nTn − T]T) and I + (Tn − T)T] are invertible. For any x ∈ N(T), set

yn = (I − T]nTn)[I − (T]nTn − T]T)]−1x,

then yn ∈ N(Tn),

x = (I − T]T){T]T[I − (T]nTn − T]T)]−1x + x}

= (I − T]T)(I − T]nTn + 2T]T)[I − (T]nTn − T]T)]−1x

= (I − T]T)(I − T]nTn)[I − (T]nTn − T]T)]−1x
= (I − T]T)yn,

and
Tnx = Tn(I − T]T)yn = −TnT]Tyn = −[I + (Tn − T)T]]Tyn.

Hence we have proved [I + (Tn − T)T]]−1Tnx = −Tyn, and so

[I + (Tn − T)T]]−1TnN(T) ⊂ R(T).

By Theorem 1.9, we get R(Tn) ∩N(T]) = {0}.

Remark 2.13. The invertibility of Wn used in Theorem 2.12 is inspired from [18]. It is worth to point out that the
statement R(Tn) ∩ N(T]) = {0} is called to be a stable perturbation of T which is an extension of rank-preserving
perturbation and used widely in perturbation theory of generalized inverses [4].

Now we give a concise proof of Theorem 1.6 and furthermore, we obtain a concrete expression of T]n.

Theorem 2.14. Let X be a Banach space and Tn,T ∈ B(X) with Tn → T. If the group inverses T]n exist and
sup
n∈N
‖T]n‖ < +∞, then T has the group inverse T] satisfying

T]n → T],

and for all sufficiently large n, the expression (2.2) holds.

Proof. It follows from sup
n∈N
‖T]n‖ < +∞ and

T]m − T]n = T]m − T]mT]nTn − T]n + T]mTmT]n + T]mT]nTn − T]mTmT]n
= T]m(I − T]nTn) − (I − T]mTm)T]n − T]m(Tm − Tn)T]n
= (T]m)2Tm(I − T]nTn) − (I − T]mTm)Tn(T]n)2

− T]m(Tm − Tn)T]n
= (T]m)2(Tm − Tn)(I − T]nTn) + (I − T]mTm)(Tm − Tn)(T]n)2

− T]m(Tm − Tn)T]n

that {T]n} is a Cauchy sequence in B(X). Assuming T]n → S ∈ B(X), we take the limit in three equalities
in the definition of T]n. Then S is the group inverse of T and T]n → S = T]. By Theorem 2.12, we get the
conclusion.
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Next, we can give succinct expressions of group inverses in some special cases.

Theorem 2.15. Let X be a Banach space and T ∈ B(X) be group invertible. If Tn ∈ B(X) satisfies Tn → T and
Tn = TT]Tn, then for all sufficiently large n, Tn is group invertible and

T]n = B2
nTn = {[I + T](Tn − T)]−1T]}2Tn = {T][I + (Tn − T)T]]−1

}
2Tn.

Proof. Since Tn = TT]Tn, we have R(Tn) ⊂ R(T) and R(Tn)∩N(T]) ⊂ R(T)∩N(T]) = {0}. By Theorem 1.9 and
Theorem 2.12, Bn is a generalized inverse of Tn, Tn is group invertible, and

T]n = BnW−1
n + (I − BnTn)W−1

n BnW−1
n = TnBnW−1

n BnW−1
n .

Noting TnT] = TT]TnT] = TT][I + (Tn − T)T]] and T]TnTT] = [I + T](Tn − T)]TT], we get

TnBn = TnT][I + (Tn − T)T]]−1 = TT] and BnTnTT] = TT].

Hence Wn = BnTn + TnBn − I = BnTn + TT] − I and by TT]BnTn = BnTn,

W2
n = (BnTn + TT] − I)(BnTn + TT] − I) = I

which implies W−1
n = Wn. Thus TnBnWn = TT]Wn = TT]BnTn and

T]n = TnBnWnBnWn = TT]BnTnBnWn = BnTnBnWn = BnWn = B2
nTn.

Remark 2.16. We can verify directly that Tn(B2
nTn)Tn = Tn, (B2

nTn)Tn(B2
nTn) = (B2

nTn) and (B2
nTn)Tn = Tn(B2

nTn).

Theorem 2.17. Let X be a Banach space and T ∈ B(X) be group invertible. If Tn ∈ B(X) satisfies Tn → T and
Tn = TnT]T, then for all sufficiently large n, Tn is group invertible and

T]n = TnB2
n = Tn{[I + T](Tn − T)]−1T]}2 = Tn{T][I + (Tn − T)T]]−1

}
2.

Proof. Since Tn = TnT]T, we have N(T) ⊂ N(Tn) and by (5) in Theorem 1.9 and Theorem 2.12, Tn is
group invertible and T]n = TnBnW−1

n BnW−1
n . Noting T]Tn = T]TnT]T = [I + T](Tn − T)]T]T and TT]TnT] =

TT][I + (Tn − T)T]], we get

BnTn = [I + T](Tn − T)]−1T]Tn = T]T and TT]TnBn = TT].

Hence Wn = TnBn + T]T − I and by BnTT] = Bn,

W2
n = (TnBn + T]T − I)(TnBn + T]T − I) = I

which implies W−1
n = Wn. Thus BnWn = BnT]T = Bn and

T]n = TnBnWnBnWn = TnBnT]TBnWn = TnBnBnWn = TnB2
n.

Remark 2.18. The simpler expressions obtained in Theorems 2.15 and 2.17 are consistent with those given in [14]
for matrices.

From the above theorems, we can obtain a characterization for T]n to have the simplest possible expression.
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Theorem 2.19. Let X be a Banach space and T ∈ B(X) be group invertible. Let Tn ∈ B(X) satisfy Tn → T, then for
all sufficiently large n, Tn = TnT]T = TT]Tn if and only if Tn is group invertible and

T]n = Bn = [I + T](Tn − T)]−1T] = T][I + (Tn − T)T]]−1.

Proof. If Tn = TnT]T = TT]Tn, then T]n = TnB2
n = TT]Bn = Bn. Conversely, if T]n = [I + T](Tn − T)]−1T], then

R(I − T]T) = N(T]T) = N(TT]) = N(T]) = N(T]n) = N(Tn)

and
N(I − TT]) = R(TT]) = R(T]T) = R(T]) = R(T]n) = R(Tn).

Hence Tn(I − T]T) = 0 and (I − TT])Tn = 0, i.e., Tn = TnT]T = TT]Tn.

Remark 2.20. The condition Tn = TnT]T = TT]Tn is called condition (W) in [23], which appears as a sufficient
condition for the case of Drazin inverses.

Corollary 2.21. Let T ∈ B(X) be of finite rank. If Tn → T and T is group invertible, then the following statements
are equivalent:
(1) Rank Tn = Rank T for all sufficiently large n;
(2) there exists N ∈ N, such that for all n ≥ N, Tn is group invertible and

T]n → T];

(3) there exists N ∈ N, such that for all n ≥ N, Tn is group invertible and

sup
n≥N
‖T]n‖ < +∞.

In this case, for all sufficiently large n, the expression (2.2) holds.

Proof. If Rank Tn = Rank T, then by Theorems 1.8 and 1.9, we get R(Tn) ∩ N(T]) = {0}. Hence by Theorem
2.12, we obtain (2). Thus (1)⇒ (2) holds. It is easy to see (2)⇒ (3) and that (3)⇒ (1) follows from Corollary
2.11.

Remark 2.22. It is worth pointing out that in Corollary 2.21, we can conclude that if T is group invertible, Tn → T
and Rank Tn = Rank T, then for all sufficiently large n, Tn is group invertible and T]n → T]. In the case of matrices,
a well-known result is that if Tn and T are group invertible, Tn → T and Rank Tn = Rank T, then T]n → T] [3, 22].

The following example shows that the condition that T is group invertible in Corollary 2.21 can not be
deleted.

Example 2.23. Let

Tn =

(
1
n 0

1 − 1
n 0

)
and T =

(
0 0
1 0

)
.

Then Tn → T and

T]n =

(
n 0

n(n − 1) 0

)
is the 1roup inverse o f Tn which is

unbounded, although Rank Tn = Rank T. It should be noted that index T = 2 and T is not group invertible.

Remark 2.24. Example 2.23 shows that Corollary 2.21 does not hold for Drazin inverses.
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