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Abstract. As one of the main results we prove that if f has Lagrange unique property then f is strictly
convex or concave (we do not assume continuity of the derivative), Theorem 2.1. We give two different
proofs of Theorem 2.1 (one mainly using Lagrange theorem and the other using Darboux theorem). In
addition, we give a few characterizations of strictly convex curves, in Theorem 3.5. As an application of
it, we give characterization of strictly convex planar curves, which have only tangents at every point, by
injective of the Gauss map. Also without the differentiability hypothesis we get the characterization of
strictly convex or concave functions by two points property, Theorem 4.2.

1. Introduction and Notation

Convex functions play an important role in many areas of mathematics and in science, see for example
[9, 11, 21, 22] and the cited literature there as well as in this paper. In particular, the question posted in
[22], received significant attention and a large number of answers submitted to the question. For instance,
a (strictly) convex function on an open set has no more than one minimum. Therefore, the properties of
both monotone and convex functions as well as functionals defined by those functions in the calculus of
variations, are well-understood.

In order to discus them we need the following definitions:
Let S be a vector space over the real numbers, or, more generally, some ordered field. This includes

Euclidean spaces. A set C in S is said to be convex if, for all x and y in C and all t in the interval [0, 1], the
point (1 − t)x + ty also belongs to C. In other words, every point on the line segment connecting x and y is
in C. Furthermore, C is strictly convex if every point on the line segment connecting x and y other than the
endpoints is inside the interior of C.

A function f defined on a subset of the real numbers with real values is called monotonic if and only
if it is either entirely increasing or decreasing. It is called monotonically increasing (also increasing or
nondecreasing), if for all x and y such that x ≤ y one has f (x) ≤ f

(
y
)
, so f preserves the order. Likewise,

a function is called monotonically decreasing (also decreasing or nonincreasing) if, whenever x ≤ y, then
f (x) ≥ f

(
y
)
, so it reverses the order.
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If the order ≤ in the definition of monotonicity is replaced by the strict order <, then one obtains a
stronger requirement. A function with this property is called strictly increasing. Again, by inverting the
order symbol, one finds a corresponding concept called strictly decreasing. Functions that are strictly
increasing or decreasing are one-to-one (because for x not equal to y, either x < y or x > y and so, by
monotonicity, either f (x) < f

(
y
)

or f (x) > f
(
y
)
, thus f (x) is not equal to f

(
y
)
.)

By G f we denote the graph of f .
Let X be a convex set in a real vector space and let f : X→ R be a function.
f is called convex if:
∀x1, x2 ∈ X,∀t ∈ [0, 1] : f (tx1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2).
f is called strictly convex if:
∀x1 , x2 ∈ X,∀t ∈ (0, 1) : f (tx1 + (1 − t)x2) < t f (x1) + (1 − t) f (x2).
A function f is said to be (strictly) concave if − f is (strictly) convex.
For x1, x2 ∈ (a, b), define

k = k(x1, x2) = k f (x1, x2) =
f (x2) − f (x1)

x2 − x1
.

The quantity k f (x1, x2) is related to notion of convexity and it has geometric interpretation as "slope" of the
line defined by A1 = (x1, f (x1)) and A2 = (x2, f (x2)).

In this setting, if there is c ∈ (x1, x2) such that k f (x1, x2) = f ′(c), we say that c is Lagrange point with
respect to the secant A1A2 (or points x1, x2). c is Lagrange point for f , if it is Lagrange point with respect to
some secant of graph f .

Example f (x) = x3 shows that 0 is not a Lagrange point.
Frequently, we use in the text short notations for properties and statements. For example we denote the
implication (B) implies (A) shortly by (Ba). We advice the interested reader either to use the scheme below
or to make his own scheme of some notations and statements in order to follow the exposition.
The scheme of short notations:
(A∗): the function f is strictly convex, (A∗): the function f is strictly concave on [a, b],
(A): The function f is strictly convex or strictly concave on [a, b]; thus (A) is equivalent to ( (A∗) or (A∗))
(B): f has Lagrange unique property for secants
(C): every line intersects the graph of f at most two points (two points property),
(A’): The function f is convex or concave on [a, b]
(B’): f ′ is injective,
(I-1): (A)⇒ (B′)⇒ (B), (I-2): (B)⇒ (C) and (I-3): (A)⇒ (C)
(Ba) : (B)⇒ (A),(Ca) : (C)⇒ (A), (Bb′) : (B)⇒ (B′),
(S-1): (A)⇒ (B′)⇒ (B)⇒ (C), (S-2): (B)⇒ (C)⇒ (A′),
(I-4): if f ′ is injective then (B"): it is strictly increasing or decreasing,
(S-3): (B)⇒ (B′)⇒ (B”).

1.1. Background and short review
Our consideration in section 2 is based on the mean value theorem which states, roughly: that for a

given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel
to the secant through its endpoints. It is one of the most important results not only in differential calculus,
but in mathematical analysis as well. That is also useful in proving the fundamental theorem of calculus
(sometimes referred to as the second fundamental theorem of calculus or the Newton-Leibniz axiom: the
definite integral of a function can be computed by using any one of its infinitely-many antiderivatives). The
mean value theorem follows from the more specific statement of Rolle’s theorem, and can be used to prove
the more general statement of Taylor’s theorem (with Lagrange form of the remainder term).

More precisely, the mean value theorem (referred also as Lagrange’s theorem) states:

Theorem 1.1. If a function f is continuous on the closed interval [a, b], where a < b, and differentiable on the open
interval (a, b), then there exists a point c in (a, b) such that

f ′(c) =
f (b) − f (a)

b − a
.



M. Mateljević, M. Albijanić / Filomat 31:2 (2017), 321–334 323

For some versions of the Lagrange mean value theorem without the assumption of continuity and differ-
entiability of functions we refer the interested reader to [12] and literature cited there.

While writing the first versions of the manuscript and discussions with colleagues we found that the
subject is related to Darboux’s theorem:

Theorem 1.2 (Darboux’s theorem). Let I be an open interval, f : I→ R a real-valued differentiable function. Then
f’ has the intermediate value property: If a and b are points in I with a < b, then for every y between f ′(a) and f ′(b),
there exists an x in [a, b] such that f ′(x) = y.

A proof is based on application of Fermat’s theorem to the function φ(t) = f (t)− yt, which attains a local
maximum at a point x ∈ (a, b).

Another proof based solely on the mean value theorem and the intermediate value theorem is due to L.
Olsen [17].

Suppose that (H-1): f is continuous function on closed interval [a, b] and (H-2): differentiable on open
interval (a, b).
It is well known, if f convex on [a, b], then f ′ is increasing. Hence, if f ′(x1) = f ′(x2) for some x1 < x2, then
f ′ is a constant k on [x1, x2] and therefore f (x) = k(x − x1) + f (x1).

Thus if (A∗): f is strictly convex, then (B∗): f ′ is strictly increasing. It is convenient to write this result in
the form (I-0), where

(I-0): (A∗)⇒ (B∗).
In a similar way, we can prove if (A∗): f is strictly concave, then (B∗): f ′ is strictly decreasing.
Thus if (A): f is strictly convex or concave, then (B’): f ′ is injective. In particular, (A) implies
(B): for every points y, z in [a, b] there is a unique c such that f (z) − f (y) = f ′(c)(z − y) (Lagrange unique

property).
Thus, we have (I-1): (A)⇒ (B′)⇒ (B).
Note that it is not immediately clear that (B) is equivalent by (B’): namely, ¬(B′) means that there are

different points c1 and c2 such that f ′(c1) = f ′(c2), but in general there are examples of function f such that
c1 and c2 are not Lagrange points.

In connection with (B) consider the statement
(C): every line intersect the graph at most two points (two points property).
¬(C): there is a line which intersect graph at least three point.
If we denote these points by Mk = (xk, f (xk) and suppose that x1 < x2 < x3, then an application of

Lagrange’s theorem shows that f ′(c1) = k(x1, x2) = k(x2, x3) = f ′(c2), x1 < c1 < x2 < c2 < x3, and it means that
¬(B) is true.

Since if f is strictly convex then M2 is strictly below the secant M1M3, and we also conclude that ¬(A)
holds.

Since ¬(C) implies ¬(B) and ¬(A), by contraposition law1) (B) implies (C) and (A)implies (C).
Thus, we have (I-2): (B)⇒ (C) and (I-3): (A)⇒ (C) (without hypothesis (H-2) that derivative exists).
Thus, by (I-1) and (I-2), we have (S-1): (A)⇒ (B′)⇒ (B)⇒ (C).
At a first glance it is not clear how to use the hypothesis(B) and therefore it seems that the following

questions are natural problems and more intriguing than the implications (A)⇒ (B)⇒ (C):
Question 1. Whether (B) implies (A)?
Question 2. Whether (B) implies (B’): f ′ is injective?
Question 3. Whether (Ca): (C) implies (A)?
By contraposition law, an affirmative answer to Question 3 is equivalent to the statement: ¬(A) implies

¬(C): there is a line which intersect graph at least three point.
Note that in the first versions of the paper, motivated by a problem in [2], we considered only differen-

tiable curves and our beginning considerations are basically contained in Section 2. Then we observe that
our approach allows to omit the hypothesis differentiability and it gets the characterization by two points
property, Theorem 4.2. In section 4 we give an affirmative answer to Question 3. In section 2 and 3, using

1)In logic, contraposition is a law that says that a conditional statement is logically equivalent to its contrapositive.
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different methods, we give affirmative answer to Question 1 and 2. Our approach, 2, is elementary and
using contraposition law we first prove (B) implies that f is convex or concave. Namely, if f is neither
convex nor concave we construct a line which intersect graph at least at three point (thus ¬(C) is true) and
therefore ¬(A)⇒ ¬(C) holds which is equivalent to (Ca). (Recall that an application of Lagrange’s theorem
shows that the condition B is not fulfilled). By (Ca) we close the chain of the implications given by (S-1)
and and we have that conditions (A), (B′), (B) and (C) are equivalent.

Application of Darboux’s theorem to characterizations of convexity are the subject of section 3. First,
using clear geometric interpretation we give short and direct proof of the implication: (B) implies (B’)
(Proposition 3.2). An intrigue corollary of Darboux’s theorem is that (I-4): if (B’): f ′ is injective then, (B"): it
is strictly increasing or decreasing. Hence, directly follows (A) without appeal to (Ca).

Note that in this setting (we suppose only differentiability of f ) we have (S-3): (B) ⇒ (B′) ⇒ (B”) and
by the way we get Proposition 3.4: If f ′ is injective on (a, b), then it is continuous on (a, b).

This Proposition is intriguing because it states an interesting phenomenon: that differentiability and
injectivity of f ′ imply continuity of it.

After writing the manuscript a question appeared in [20], which is related to the subject.

2. Convex Functions and Lagrange’s Theorem

Any convex function f (x) on [a, b] is continuous on (a, b) and has a finite right derivative f+(x) and a
left derivative f−(x) at each point x ∈ (a; b). Moreover, for all x ∈ (a; b), f ′−(x) ≤ f ′+(x), the equality occurring
and yielding the derivative f ′(x) everywhere, except possibly a countable number of points inside (a, b).
Wherever it exists, f ′(x) is a non-decreasing function of x.

Let f (x) be a continuous function on a closed interval [a, b] and differential on the open interval (a, b). In
addition, if f is convex or concave, by Darboux’s theorem, we conclude that f ′ is continuous (see Proposition
3.4). This result may exist in some forms in the literature, but we have not found it up to now.

2.1. Lagrange unique property
In the beginning versions of paper we basically prove that (A): The function is strictly convex or strictly

concave on [a, b] if and only if
(B): f has Lagrange unique property: For every secant of graph f there is a unique Lagrange point. Later
we extract Proposition 4.1.

Theorem 2.1. Let f (x) be a continuous function on a closed interval [a, b] and differential on an open interval (a, b).
(I1) 2) Then (A): The function is strictly convex or strictly concave on [a, b] if and only if
(B): for every α, β (a ≤ α < β ≤ b) there is exactly one ξ ∈ (α, β) (which depends on α and β) such that

f (β) − f (α)
β − α

= f ′(ξ).

(I2) The conditions (A), (B’), (B) and (C): every line intersect the graph at most two points (two points property), are
equivalent.

2)Part of (I1) is formulated as the problem in N. Bourbaki, 2007, Fonctions d’une variable réelle: Théorie élémentaire, Springer,[2]
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Figure 1: Secant intersection the curve

Proof. Let us prove that (Ba): (B) implies (A). In the proof, we will use contraposition law at several places.
Step 1. Let 1 be a straight line containing point A(a, f (a)) and B(b, f (b)).
Let us first prove that (B) implies (C’): 1 does not intersect the graph of f over (a, b).
Suppose (B).

If f (c) = 1(c) for some c ∈ (a, b) then

f (c) − f (a)
c − a

= f ′(ξ1) =
f (b) − f (a)

b − a
and

f (b) − f (c)
b − c

= f ′(ξ2) =
f (b) − f (a)

b − a
.

Hence, for α = a, β = b there are two points ξ1 and ξ2 with mentioned characteristics, so f does not meet
stated requirements.

Thus, by the contraposition low, (C’) is true.
Therefore, since f and 1 are continuous function, then
(i) f (x) < 1(x), ∀x ∈ (a, b) or
(ii) f (x) > 1(x), ∀x ∈ (a, b).

Figure 2: Graph of a function beneath the secant
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Step 2. Let us assume that condition (i), is valid, i.e. that

f (x) < 1(x), ∀x ∈ (a, b).

We are now proving that (B)⇒ (A′), where (A′) : f is convex (and then using it that (A) holds).
It is a corollary of implications (S-2): (B)⇒ (C)⇒ (A′).

We first prove (Ca’): C implies A′.
Let us assume the opposite, that (¬A′): f is not convex. Then there are α, β ∈ [a, b], α < β such that

f (λ) > h(λ) for some λ ∈ (α, β),

where h is a linear function whose graph contains points (α, f (α)) and (β, f (β)).
For the line h we have h(a) < f (a) or h(b) < f (b), because otherwise we would have f (λ) > 1(λ) which

contradicts the assumption (Namely, if h(a) ≥ f (a) = 1(a) and h(b) ≥ f (b) = 1(b), then also h(x) ≥ 1(x),
a ≤ x ≤ b. Hence, on the basis of f (λ) > h(λ) f (λ) > 1(λ).)

Let h(a) < f (a), as shown in Figure 3. So

δ1 ≡ f (λ) − h(λ) > 0
δ2 ≡ f (a) − h(a) > 0.

Let 0 < δ < min{δ1, δ2}.
We place the line ψ which is parallel to line h such that

ψ(λ) = h(λ) + δ.

It is straightforward to check that ψ(a) < f (a), ψ(α) > h(α) = f (α), ψ(λ) < f (λ) and ψ(β) > f (β).
Hence lineψ intersects f at at least one point (u, f (u)) whereα < u < λ (becauseψ(α) > f (α),ψ(λ) < f (λ));

and the line ψ also intersects f at some point (v, f (v)) where λ < v < β and at some point (w, f (w)) where
a < w < α.

Thus ¬A′ implies ¬C, which is equivalent to (Ca’): C implies A′.
Now, we prove that (Bc): B implies C, which is equivalent ¬C implies ¬B.
Suppose ¬C. Thus there are a line L and at least three different points u, v and w in (a, b) such that the

points (u, f (u)), (v, f (v)) and (w, f (w)) belongs L.

Figure 3:
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Hence, there are two points ξ1 ∈ (w,u) and ξ2 ∈ (u, v) such that

f ′(ξ1) =
f (u) − f (w)

u − w
=

f (v) − f (w)
v − w

and

f ′(ξ2) =
f (v) − f (u)

v − u
=

f (v) − f (w)
v − w.

Therefore, on the interval [w, v] there are two points for which

f ′(ξi) =
f (v) − f (w)

v − w
, i = 1, 2;

which contradicts the initial assumption (B) that there is only one such ξ. By contraposition law, we
conclude that (Bc) holds. Together with (Ca′), we conclude that (B) implies

(A’): function f is convex.
Step 3. It is left to prove that f is strictly convex.
If it is not true then by Step2, we can suppose that f is a convex function which is not strictly convex.
Since f is not strictly convex, then there are two different points α, β, α < β, such the graph of f over

(α, β) is not strictly below the secant AB, where A = (α, f (α)) and (β, f (β)). By convexity hypothesis it is
below the secant AB. Therefore there is at least one point γ ∈ (α, β) such that the point C = (γ, f (γ)) is on
the secant AB. Then there are three different points α, β and γ in (a, b) such that the points (α, f (α)), (β, f (β)),
(γ, f (γ)) are on the some line. Hence f satisfy the condition (¬C) so the initial assumption about a unique
point ξ would not be fulfilled.

Figure 4: An example of a convex function graph

Let us prove the opposite: (A) implies (B). Thus we need to prove: if f strictly convex (or strictly
concave), then for every α, β (a ≤ α < β ≤ b) there is exactly one ξ (which depends on α and β) such that

f (β) − f (α)
β − α

= f ′(ξ).

We use again contraposition law. Let us assume that f is strictly convex and that there are two points ξ1,
ξ2, α < ξ1 < ξ2 < β, for which

f (β) − f (α)
β − α

= f ′(ξ1) = f ′(ξ2).

Hence,

f ′(ξ1) ≤ f ′(ξ) ≤ f ′(ξ2)
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for every ξ ∈ (ξ1, ξ2) so f ′(x) = const for every x ∈ [ξ1, ξ2], because f ′(ξ1) = f ′(ξ2). Function f is a straight
line on an interval (ξ1, ξ2). Therefore, f is not strictly convex, which is a contradiction.

Figure 5: A strictly convex function

Remark 2.2. a Note that in the proof of (Ca’) we use only the hypothesis (H-1): f is continuous function on closed
interval [a, b] and we do not use the hypothesis(H-2): f is differentiable on open interval (a, b). Hence, a small
modification of the above proof of the implication (Ba): (B) implies (A), shows that (C) implies (A), where (C): every
line intersect the graph at most two points (two points property). The proof that (A) implies (C) is straightforward
and details are left to the interested readers (see section 4).

2.2. Inflection points

In order to discuss the inflection points we first need the following results.
Recall that in the introduction section we outlined proof of (I-0): if (A∗): f is strictly convex, then (B∗): f ′

is strictly increasing.

Lemma 2.3. Suppose (H1), (H2) and (A*). Let c ∈ (a, b) and L the tangent line at (c, f (c)) over (a, b). Then (i):
f (x) > L(x) for x ∈ (a, b) \ {c}.

Proof. By hypothesis we have two cases x ∈ (a, c) or x ∈ (c, b). Consider the case x ∈ (a, c). Since L(x) =
f ′(c)(x − c) + f (c) and f (x) − L(x) = f (x) − f (c) − f ′(c)(x − c), an application of Lagrange’s theorem yields
f (x) − L(x) = [ f ′(c1) − f ′(c)](x − c), where a < c1 < c. By (I-0): (A∗) ⇒ (B∗). Hence f ′(c1) < f ′(c) and it gives
(i).

We left the interested reader to prove the following proposition.

Proposition 2.4. Suppose (H1) and (H2). The f is strictly convex (concave) if and only if for every c ∈ (a, b) the
tangent line Lc at (c, f (c)) over (a, b) is strictly above (below) the graph of f except at (c, f (c)).

Let f : [a, b]→ R continuous on [a, b]. We say that c ∈ (a, b) is the inflection point of f if there is δ > 0 such
that (i) f is strictly convex on (c− δ, c) and f is strictly concave on (c, c + δ) or (i) holds by − f instead of f . In
addition if f is differentiable on (a, b), then by Proposition 2.4, c is the inflection point if and only if (1) or (2).

A good model for the statement (II2) of the next theorem is the function f (x) = x3 with the inflection
point at 0. Every line y = kx, 0 < k < ∞, intersect the graph at three points.



M. Mateljević, M. Albijanić / Filomat 31:2 (2017), 321–334 329

Theorem 2.5. Let c ∈ (a, b) be the inflection point of the function f : [a, b] → R which is continuous on [a, b] and
differentiable on (a, b).

(II1) Then for some α, β (a < α < β < b) there are two points ξ, η ∈ (α, β) (ξ , η) such that

f (β) − f (α)
β − α

= f ′(ξ) = f ′(η).

(II2) There is a subinterval (a1, b1), a1 < c < b1, of [a, b] such that f ′(I1) = f ′(I2), where I1 = (a1, c) and I2 = (c, b1)
and if we suppose without loss of generality that c = 0, f (c) = 0 and define k(x) = f (x)/x, then for each x1 ∈ I1 and
x2 ∈ I2 there are x′1 ∈ (a, c) and x′2 ∈ (c, b) such that f ′(x1) = k(x′1) and f ′(x2) = k(x′2).

Proof. Let the line 1(x) (x ∈ (a, b)) be the tangent of the function f at point c. Then there is δ > 0 such that

f (x) − 1(x) > 0
(
x ∈ (c − δ, c)

)
f (x) − 1(x) < 0

(
x ∈ (c, c + δ)

) (1)

or

f (x) − 1(x) < 0
(
x ∈ (c − δ, c)

)
f (x) − 1(x) > 0

(
x ∈ (c, c + δ)

) (2)

where δ is chosen so that (c − δ, c + δ) ⊆ (a, b).
Let us assume that (1) is valid (see Fig. 6).

Figure 6: Inflection

Let points u and v chose so that

c − δ < u < c < v < c + δ.

Let h be a line that contains points M(u, f (u)) and K(c, f (c)).
(i) If the point L(v, f (v)) is below the line h, i.e. f (v) < h(v) then there is w ∈ (c, v) so that f (w) = h(w).

(This case is shown in Fig. 6).
(ii) If f (v) > h(v), then the line h should be places so as to contain points (v, f (v)) and K(c, f (c)). In that

case h(u) > f (u), so h(λ) = f (λ) for some λ ∈ (u, c).
Let us assume that (i) is valid. The explanation of the existence of point w. Line KL has less the slope

then the line containing points K and (x, f (x)) for some x ∈ (c, v) since the line 1(x) is the tangent of curve f
at point c.
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The remaining conclusion is:

f (c) − f (u)
c − u

=
f (w) − f (c)

w − c

so there are different points ξ and η where ξ ∈ (u, c), η ∈ (c,w) for which

f (c) − f (u)
c − u

= f ′(ξ) and
f (w) − f (c)

w − c
= f ′(η)

according to Lagrange’s theorem.
Outline of (II2). Recall, for x1, x2 ∈ (a, b), define

k = k(x1, x2) = k f (x1, x2) =
f (x2) − f (x1)

x2 − x1
.

Without loss of generality we can suppose that f is strictly concave on [a, c], and f is strictly convex on
[c, b] and that c = 0 and f (c) = 0. Define k(x) = f (x)/x. If k2 = k(b) ≥ k1 = |k(a)|, then for every x ∈ [a, c) there
is z ∈ (c, b) such that k(x) = |k(z)|.

If f has derivative on I = (0, b), then k(x) ≤ f ′(x) on I and there is b1 ∈ I such that f ′(b1) = k2. Thus
for every x ∈ I1 := (0, b1) there is x′ ∈ I such that x′ > x and f ′(x) = k(x′). The rest of the proof is
straightforward.

3. Darboux and Lagrange Theorem

In this section using Darboux theorem we give another proof of Theorem 2.1, see also [13].
Throughout this section we suppose (H1): f is continuous function on closed interval [a, b] and (H2): f

differentiable on open interval (a, b).

Lemma 3.1. Let x1 < x2 in (a, b) and f ′(x1) = f ′(x2). Then there are at least two points c1 and c2 in (x1, x2) such
that f (x2) − f (x1) = f ′(c1)(x2 − x1) and f (x2) − f (x1) = f ′(c2)(x2 − x1).

Proof. Set Mi = (xi, f (xi)), 1=1,2 , and denote by Li tangent line at Mi. Since L1 is paralell to L2, we can define a
parallelogram P by lines L1,L2, x = x1 and x = x2. >From geometric interpretation it is clear that the diagonal
(segment) [M1,M2] of parallelogram P intersects graph of f over (x1, x2) at least a point M3 = (x3, f (x3)),
x1 < x3 < x2. By application of Lagrange theorem there are points c1 ∈ (x1, x3) and c2 ∈ (x3, x2) such that
f (x3) − f (x1) = f ′(c1)(x3 − x1) and f (x2) − f (x3) = f ′(c2)(x2 − x3).

Note that the above lemma states ¬(B′) ⇒ ¬(B). By contraposition low, from the above lemma we get
(B)⇒ (B′), that is:

Proposition 3.2. If (B): f satisfies Lagrange unique property for secants, then (B’): f ′ is injective.

Lemma 3.3. If (B’): f ′ is injective on (a, b), then (B”): f ′ is strictly increasing or decreasing.

Proof. Contrary, suppose that ¬(B′′). Thus there are points x1 < x2 < x3 such that f ′(x1) < f ′(x2) > f ′(x3).
By Darboux’s theorem, we can choose c∗ and c∗ such that x1 < c∗ < x2 < c∗ < x3 and f ′(c∗) = f ′(c∗). Thus

¬(B′) and this yields a contradiction.

By Proposition 3.2 and Lemma 3.3, we have
(S-3): (B)⇒ (B′)⇒ (B”).
By (I-1) we have
(S-4): (A)⇒ (B)⇒ (B′)⇒ (B”).
It is not difficult to prove that (B”)⇒ (A).
We need to consider two cases: Case 1. (B∗): f ′ is strictly increasing.
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Case 2. (B∗): f ′ is strictly decreasing.
We will consider Case 1. Take a ≤ x1 < x2 < x3 ≤ b. By Lagrange’s theorem, there are points c1 ∈ (x1, x2)

and c2 ∈ (x2, x3) such that k f (x1, x2) = f ′(c1) and k f (x2, x3) = f ′(c2). By hypothesis (B∗), f ′(c1) < f ′(c2) and
therefore k f (x1, x2) < k f (x2, x3) and we have (A∗). Thus we have (B∗) ⇒ (A∗). We left to the reader to treat
Case 2 in a similar way.

Using the implication (B”)⇒ (A), we can close the chain of implications (A)⇒ (B”)⇒ (A).
By (S-4), we have a more delicate result,
(S-5): (A)⇒ (B)⇒ (B′)⇒ (B”)⇒ (A).
Although the following result is a corollary of Darboux’s theorem, we state it as a separate result,

because we believe that it has an independent interest.

Proposition 3.4. If f ′ is injective on (a, b), then it is continuous on (a, b).

Proof. By Lemma 3.3, f ′ is strictly increasing or decreasing on (a, b). Without loss of generality we can
suppose that f ′ is strictly increasing. By Darboux’s theorem, then for every c and d such that a < c < d < b,
we have f ′

(
(c, d)
)

= ( f ′(c), f ′(d)). Hence, f ′ is continuous on (a, b).

Now, we can summarize the above considerations as follows.

Theorem 3.5. Suppose that f is continuous function on closed interval [a, b] and differentiable on open interval (a, b).
Then the following conditions are equivalents:

(A): f is strictly convex or f is strictly concave
(B): for every points y, z in [a, b] there is a unique c such that f (z)− f (y) = f ′(c)(z− y) (Lagrange unique property

for secants).
(C) every line intersect the graph at most two points (two points property).
(D) The line segment between any two points on the graph lies above (or below) the graph.
(B’): f ′ is injective
(B”) f ′ is strictly decreasing or strictly increasing.

By (S-5), (A), (B), (B’) and (B”) are equivalent. The rest of the proof is strait-forward and we leave it to
the interested reader.

3.1. Gauss map and convexity
In this subsection we only outline some results, and we plan in a future work further to develop this

subsection and connect better to the bulk of the paper3); see also [13]. The Gauss map (named after Carl F.
Gauss) maps a surface in Euclidean space Rn to the unit sphere Sn−1. But here we need only definition for
curves.

Namely, given a curve X lying in R2, the Gauss map is a continuous map N : X→ S such that N(p) is a
unit vector orthogonal to X at p, namely the normal vector to X at p.

Theorem 3.6 ([13]). A convex planar curve which has only tangents at every point is strictly convex if and only if
(i) Gauss map is injective.

Proof. Suppose first that the curve is given as the graph of a function f on (a, b) then (i) implies that (ii) f
has Lagrange unique property. If (ii) is not true then there are points a1, b1 and Lagrange points c1, c2 such
that f (b1)− f (a1) = f ′(c1) = f ′(c2). Then nM1 = nM2 , where Mk = (ck, f (ck)). Proof that (ii) implies (i). By (I-0),
if f is strictly convex then f ′ is strictly increasing and (i) holds.

In general if C is strictly convex closed curve, then there are two supporting lines parallel to y-axis which
touch C at points A and B. The points A and B divide C on two curves which are graphs of functions f1 and
f2.

3)S. J. Colley, Editor-Elect, The American Mathematical Monthly, who read a previous version (in a privative communication) of
this paper, gave similar comments.
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We shortly discuss a similar characterization of strictly convex surfaces: If z = f (x1, x2, · · · , xn) defined
a hyper surface W in Rn+1 and Gauss map is injective, then W is strictly convex. The Gauss map (named
after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X
lying in R3, the Gauss map is a continuous map N : X→ S2 such that N(p) is a unit vector orthogonal to X
at p, namely the normal vector to X at p.

The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree
is half the Euler characteristic.

For example, it seems that we can prove (cf. [13]):

Theorem 3.7. Let z = f (x, y) be a real-valued differentiable function defined on a domain D in R2. Then it defines a
surface W in R3. If its Gauss map N is injective, then W is strictly convex.

Here N(p) denotes a unit vector orthogonal to W at p, namely the normal vector to W at p.
If p = (p1, p2, p3), X(p) = ( f ′x , f ′y, 1) and N(p) = X(p)/|X(p)|. Since we compute f ′x , f ′y at (p1, p2), here we can

consider that Gauss map is defined on D.

Theorem 3.8. Let D be a domain in Rn and z = f (x1, x2, · · · , xn), x = (x1, x2, · · · , xn) ∈ D a differentiable function,
and W a hyper surface in Rn+1 defined by the graph of f . Then if the Gauss map of W is injective, then W is strictly
convex.

4. Concluding Remarks; Convex Functions and Two Points Property

Recall from the proof of Theorem 2.1, see Remark 2.2, we can extract:

Proposition 4.1. Let f (x) be a continuous function on a closed interval [a, b]. (I1) If f is not convex, then ¬(C):
there is a line which intersect graph at least three point.

(I2) If f is not strictly convex, then ¬(C).
(I3) (C) implies (A)

Note (I2) implies (I1). By contraposition law (I2) is equivalent with (I3).
By (S-1) and (I3), we get:

Theorem 4.2. Let f (x) be a continuous function on a closed interval [a, b].
(A): The function is strictly convex or strictly concave on [a, b] if and only if
(C): every line intersect the graph at most two points (two points property)

Proof. It is left to prove that (A) implies (C), which is by contraposition low equivalent to ¬(C) implies ¬(A).
Suppose that ¬(C) and therefore there are there different points M1,M2 and M3 on the graph, say that M2 is
between M1 and M3. We have a contradiction with convexity property (A) and the proof is done.

A. Mohammadi, at the Research Gate, cf. [20], asked
Question 4. Let B be a closed set in n-dimensional Euclidean space. What other properties B should

have in order to be guaranteed that there exist the closed convex set A such that ∂A = B. How about infinite
dimensional spaces?

It seems that
Question 5. How can one characterize the boundary of a strictly convex set?
is related to the original question (but it is easier then Question 4).
For example, one can check the following:

Proposition 4.3. If A is a closed Jordan curve in plane, then the following conditions are equivalent
(1) A is the boundary of a strictly convex set
(2): every line intersect A at most two points (two points property).
(3): A is union of two sub-arcs which are graphs of strictly convex functions
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4.1. Further results

It seems to us that it is natural to consider possible generalizations of this result, concerning convex
sets, to several dimensions. For example, the first author, cf. [13, 20], suggested the following answer
to Mohammadi’s question: Suppose that (i) B is homeomorphic to n − 1 dimensional sphere and (ii) for
every point x in B there is a closed half-spaces L(x) (sets of point in space that lie on and to one side of a
hyperplane) which contains B. It seems at a first glance that properties (i) and (ii) guarantee that there exist
the closed convex set A such that ∂A = B.

We also discussed on the Belgrade Analysis Seminar (BAS) some results of this type and in particular, the
first author presented the content of this paper and suggested some generalizations of the results obtained
in this paper to several dimensions. Here are some possibilities:

(S-1) Under hypothesis of Theorem 3.8, prove that the Gauss map is continuous.
(S-2) Let domain G be homeomorphic to 3-dimensional ball and let S be the boundary of G which is

homeomorphic to 2-dimensional sphere S2. Then S is a strictly convex surface if and only if the intersection
with every plane is empty, a point or a strictly convex closed curve.
It seems natural to consider what are appropriate generalization of Theorem 4.2 in several variables? We
give a possibility.

(S-3) Let f be a continuous function defined on a (connected) subdomain D of Rn. Then the function
is either strictly convex or strictly concave if and only if every straight line intersects its graph at most
two points(for n = 1, this is Theorem 4.2). More generally, we can also consider hyper surfaces instead of
surfaces defined by the graphs of functions.
Our first impression was that it is a straightforward of 1-dimensional statement. If we remember correctly
the following procedure has been suggested for a proof of (S3): Let I = [a, b] be a segment contained in D
and 1 the restriction of f on I. Apply to 1-dimensional statement on 1 and use continuity of f . It turns out
that we need additional details, see [13] and M. Pavlović, Technical Report: Remarks on convex functions
(to be continued) posted on Researchgate (RG).
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[16] D. S. Mitrinović, Matematika u obliku metodičke zbirke zadataka sa rešenjima III deo, Gradjevinska knjiga, Beograd, 1988.
[17] L. Olsen, A New Proof of Darboux’s Theorem, Vol. 111, No. 8 (Oct., 2004) (pp. 713-715), The American Mathematical Monthly
[18] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Mathematicae 80(1):193-199, September 2010
[19] N. Merentes, K. Nikodem, Strong convexity and separation theorems, Aequationes Mathematicae 2015
[20] A. Mohammadi, https://www.researchgate.net/post/How−can−one−characterize−the− boundary−of−a−convex− set?
[21] C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics vol.

23, Springer-Verlag, New York, 2006. xvi+256 pp. ISBN 0-387-24300-3
[22] J. F. Peters, What are applications of convex sets and the notion of convexity in mathematics and science?,

https://www.researchgate.net/profile/James−Peters, Question 85
[23] Simon, Chapter 21, p.505- 522, www.rmi.ge/ kade/.../Week6Concave.pdf
[24] V. Soltan, Lectures on Convex Sets, World Scientific 2015.
[25] Weisstein, Eric W. "Inflection Point." From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/InflectionPoint.html
[26] S. Zlobec, Characterizing zero-derivative points, Journal of Global Optimization 46(1)(2010), 155-161.
[27] S. Zlobec, On The Derivative Of Smooth Meaningful Functions, Croatian Operational Research Review 2 (2011).
[28] S. Zlobec, Separation property of continuously differentiable functions, Math. Commun. 19(2014), 57-64.
[29] Is there a book in English where one can find characterizations of zero-derivative (stationary) points ? - ResearchGate. Available

from: https://www.researchgate.net/post
[30] B. A. M. Zoriq, Matematiqeskiı analiz, FAZIS, Nauka, 1997.


