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Quasi-Isometricity and Equivalent Moduli of Continuity
of Planar 1/|ω|2-Harmonic Mappings

Qi Yia, Shi Qingtiana

aSchool of Mathematics and Systems Science & LMIB, Beihang University, Beijing, 100191, China

Abstract. In this paper, we prove that 1/|ω|2-harmonic quasiconformal mapping is bi-Lipschitz contin-
uous with respect to quasihyperbolic metric on every proper domain of C\{0}. Hence, it is hyperbolic
quasi-isometry in every simply connected domain on C\{0}, which generalized the result obtained in [14].
Meanwhile, the equivalent moduli of continuity for 1/|ω|2-harmonic quasiregular mapping are discussed
as a by-product.

1. Introduction

Let Ω and Ω′ be two proper subdomains of the complex plane C and let ρ(ω)|dω|2 be a conformal
metric on Ω′. Then a sense preserving C2 mapping f of Ω onto Ω′ is called ρ-harmonic if it satisfies the
Euler-Lagrange equation

fzz(z) +
(
logρ

)
ω ◦ f (z) fz(z) fz(z) = 0 (1.1)

in Ω. Especially, f is called a Euclidean harmonic mapping when ρ is a positive constant. Euclidean
harmonic mapping is a kind of natural generalization of analytic function and plays an important role in
the theory of functions. For a survey of Euclidean harmonic mappings, see[13, 15] for more details. When
ρ is the hyperbolic metric of Ω′, f is called a hyperbolic harmonic mapping.

It is well known that ρ-harmonic mappings can be characterized by their Hopf differentials. That is,
f (z) is a ρ-harmonic mapping of Ω onto Ω′ if and only if its Hopf differential ϕ(z)dz2 := ρ( f ) fz fz dz2 is a
holomorphic quadratic differential on Ω [3].

A mapping f : Ω→ Ω′ is called a ρ-harmonic K-quasiregular mapping if it is ρ-harmonic and there is a
constant K > 1 such that | fz(z)| ≤ k| fz(z)| for all z ∈ Ω, where k = K−1

K+1 . In addition, if f (z) is a homeomorphism
on Ω, then f (z) is called a ρ-harmonic K-quasiconformal mapping.

The Lipschitz continuity with respect to varied metrics of harmonic quasiconformal mappings is an
important research content in the theory of harmonic mappings. The Euclidean Lipschitz and bi-Lipschitz
continuities of Euclidean harmonic quasiconformal mappings are first investigated by Martio in [34]. The
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hyperbolically bi-Lipschitz continuity of harmonic quasiconformal mappings is further studied by Wan
[37]. It is proved in [37] that every Euclidean (hyperbolic) harmonic quasiconformal diffeomorphism of the unit disk
D onto itself is quasi-isometric with respect to the hyperbolic metric.

Later, Knez̆vić and Mateljević [23] retrieve it by using Ahlfors-Schwarz lemma (see Lemma 2.4). More-
over, they proved that every Euclidean harmonic quasiconformal mapping of the upper half plane onto
itself is also a quasi-isometric with respect to the hyperbolic metric in [23, 24].

In 2010, the above result of Wan is improved to convex domain and the sharpness hyperbolically Lips-
chitz coefficient is given in [8]. Meanwhile, the first author of [8] finds that 1/|ω|2-harmonic quasiconformal
mapping also has an analogy bi-Lipschitz continuity as following [14].

Theorem 1.1. Let A be an angular domain with the origin of the complex plane C as its vertex. If f is a 1/|ω|2-
harmonic K-quasiconformal mapping of the unit diskD onto A, then f is hyperbolic K-quasi-isometry. Moreover, the
hyperbolically Lipschitz coefficient K is sharp.

From the above analysis, the bi-Lipschitz continuity is closely related to the image domain and the
mapping. Recently, many articles [9, 20, 22, 36] studied this issue for different domains or functions. The
hyperbolically Lipschitz and bi-Lipschitz properties of general ρ-harmonic mappings are also studied [12].

More recently, Mateljević [32] further generalizes Wan’s result to any simply connected proper sub-
domain in C for Euclidean harmonic quasiconformal mappings by using the following conclusion. (See
[31–33])

Theorem 1.2. Suppose D and D′ are proper domains inR2. If f : D→ D′ is a Euclidean harmonic K-quasiconformal
mapping, then it is bi-Lipschitz with respect to quasihyperbolic metrics of D and D′.

In this paper, we mainly investigate the hyperbolically Lipschitz continuity and equivalent modulus of
continuity of 1/|ω|2- harmonic quasiconformal (quasiregular) mapping. In the first part of this paper, we
prove that Theorem 1.2 is also true for 1/|ω|2-harmonic K-quasiconformal mapping. Thus, Theorem 1.1 can
be generalized to any simply connected proper subdomain of C\{0} (See Theorem 3.1 and Theorem 3.2),
although the sharp hyperbolically Lipschitz coefficient is not obtained.

Equivalent modulus of continuity has been investigated by some scholars, such as Dyakonov, Pavlović,
Abaob, Arsenović, Mateljević, Ponnusamy and others. Recently, Chen Shaolin and his colleagues obtain
three equivalent conditions about Equivalent modulus of continuity of Euclidean harmonic mapping. As a
by-product of the first part, We find that those equivalent conditions also hold for 1/|ω|2-harmonic mapping.
The detail research backgrounds and our results are given in Section 4.

2. Preliminary

In this section, we introduce and prove some lemmas, which are needed in the following discussion.
For the sake of comprehending deeply the family of 1/|ω|2-harmonic mapping, a class of logharmonic

mapping should be introduced at first[1]. A sense preserving mapping f on Ω is called logharmonic if
f (z) , 0 in Ω and there is an analytic function a(z) in Ω with |a(z)| < 1 such that f (z) is a solution of the
nonlinear elliptic partial differential equation

fz(z) = a(z)
f (z)
f (z)

fz(z). (2.0)

Then we prove the following equivalent relation of logharmonic mappings and 1/|ω|2-harmonic mappings,
which plays an important role in the proofs of Theorem 3.1 and Theorem 3.2.

Proposition 2.1. Let f be a sense preserving mapping defined on Ω ⊂ C with ω = f (z) , 0 for all z ∈ Ω. Then f is
a logharmonic mapping if and only if f is a 1/|ω|2-harmonic mapping.
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Proof. The necessary part of this statement is proved in [14]. Now, we mainly want to prove the sufficiency.
Let f be a 1/|ω|2-harmonic mapping on Ω with ω = f (z) , 0 for z ∈ Ω. Then by (1.1), we get

f fzz = fz fz, z ∈ Ω,

which directly implies (
fz
f

)
z

= 0 and
(

fz
f

)
z

= 0, ∀z ∈ Ω. (2.1)

Let

h(z) =
fz(z)
f (z)

and 1(z) =
fz(z)
f (z)

, z ∈ Ω.

Then from (2.1), h(z) and 1(z) are analytic function in Ω. Moreover, h(z) , 0 in Ω, Since f is sense preserving
and f , 0 in Ω. So there exists an analytic function

a(z) :=
1(z)
h(z)

=
fz(z)
fz(z)

f (z)

f (z)
, z ∈ Ω (2.2)

which satisfies |a(z)| < 1 in Ω by the sense preserving property of f . Therefore, f (z) satisfies (2.0) with
analytic function a(z) defined in (2.2) and f (z) is logharmonic in Ω conseqently. The proof of Proposition
2.1 is completed.

Next, in order to prove the quasi-isometry of 1/|ω|2-harmonic quasiconformal mapping in Section 3, the
following three conclusions are needed.

Lemma 2.2. (Astala-Gehring) [6] Suppose that D and D′ are domains in Rn (n ≥ 2), if f : D → D′ is a
K-quasiconformal mapping, then there exists a positive constant c := c(K,n) such that

1
c

d( f (z), ∂D′)
d(z, ∂D)

≤ α f ,D(z) ≤ c
d( f (z), ∂D′)

d(z, ∂D)
.

where

α f ,D(x) = exp
{

1
n|Bx|

∫
Bx

log J f (z)dz
}

(2.3)

for all x ∈ D, here Bx := B(x, d(x, ∂D)) is a ball and |Bx| stands for the volume of the ball Bx.

Proposition 2.3. Let f be a logharmonic mapping defined on the domain Ω ⊂ C. Then log
∣∣∣ fz(z)

∣∣∣ is a real-valued
Euclidean harmonic function on Ω.

Proof. Since f is a logharmonic mapping, then f satisfies (2.0) in Ω for some analytic function a(z) with
|a(z)| < 1 in Ω. Meanwhile, f also is a 1/|ω|2-harmonic mapping by Proposition 2.1. From the definition of
1/|ω|2-harmonic mapping, we get

fzz(z) f (z) = fz(z) fz(z), z ∈ Ω. (2.4)

Moreover, the Hopf differential

ϕ(z) :=
1
| f (z)|2

fz(z) fz(z) (2.5)

of f is holomorphic in Ω.
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Let A =
{
z ∈ Ω : fz(z) = 0

}
. By (2.0) and (2.5), A is the set of zero points of the analytic function a(z) and

A is that of ϕ(z) also. Consequently, A is countable and discrete. Furthermore, by (2.0) and (2.5) again,

ϕ(z)
a(z)

=
f 2
z (z)

f 2(z)
, z ∈ Ω \ A. (2.6)

Thus, when z tends to every ζ ∈ A, the limit of
ϕ(z)
a(z)

exists. So
ϕ(z)
a(z)

is a non-vanishing analytic function in

Ω and (2.6) holds for all z ∈ Ω. Hence,

log
| fz(z)|2

| f (z)|2
= log

∣∣∣∣∣ϕ(z)
a(z)

∣∣∣∣∣
is harmonic in Ω, and

∆ log
1
| f (z)|2

+ ∆ log(| fz(z)|2) = 0, z ∈ Ω (2.7)

consequently.
By simple computation, we have

∆ log
1
| f (z)|2

= −4

(
fzz f + f fzz

)
| f |2 −

(
fz fz f 2 + fz fz f 2

)
| f (z)|4

, z ∈ Ω.

So from (2.4) we conclude that

∆ log
1
| f (z)|2

= −4

(
fzz f + fzz f

)
| f (z)|2 −

(
fzz f + fzz f

)
| f (z)|2

| f (z)|4
= 0, z ∈ Ω.

Thus by (2.7) we have

∆ log | fz(z)| = 0, z ∈ Ω.

That is, log | fz(z)| is Euclidean harmonic in Ω. The proof of Proposition 2.3 is finished.

For simply connected domains, the following classic theorem reveal the link between the hyperbolic
density and the quasihyperbolic density [7, 18].

Lemma 2.4. Let Ω ⊂ C be a simply connected hyperbolic domain and and let λΩ(z)|dz| be its hyperbolic metric.
Then

1
4

1
d(z, ∂Ω)

≤ λΩ(z) ≤
1

d(z, ∂Ω)
, z ∈ Ω,

where
d(z, ∂Ω) := inf {|z − ω| : ω ∈ ∂Ω} , z ∈ Ω.

The right equality holds if and only if Ω is a disk with center z, and the left equality holds if and only if Ω is to a slit
plane. Moreover, if Ω is a convex domain, then

1
2

1
d(z, ∂Ω)

≤ λΩ(z) ≤ 1, for all z ∈ Ω.

The left equality holds if and only if Ω is a half plane.
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Lemma 2.4 can be roughly state as

C2κΩ(z1, z2) ≤ dh(z1, z2) ≤ C1κΩ(z1, z2), for all z1, z2 ∈ Ω, (2.8)

where C1 and C2 are two universal constants and κΩ is the quasihyperbolic metric of Ω which is defined as

κΩ(z1, z2) := inf
γ

∫
γ

1
d(z, ∂Ω)

|dz|, for all z1, z2 ∈ Ω. (2.9)

Here the infimum is taken over all rectifiable curves γ in Ω joining z1 and z2.
The Gauss curvature of a Riemannian metric ρ(z)|dz|2 of a domain Ω is

K(ρ)(z) := −
1
2

∆ logρ(z)
ρ(z)

, z ∈ Ω.

The following is the famous Ahlfors-Schwarz lemma [25].

Lemma 2.5. Let ρ(z) is the density of a Riemannian metric of the unit diskDwith Gaussian curvature K(ρ)(z) ≤ −1.
Then ρ(z) ≤ λ(z) for all z ∈ D, where

λ(z) =
4

(1 − |z|2)2

is the hyperbolic density ofD.

Applying Proposition 2.3 and Lemma 2.5 to 1/|ω|2-harmonic K-quasiregular mappings, we get the
following Schwarz lemma which will be used in the discussion of section 4.

Proposition 2.6. Let f : D→ D be a 1/|ω|2-harmonic K-quasiregular mapping. Then

Λ f (z) := | fz(z)| + | fz(z)| ≤ K
1 − | f (z)|2

1 − |z|2
, z ∈ D. (2.10)

Proof. Let

σ(z) = (1 − k)2 λ( f (z))| fz(z)|2, z ∈ D, (2.11)

where k = (K − 1)/(K + 1). By Proposition 2.1, f (z) is a logharmonic mapping. So f (z) is sense preserving
and | fz(z)| , 0 inD, consequently. Thus, σ(z) > 0 for z ∈ D.

From (2.11) and Proposition 2.3,

∆ log σ(z) = ∆ logλ( f (z)).

By simple computation on ∆ logλ( f (z)), we get

∆ log σ(z) = 8
( fzz f + f fzz)(1 − | f |2) + (| fz|2 + | fz|2) + ( fz fz f 2 + fz fz f 2)

(1 − | f |2)2 . (2.12)

Since f is K-quasiregular mapping, we have | fz(z)| ≤ k| fz(z)| and consequently,

|a(z)| ≤ k < 1, z ∈ D, (2.13)

where a(z) is the analytic function in (2.0) associated to the logharmonic mapping f . Thus, by (2.0), (2.4),
(2.12) and (2.13), we have

∆ log σ(z) = 8
| fz(z)|2 + | fz(z)|2 + fzz(z) f (z) + fzz(z) f (z)

(1 − | f (z)|2)2

= 8
| fz(z)|2(

1 − | f (z)|2
)2

[
1 + |a(z)|2 + a(z) + a(z)

]
≥ 8

| fz(z)|2(
1 − | f (z)|2

)2
(1 − k)2 ,
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which implies that

K(σ)(z) = −
1
2

∆ log σ(z)
σ(z)

≤ −1.

Therefore, by Lemma 2.5, σ(z) ≤ λ(z) for z ∈ D, which implies

| fz(z)| ≤
1

1 − k
1 − | f (z)|2

1 − |z|2
, z ∈ D

and then (2.10) directly. The proof of this Proposition is completed.

3. Quasi-Isometricity of 1/|ω|2-Harmonic Mappings with Respect to Quasihyperbolic Metrics

In this section we prove that 1/|ω|2-harmonic mappings are of quasi-isometricity with respect to quasi-
hyperbolic metrics. As a corollary we obtained that they are of quasi-isometricity with respect to hyperbolic
metrics also if their domains are simply connected hyperbolic domains and their image domains not con-
taining 0, which generalizes Theorem 1.1.

Theorem 3.1. Let Ω and Ω′ be two proper domains ofCwith 0 < Ω′. Then every 1/|ω|2-harmonic K-quasiconformal
mapping f : Ω→ Ω′ of Ω onto Ω′ is bi-Lipschitz continuous with respect to quasihyperbolic metrics on Ω and Ω′.
That is to say, there exists a positive constant c such that

1
c
κΩ(z1, z2) ≤ κΩ′ ( f (z1), f (z2)) ≤ c κΩ(z1, z2), ∀z1, z2 ∈ Ω, (3.1)

where κΩ and κΩ′ are the quasihyperbolic metrics of Ω and Ω′ respectively.

Proof. As f is a 1/|ω|2-harmonic mapping in Ω, by Proposition 2.1, there exists an analytic function a(z) with
|a(z)| < 1 on Ω such that (2.0) holds in Ω. So the Jacobian J f (z) of f (z) can be represented as

J f (z) = Λ f (z)λ f (z) = (1 − a(z)) fz(z), z ∈ Ω,

where
Λ f (z) = | fz(z)| + | fz(z)|, λ f (z) = | fz(z)| − | fz(z)|.

Thus, the quantity α f ,Ω(z) defined in Lemma 2.2 has the following form

α f ,Ω(z) = exp
{

1
2|B(z, r)|

∫
B(z,r)

[
log

(
1 − |a(ξ)|2

)
+ log | fξ(ξ)|2

]
dxdy

}
, (3.2)

where ξ = x + iy.
Since log | fz(z)| is a real-valued harmonic function on Ω from Proposition 2.3, Then by mean value

theorem,

log | fz(z)| =
1

2|B(z, r)|

∫
B(z,r)

log | fz(ξ)|2dxdy, ξ = x + iy ∈ B(z, r) (3.3)

holds for every z ∈ Ω and every disk B (z, r) ⊂ Ω centered at z with radius r. Therefore, by (3.2) and (3.3),

α f ,Ω(z) = | fz(z)| exp
{

1
2|B(z, r)|

∫
B(z,r)

log
(
1 − |a(ξ)|2

)
dxdy

}
, z ∈ Ω. (3.4)

As f is a K-quasiconformal mapping, we have

|a(z)| ≤ k =
K − 1
K + 1

< 1, z ∈ Ω. (3.5)
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Then from (3.4) and (3.5),
√

1 − k2| fz(z)| ≤ α f ,Ω(z) ≤ | fz(z)|, z ∈ Ω,

which implies

1
√

K
Λ f (z) ≤ α f ,Ω(z) ≤

K + 1
2

λ f (z), z ∈ Ω (3.6)

directly.
Applying Lemma 2.2, (3.6) implies

C2Λ f (z) ≤
d( f (z), ∂Ω′)

d(z, ∂Ω)
≤ C1λ f (z), z ∈ Ω, (3.7)

where C1 := K+1
2 c, C2 := 1

√
K

c and c = c(K, 2) is the constant appeared in Lemma 2.2.
For any z1 and z2 ∈ Ω. By a result of [17], there exists a quasihyperbolic geodesic γ0 in Ω connecting z1

and z2. So

κΩ(z1, z2) =

∫
γ0

1
d(z, ∂Ω)

|dz| ≥
∫
γ0

1
d(z, ∂Ω)

1
Λ f (z)

∣∣∣ fzdz + fzdz
∣∣∣ . (3.8)

Thus, from the left inequality of (3.7) and (3.8),

κΩ(z1, z2) ≥
∫

f (γ0)

C2

d(w, ∂Ω′)
|dw|,

and consequently

κΩ(z1, z2) ≥ C2κΩ′ ( f (z1), f (z2)), z1, z2 ∈ Ω, (3.9)

since f (γ0) is curve in Ω′ joining f (z1) and f (z2).
Similarly, there exists a geodesic γ′0 in Ω′ joining f (z1) and f (z2), and thus

κΩ′ ( f (z1), f (z2)) =

∫
γ′0

1
d(w, ∂Ω′)

|dw| ≥
∫

f−1(γ′0)

1
d( f (z), ∂Ω′)

λ f (z)|dz|. (3.10)

From the second inequality in (3.7) and (3.10),

κΩ′ ( f (z1), f (z2)) ≥
∫

f−1(γ′0)

1
C1d(z, ∂Ω)

|dz| ≥
1

C1
κΩ(z1, z2), z1, z2 ∈ Ω. (3.11)

Therefore, (3.1) comes from (3.9) and (3.11), and the proof of Theorem 3.1 is completed.

By Theorem 3.1 and Lemma 2.4 or the inequality (2.8), we obtain the following theorem.

Theorem 3.2. Suppose that Ω and Ω′ are two simply connected proper subdomains of C. Let f : Ω → Ω′ be a
1/|ω|2-harmonic K-quasiconformal mapping with ω = f (z) and 0 < Ω′. Then there exists a positive constant C such
that

1
C

dh(z1, z2) ≤ dh( f (z1), f (z2)) ≤ C dh(z1, z2), (3.11)

holds for all z1, z2 ∈ Ω.

Remark Theorem 3.2 is a generalization of Theorem 1.1 to arbitrary simply connected hyperbolic domains,
though the sharp estimate of Lipschitz constant is not obtained here.
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4. Equivalent Moduli of Continuity for 1/|ω|2-Harmonic Mapping

In order to illustrate the modulus of continuity, some terminologies and notations should be introduced.
A continuous increasing function σ : [0, +∞) → [0, +∞) with σ(0) = 0 is called a majorant if σ(t)/t is

decreasing for t > 0. A majorant σ is said to be regular if there are constants δ0 > 0 and C > 0 such that∫ δ

0

σ(t)
t

dt ≤ Cσ(δ), 0 < δ < δ0, (4.1)

and

δ

∫ +∞

δ

σ(t)
t2 dt ≤ Cσ(δ), 0 < δ < δ0. (4.2)

Given a subset Ω ⊂ C and a majorant σ, the Lipschitz space Λσ(Ω) is the set of all mappings f : Ω → C
satisfying for some constant C = C f > 0

| f (z) − f (ξ)| ≤ C σ(|z − ξ|) (4.3)

whenever z and ξ ∈ Ω. The local Lipschitz space Λloc
σ (Ω) is the set of all mappings f : Ω → C such that (4.3)

holds for some constant C = C f > 0 whenever z and ξ in any open disk contained in Ω. A domain Ω is
called a Λσ-extension domain if Λσ(Ω) = Λloc

σ (Ω).
Λσ-extension domain is an important concept in complex analysis. Gehring and Matrio first give a

geometric characterization of Λσ-extension domains in [16] with the important special majorant σ(t) =
tα (0 < α ≤ 1). Lappalainen [26] extends their results to a general case and proves that

Ω is a Λσ-extension domain if and only if there is a constant C = C(Ω, σ) > 0 such that∫
γ

σ (d (z, ∂Ω))
d (z, ∂Ω)

|dz| ≤ Cσ (|z1 − z2|) , (4.4)

holds for all z1 and z2 ∈ Ω and all rectifiable curves γ in Ω joining them. Moreover, Λσ-extension domains exist only
for majorants σ satisfying the inequality (4.1).

Based on the above characterization, the equivalent modulus of continuity | f | ∈ Λσ(Ω) is discussed by
many authors. For example, [4, 10, 21, 22, 35] and the references therein. Dyakonov [21] first characterizes
the equivalent modulus of the holomorphic functions. Then Pavlović [35] uses a relatively simple method
to prove the results of Dyakonov. Also simple proofs are given using Bloch’s theorem by Mateljevic, see
[27–30, 32] and the Remark in this paper. Recently, Chen, Ponnusamy and Wang generalize this topic to
other functions, such as planar harmonic mappings, plurharmonic mappings in Bn(see [10, 11]). Two main
theorems [10] of them are as follows.

Theorem 4.1. Let σ be a majorant with (4.1), and let Ω be a Λσ-extension domain. If f is a planar K-quasiregular
Euclidean harmonic mapping of Ω and continuous up to the boundary ∂Ω, then

f ∈ Λσ(Ω)⇐⇒ | f | ∈ Λσ(Ω)⇐⇒ | f | ∈ Λσ(Ω, ∂Ω),

where Λσ(Ω, ∂Ω) is the set of f ∈ C2(Ω) satisfying (4.3) with some positive constant C for z ∈ Ω and ξ ∈ ∂Ω.

Theorem 4.2. Let σ be a majorant with (4.1). If f is a Euclidean harmonic K- quasiregular mapping in Ω ⊂ C, then

f ∈ Λσ,inf(Ω)⇐⇒ | f | ∈ Λσ,inf(Ω),

where Λσ,inf(Ω) is the set of f ∈ C2(Ω) which satisfying for some constant C > 0∣∣∣ f (z1) − f (z2)
∣∣∣ ≤ Cdσ,Ω(z1, z2), (4.5)
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for z1, z2 ∈ Ω. Here

dσ,Ω(z1, z2) := inf
γ

∫
γ

σ (d(z, ∂Ω))
d (z, ∂Ω)

|dz|

and the infimum is taken over all rectifiable curves γ in Ω joining z1 and z2.

In addition, there are many investigations about Lipschitz moduli of Euclidean harmonic quasiregular
mapping in Rn, see [2, 5] for more detail. At the end of [10], authors quoted the question which is posed
by referee: Does Theorem 4.1 still hold if the hypothesis mapping being harmonic is dropped? In 2014, Miodrag
Mateljević [32] partly answered this question when σ(t) = tα and found that it also true when Ω ⊂ Rn in
Theorem 24 and Theorem 40. But the general case is still unsolved. In this section, we prove that Theorem
4.1 and Theorem 4.2 also set up for planar 1/|ω|2-harmonic K-quasiregular mappings.

Theorem 4.3. Let σ be a majorant with (4.1), and let Ω be a Λσ-extension domain. If f is a 1/|ω|2-harmonic
K-quasiregular mapping of Ω and continuous up to the boundary ∂Ω, then

f ∈ Λσ(Ω)⇐⇒ | f | ∈ Λσ(Ω)⇐⇒ | f | ∈ Λσ(Ω, ∂Ω).

Proof. It is trivial that f ∈ Λσ(Ω) ⇒ | f | ∈ Λσ(Ω) ⇒ | f | ∈ Λσ(Ω, ∂Ω). Thus we only need to prove | f | ∈
Λσ(Ω, ∂Ω)⇒ f ∈ Λσ(Ω).

For a fixed point z ∈ Ω, let

F(t) =
1

Mz
f (z + td(z, ∂Ω)), t ∈ D,

where
Mz = sup

{
| f (ξ)| : |ξ − z| < d(z, ∂Ω)

}
.

Then |F(t)| < 1 for t ∈ D.
Since f is a 1/|ω|2-harmonic K-quasiregular mapping with ω = f (z), then∣∣∣∣∣Ft(t)

Ft(t)

∣∣∣∣∣ =

∣∣∣∣∣∣ fξ(ξ)

fξ(ξ)

∣∣∣∣∣∣ ≤ k :=
K − 1
K + 1

, ξ = z + td(z, ∂Ω)

and there exists an analytic function a(z) satisfies |a(z)| < 1 in Ω such that

Fξ(ξ) = a(ξ)
F(ξ)
F(ξ)

Fξ(ξ),

by Proposition 2.1, that is, F is a 1/|ω|2-harmonic K-quasiregular mapping of D into itself. Therefore, by
Proposition 2.6,

|Fξ(ξ)| + |Fξ(ξ)| ≤ K
1 − |F(ξ)|2

1 − |ξ|2
, ξ ∈ D.

Especially,

|Fξ(0)| + |Fξ(0)| ≤ K
(
1 − |F(0)|2

)
≤ 2K(1 − |F(0)|),

that is,

d(z, ∂Ω)
(
| fz(z)| + | fz(z)|

)
≤ 2K(Mz − | f (z)|). (4.6)

In what follows, we always use C to denote positive constants, although the C’s may not be the same in
different places.
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Let such that τ ∈ ∂Ω with |z − τ| = d(z, ∂Ω). As | f | ∈ Λσ(G, ∂G), thus for any ξ ∈ D(z, d(z, ∂Ω)) := {ξ :
|ξ − z| < d(z, ∂Ω)}, we get that

|| f (ξ)| − | f (z)|| ≤|| f (ξ)| − | f (τ)|| + || f (τ)| − | f (z)||
≤Cσ(|τ − ξ|) + Cσ(|τ − z|),

Since |τ − ξ| ≤ 2d(z, ∂Ω), so by the definition of majorant,

|| f (ξ)| − | f (z)|| ≤ Cσ(d(z, ∂Ω)),

which implies

Mz − | f (z)| ≤ Cσ (d(z, ∂Ω)) , z ∈ Ω. (4.7)

Hence, by (4.6) and (4.7), we get

| fz(z)| + | fz(z)| ≤ C
σ(d(z, ∂Ω))

d(z, ∂Ω)
z ∈ Ω. (4.8)

As Ω is a Λσ-extension domain, then by (4.4) and (4.8),

| f (z1) − f (z2)| ≤
∫
γ

(
| fz(z)| + | fz(z)|

)
|dz|

≤ C
∫
γ

σ(d(z, ∂Ω))
d(z, ∂Ω)

|dz|

≤ Cσ (|z1 − z2|)

holds for all z1 and z2 ∈ Ω. Here γ is any rectifiable curve in Ω joining z1 and z2.
Therefore we have proved that

| f | ∈ Λσ(G, ∂G)⇒ f ∈ Λσ(G)

and the proof of Theorem 4.3 is finished.

By the method used in the proof of Theorem 4.3 and the definition of Λσ,in f (Ω), the following outcome
is obtained also. We omit the proof of this theorem here.

Theorem 4.4. Let σ be a majorant satisfying (4.1). If f is a 1/|ω|2-harmonic K-quasiregular mapping in Ω ⊂ C
with ω = f (z), then

f ∈ Λσ,inf(Ω)⇐⇒ | f | ∈ Λσ,inf(Ω).

Remark The methods used in the proof of Theorem 4.1 and Theorem 4.3 are closely dependent on
the harmonicity of functions and the Schwarz lemma plays an important role which also illustrates that
harmonicity can not be dropped there. Comparatively speaking, Miodrag Mateljević’s method is relatively
simple [32]. Furthermore, applying his method, Theorem 24 is very likely be extend to all majorant since
the time of publication of the first works. Besides, the subject is closely related to other topics such as
versions of Bloch’s and Koebe’s theorems, see [27–30] for more details.
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[30] M. Mateljević, Versions of Koebe 1/4 theorem for analytic and quasiregular harmonic functions and applications. Publ. Inst.

Math.(Beograd)(NS). 84(2008), 61-72.
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