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Abstract. In this paper, based on some biological meaning, triple-negative T cells (TN) and the immature
single-positive T cells (CD3−4+8− and CD3−4−8+) have been introduced into well known Mehr’s nonlinear
dynamic model which is used to describe proliferation, differentiation and death of T cells in the thymus
(Modeling positive and negative selection and differentiation processes in the thymus, Journal of Theoretical
Biology, 175 (1995) 103-126), and a class of improved nonlinear dynamic model with seven state variables
and time delays has been proposed. Then, by using quasi-steady-state approximation and some classical
analysis techniques of functional differential equations, the local and global stability of the equilibrium of
the model have been analysed. Finally, some numerical simulations are given to summarize the applications
of the theoretical results.

1. Introduction

T cells play an important role in cellular immunity. It is well known that T cells begin their development
as precursor cells in the bone marrow. These cells migrate to the thymus, where they further divide,
differentiate and develop into functional T cells. Finally, the T lymphocyte compartment includes two types
of T cell sub-populations, characterized according to their functions and distinct cell membrane makers.
Helper and inducer T cells (expressing the CD4 marker) regulate the function of the other immunocytes.
Cytotoxic and suppressor T cells (expressing the CD8 maker) destroy virally infected cells and foreign
transplants. The processes are complicated. Based on the data gained from experiments on mice by Finkel
et al, Mehr et al proposed the following nonlinear dynamic model to describe proliferation, differentiation
and death of T cells in the thymus [21, 22], for t ≥ 0,
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
Ṅ(t) = (1 − N(t)

Kn
)[s + rnN(t)] − (dn + sn)N(t),

Ṗ(t) = snN(t) + (1 − Z
K )rpP(t) − (dp + sp)P(t),

Ṗs(t) = spP(t) + (1 − Z
K )rpsPs(t) − (dps + s4 + s8)Ps(t),

Ṁ4(t) = s4Ps(t) + (1 − Z
K )r4M4(t) − (d4 + s04)M4(t),

Ṁ8(t) = s8Ps(t) + (1 − Z
K )r8M8(t) − (d8 + s08)M8(t),

(1)

where N, P and Ps denote the numbers of the double negative (DN) cells, the double positive (DP) cells
that are not sensitive to deletion and DP cells that are sensitive to deletion, respectively. M4 represents
the number of maturing single positive (SP, CD4+8−) cells, M8 represents the number of maturing single
positive (SP, CD4−8+) cells, and Z = N + P + Ps + M4 + M8 is the total thymic population.

The percentages of the cells in the various sub-populations are defined by

DN ≡
N
Z
, DP ≡

(P + Ps)
Z

, T4 ≡
M4

Z
, T8 ≡

M8

Z
.

In each equation of the model (1), there is an input term that is the rate of entry of the cells from the
previous compartment, except in the first equation, where we use s, the rate of seeding of T cell progenitor
cells from the bone marrow. The parameters sn, sp, s4 and s8 represent maturation rates, that is, the rates of
passage from one compartment to next. The parameters s04 and s08 represent the rates of export of mature T
cells from the thymus. The parameters rn, rp, rps, r4 and r8 represent cell division rates, and the parameters
dn, dp, dps, d4 and d8 represent the death rates, including the death of cells not rescued by positive selection
and cell deletion due to negative selection.

Based on the analysis in [20–22], competition occurs during seeding and early development of thy-
mocytes, hence, there is an upper bound for the DN cells, denoted here by Kn. Furthermore, due to the
environmental restriction, there is also an upper bound for the total number of cells in thymus which is
denoted by K. It is clear that competition in the model (1) is taken as the logistic form.

With the help of computer simulations, in [20, 21], it has been shown that the model (1) gives better
estimates by experimental results for the total number of thymus cells and the fractions of various types
of immature and mature thymocytes. In [10], by using stability theory of ordinary differential equations,
detailed theoretical analysis of global asymptotic stability of the positive equilibrium of the model (1) has
been given. Then, based on some important experimental date, in [27, 28], time delays are introduced into
the model (1) and global dynamic properties of the positive equilibrium of the system has been analyzed
by constructing suitable Liapunov functionals.

Precursor cells from bone marrow undergo the main intrathymic stages and develop into functional T
cells. Finally, functional T cells emigrate to the periphery. A simplified diagram depicts the pathways of
T cells differentiation in Figure 1(a). From [21], [26], [30], [34], it is has that T lymphocytes are generated
in the thymus from bone-marrow (BM)-derived progenitor cells, which migrate to the thymus and settle
in specific “niches” in the thymus stroma. This process is termed thymic seeding. Settled progenitors
lack the cell surface markers of mature T cells, for example CD3, CD4 and CD8, hence are described as
triple-negative (TN). Figure 1(b) depicts the progression in detail. In addition, mature single-positive T
cells (SP, CD4+8− and CD4−8+) are experienced the important process, immature single-positive T cells,
which are prepared for differentiation in the junction of cortex and medulla (see, for example, [5], [14], [20],
[22], [25], [29]).
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Figure 1: Pathways of T cell development.

The development of T cells in the thymus must go through positive and negative selection. The positive
selection refers to double negative cells divide several times and subsequently express both the CD4 and
CD8 markers, hence becoming double positive thymocytes. Depending on the affnity and the context of
such binding, a developing DP thymocyte may be deleted (caused to die via apoptosis) or develop further
into a CD4+8− or CD4−8+ SP thymocyte. The latter subsets of thymocytes are the immediate precursors of
mature CD4+8− and CD4−8+ T cells. Negative selection is the deletion of self-reactive thymocytes, that is,
thymocyte clones whose TCRs bind too strongly to self-antigens presented by self-MHC molecules. This
prevents these cells from becoming auto-reactive and potentially harmful mature T cells. Cells without
functional TCRs or cells with TCRs that cannot interact with self-MHC molecules appear to die in the
thymus. Only the cells those who cannot identify the self-antigens complex can continue to develop mature
CD4+8− and CD4−8+ T cells (see, for example [21], [24], [26]).

Motivated by the model (1) and the biological arguments above, in the paper, triple-negative T cells
(TN) and immature single-positive T cells, as two additional separated compartments, are introduced into
the model (1), and it has the following revised dynamic model, for t ≥ 0,

Ṫn(t) = (1 − Tn(t)
Ln

)[b0 + rTn(t)] − (d + s + sr)Tn(t),
Ṅ(t) = sTn(t − τ1) + (1 − Zn(t)

Kn
)[b1 + rnN(t)] − (dn + sn)N(t),

Ṗ(t) = snN(t − τ2) + (1 − Z(t)
K )rpP(t) − (dp + sp)P(t),

Ṗs(t) = spP(t − τ3) + (1 − Z(t)
K )rpsPs(t) − (dps + sm)Ps(t),

Ṡ(t) = smPs(t − τ4) + (1 − Z(t)
K )rsS(t) − (ds + s4 + s8)S(t),

Ṁ4(t) = s4S(t − τ5) + (1 − Z2(t)
K2

)r4M4(t) − (d4 + s04)M4(t),
Ṁ8(t) = s8S(t − τ5) + (1 − Z2(t)

K2
)r8M8(t) − (d8 + s08)M8(t).

(2)
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The biological meanings of all the state variables and the parameters in the model (2) are given as
follows.
Tn: represents the number of TN cells;
N: represents the number of DN cells;
P: represents the number of DP cells that are not sensitive to deletion;
Ps: represents the number of DP cells that are sensitive to deletion;
S: represents the number of immature single-positive T cells;
M4 and M8: represent the numbers of maturing single positive CD4+8− cells and CD4−8+ cells, respectively;
Zn: represents the total number of TN cells and DN cells, Zn(t) ≡ Tn(t) + N(t);
Ln, Kn: represent upper bounds for the number of TN cells, and the total number of TN cells and DN cells
in thymic cortex;
Z: represents the total thymic population in the thymic cortex, Z(t) ≡ Tn(t) + N(t) + P(t) + Ps(t) + S(t);
K: represents an upper bound for the total number of cells in thymic cortex;
Z2: represents the total number of CD4+8− T cells and CD4−8+ T cells, Z2(t) ≡M4(t) + M8(t);
K2: represents an upper bound for the total number of CD4+8− cells and CD4−8+ cells in thymic medulla;
τi(i = 1, 2, 3, 4, 5): represent the time delays. The differentiation of T cells in the thymus is complicated, and
it will take some time to move from one compartment to the next compartment. In fact, from [3], it is has
that the period of DN cells needs 14 days, DP cells needs 3 to 4 days, and SP cells needs 7 to 14 days. Hence,
it is necessary to introduce time delays into the model (2).
b0, b1: represent the rate of seeding of T cell progenitor cells from the bone marrow;
r, rn, rp, rps, rs, r4 and r8: represent cell division rates;
s, sn, sp, sm, s4 and s8: represent the maturation rates, that is, the rates of passage from one compartment to
next;
d, dn, dp, dps, ds, d4 and d8: represent the death rates, including the death of cells not rescued by positive
selection and cell deletion due to negative selection;
sr: represents the rate of TN cells differentiation to other cells;
s04, s08: represent the rates of export of mature T cells from the thymus.

In biology, theoretical analysis on dynamic properties of the equilibrium of the model (2) is very impor-
tant for a deep understanding of evolution mechanism of differentiation, development and maturation of
T cells in thymus. This is main purpose of the paper.

By biological meaning, the initial condition of the model (2) is given as{
Tn(t) = φ1(t), N(t) = φ2(t), P(t) = φ3(t), Ps(t) = φ4(t),
S(t) = φ5(t), M4(t) = φ6(t), M8(t) = φ7(t) (−∆ ≤ t ≤ 0]), (3)

where the functions φi(t)(i = 1, 2, ..., 7) are continuous and positive on [−∆, 0], ∆ = max{τi|i = 1, 2, · · · , 5}.
With a standard argument (see, for example, [8] and [12]), it is easy to show that the solution (Tn(t),N(t),P(t),

Ps(t),S(t),M4(t),M8(t)) of the model (2) with the initial condition (3) is existent, unique, positive and bounded
on [0,+∞).

The organization of the paper is as follows.
In Section 2, by using quasi-steady-state approximation method (see, for example, [21, 22] and [24]), the

model (2) with seven state variables is reduced to a system with three state variables. Then, in Section 3,
by constructing suitable Liapunov functionals and using comparison principle, local and global stability
of the equilibrium of the system with three state variables have been studied. Finally, in Section 4, some
numerical simulations are given to summarize the applications of the results.

2. Quasi-Steady-State Approximation and Reduction of The Model

The model (2) is a nonlinear system with seven state variables. Usually, theoretical analysis on asymp-
totic properties of the model (2) is rather difficult. On the other hand, the simulations show that the time
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evolution of the more mature thymocyte subsets (Ps,S,M4,M8) closely relate to that of P. Hence, it is pos-
sible to simplify the model (2) to a lower dimensional system by using quasi-steady-state approximation
method as proposed in [21, 22] and [24].

Assume that
Ṗs(t) = Ṡ(t) = Ṁ4(t) = Ṁ8(t) = 0.

Furthermore, note that the parameter values given in [21, 22] and [24], it has that Zn � Kn, Z � K, and
Z2 � K2. Hence, it may further assume that 1 − Z/K ≈ 1 and 1 − Z2/K2 ≈ 1. It should be mentioned here
that, from the simulations, these approximations are reasonable for all t ∈ (η,∞) for some small positive
number η (see, for example, [21, 22] and [24], or the numerical simulations in Section 4). Therefore, it has
from the model (2) that 

Ps(t) =
sp

c3−rps
P(t − τ3),

S(t) =
smsp

(c4−rs)(c3−rps)
P(t − τ3 − τ4),

M4(t) =
s4smsp

(c5−r4)(c4−rs)(c3−rps)
P(t − τ3 − τ4 − τ5),

M8(t) =
s8smsp

(c6−r8)(c4−rs)(c3−rps)
P(t − τ3 − τ4 − τ5),

(4)

where
c0 = d + s + sr > 0, c1 = dn + sn > 0, c2 = dp + sp > 0, c3 = dps + sm > 0,

c4 = ds + s4 + s8 > 0, c5 = d4 + s04 + h4 > 0, c6 = d8 + s08 + h8 > 0.

In the following discussions, it is further assumed that

c3 − rps > 0, c4 − rs > 0, c5 − r4 > 0, c6 − r8 > 0.

Let
c0 = d + s + sr > 0, c1 = dn + sn > 0, c2 = dp + sp > 0,

α =
rp

K
, β =

sp

c3 − rps
, µ =

sm

c4 − rs
, ν =

1
Ln
, γ =

1
Kn
.

Hence, from the model (2) and (4), it has the following three-dimensional nonlinear delayed system for the
state variables Tn(t), N(t) and P(t), for t ≥ 0,

Ṫn(t) = (1 − νTn(t))[b0 + rTn(t)] − c0Tn(t),
Ṅ(t) = sTn(t − τ1) + (1 − γZn(t))[b1 + rnN(t)] − c1N(t),
Ṗ(t) = snN(t − τ2) + rpP(t) − αTn(t)P(t) − αN(t)P(t) − αP2(t)

−αβP(t)P(t − τ3) − αβµP(t)P(t − τ3 − τ4) − c2P(t).

(5)

In the following Section 3, detailed analysis on local and global stability of the equilibrium of the system
(5) shall be given.

As usual, the initial condition of the system (5) is given as

Tn(t) = φ1(t), N(t) = φ2(t), P(t) = φ3(t) (−% ≤ t ≤ 0), (6)

where the functions φ1(t), φ2(t) and φ3(t) are continuous and positive on [−%, 0], % = max{τ1, τ2, τ3 + τ4}.
It is also easily to show that the solution (Tn(t),N(t),P(t)) of the system (5) with the initial condition (6)

is existent, unique, positive and bounded on [0,+∞).

3. Global Stability of the Equilibrium

In this section, let us first consider the existence of the positive equilibrium of the system (5).
Let (Tn,N,P) be any positive equilibrium of the system (5). Then, it has from the system (5) that

(1 − νTn)[b0 + rTn] − c0Tn = 0,
sTn + (1 − γZn)[b1 + rnN] − c1N = 0,
snN + rpP − αTnP − αNP − α(1 + β + βµ)P2

− c2P = 0.
(7)
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From the first equation of (7), it has that

T = T∗ =
r − νb0 − c0 +

√
(r − νb0 − c0)2 + 4νrb0

2νr
> 0.

Hence, from the second equation of (7), it has that

−γrnN2 + (rn − γb1 − c1 − γrnT∗)N + b1 + (s − γb1)T∗ = 0.

Therefore, it has that

N = N∗ =
B +
√

B2 + 4γrnC
2γrn

> 0,

if the following condition (H1) holds,

(H1) C = b1 + (s − γb1)T∗ > 0, or C = 0 and B = rn − γb1 − c1 − γrnT∗ > 0.

Similarly, it has from the third equation of (7) that

P = P∗ =
D +

√
D2 + 4αsnN∗(1 + β + βµ)

2α(1 + β + βµ)
> 0,

where D = rp − αT∗ − αN∗ − c2.
In summary, it has from the discussions above that, if the condition (H1) holds, the system (5) has unique

positive equilibrium (T∗,N∗,P∗).
For the local stability of the equilibrium (T∗,N∗,P∗), it easily has the following result.

Theorem 3.1. The equilibrium (T∗,N∗,P∗) of the system (5) is locally asymptotically stable for any time delays
τi (i = 1, 2, 3, 4).

The proof of Theorem 3.1 is similar to [27], and is omitted here.
Let us further consider global stability of the equilibrium (T∗, N∗, P∗) of the system (5).
First, it is noticed that the first equation of the system (5) only depends on the state variable Tn(t). It has

from known results that, T∗ is unique positive equilibrium of the first equation of the system (5), and also
globally asymptotically stable.

Since lim
t→+∞

Tn(t) = T∗, then, for any sufficiently small ε > 0, there exists some sufficiently large t0 > 0

such that for t ≥ t0,
T∗ − ε < Tn(t) < T∗ + ε.

From the second equation of the system (5) and N(t) ≥ 0(t ≥ 0), it has that, for t ≥ t0 + %,

Ṅ(t) = −γrnN2(t) + (rn − γb1 − c1 − γrnTn(t))N(t) + sTn(t − τ1) − γb1Tn(t) + b1

≤ −γrnN2(t) + [rn − γb1 − c1 − γrn(T∗ − ε)]N(t) + s(T∗ + ε) − γb1(T∗ − ε) + b1

= −γrnN2(t) + (B + γrnε)N(t) + C + (s + γb1)ε,

and

Ṅ(t) = −γrnN2(t) + (rn − γb1 − c1 − γrnTn(t))N(t) + sTn(t − τ1) − γb1Tn(t) + b1

≥ −γrnN2(t) + [rn − γb1 − c1 − γrn(T∗ + ε)]N(t) + s(T∗ − ε) − γb1(T∗ + ε) + b1

= −γrnN2(t) + (B − γrnε)N(t) + C − (s + γb1)ε.

By letting ε→ 0, it has the following comparison system,

U̇(t) = −γrnU2(t) + BU(t) + C. (8)
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The system (8) has unique positive equilibrium U = N∗ which is also globally asymptotically stable.
Hence, it has from the comparison principle in [13] that

lim
t→+∞

N(t) = N∗.

In the following, let us further show that lim
t→+∞

P(t) = P∗.

Again, for any sufficiently small ε > 0, there exists some t1 > t0 such that for t ≥ t1,

T∗ − ε < Tn(t) < T∗ + ε, N∗ − ε < N(t) < N∗ + ε.

Therefore, it has from the third equation of the system (5) that, for t ≥ t1 + %,

Ṗ(t) = snN(t − τ2) + rpP(t) − αTn(t)P(t) − αN(t)P(t) − αP2(t) − αβP(t)P(t − τ3)
−αβµP(t)P(t − τ3 − τ4) − c2P(t)

≤ sn(N∗ + ε) + rpP(t) − α(T∗ − ε)P(t) − α(N∗ − ε)P(t) − αP2(t) − αβP(t)P(t − τ3)
−αβµP(t)P(t − τ3 − τ4) − c2P(t)

= sn(N∗ + ε) + (D + 2αε)P(t) − αP2(t) − αβP(t)P(t − τ3) − αβµP(t)P(t − τ3 − τ4),

and

Ṗ(t) = snN(t − τ2) + rpP(t) − αTn(t)P(t) − αN(t)P(t) − αP2(t) − αβP(t)P(t − τ3)
−αβµP(t)P(t − τ3 − τ4) − c2P(t)

≥ sn(N∗ − ε) + rpP(t) − α(T∗ + ε)P(t) − α(N∗ + ε)P(t) − αP2(t) − αβP(t)P(t − τ3)
−αβµP(t)P(t − τ3 − τ4) − c2P(t)

= sn(N∗ − ε) + (D − 2αε)P(t) − αP2(t) − αβP(t)P(t − τ3) − αβµP(t)P(t − τ3 − τ4).

By letting ε→ 0, it has the following comparison system with time delays,

Ẇ(t) = snN∗ + DW(t) − αW2(t) − αβW(t)W(t − τ) − αβµW(t)W(t − σ), (9)

where τ = τ3 and σ = τ3 + τ4.
It is clear that W = P∗ is unique positive equilibrium of the system (9). Let W = W1 < 0 be another

equilibrium of the system (9). It has the following results in [27, 28].

Lemma 3.2. For the system (9), the following conclusions hold.
Case (i) D ≤ 0, or β(1 + µ) ≤ 1, or β(1 + µ) > 1, D > 0 and P∗ ≥ D/2α. Then the equilibrium P∗ of the system

(9) is globally asymptotically stable for any time delays τi (i = 1, 2, 3, 4).
Case (ii) β(1 + µ) > 1, D > 0 and P∗ < D/2α. Then the system (9) is permanent for any time delays

τi (i = 1, 2, 3, 4), and the following inequalities hold,

N0 ≤ lim inf
t→+∞

W(t) ≤ P∗ ≤ lim sup
t→+∞

W(t) ≤M0,

where

N0 =
D[1 − β(1 + µ)] +

√
D2[1 − β(1 + µ)]2 + 4αsnN∗[1 − β(1 + µ)]

2α[1 − β(1 + µ)]
,

M0 =
D[1 − β(1 + µ)] −

√
D2[1 − β(1 + µ)]2 + 4αsnN∗[1 − β(1 + µ)]

2α[1 − β(1 + µ)]
.
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Let (Tn(t),N(t),P(t)) be any solution of the system (5). For Case (i), it has from Lemma 3.2 and the
comparison theorem for functional differential equations in [13] that limt→+∞ P(t) = P∗.

For Case (ii), by using explicit bounds N0 and M0 for lim inft→+∞W(t) and lim supt→+∞W(t), respectively,
in Lemma 3.2, it becomes possible to give sufficient conditions to ensure limt→+∞ P(t) = P∗ by constructing
suitable Liapunov functionals.

The following result is main result of the paper.

Theorem 3.3. For the system (5), the following conclusions hold.
Case (i) D ≤ 0, or β(1 + µ) ≤ 1, or β(1 + µ) > 1, D > 0 and P∗ ≥ D/2α. Then the equilibrium (T∗,N∗,P∗) of the

system (5) is globally asymptotically stable for any time delays τi (i = 1, 2, 3, 4).
Case (ii) β(1 + µ) > 1, D > 0 and P∗ < D/2α. Then the equilibrium (T∗,N∗,P∗) of the system (5) is globally

asymptotically stable, if the time delays τ3 and τ4 are small enough such that

(1 + µ)τ3 + µτ4 ≤ (1 + µ +
1
β

)
1

α[(1 + β + βµ)(M0 −W1) + 2β(1 + µ)M0]
. (10)

Proof. For Case (i), it has from Lemma 3.2 that the equilibrium (T∗,N∗,P∗) of the system (5) is globally
attractive for any time delays τi (i = 1, 2, 3, 4). Hence, it has from Theorem 3.1 that the equilibrium
(T∗,N∗,P∗) of the system (5) is globally asymptotically stable for any time delays τi (i = 1, 2, 3, 4).

For Case (ii), it is only to show that limt→+∞W(t) = P∗ holds.
For any ε > 0, there exists t2 > t1 such that, for any t ≥ t2,

0 < N0 − ε < W(t) < M0 + ε. (11)

First, let us first consider a Lyapunov function as follows,

V1 = W(t) − P∗ − P∗ ln
W(t)

P∗
.

Calculating the derivative of V1 along the solution of the system (9), it has that (see, for example, [2], [6, 7],
[9], [11], [15], [19] and [23]), for t ≥ σ,

V̇1 = Ẇ(t) −
P∗

W(t)
Ẇ(t)

= snN∗ + DW(t) − αW2(t) − αβW(t)W(t − τ) − αβµW(t)W(t − σ) − snN∗
P∗

W(t)
−DP∗

+αP∗W(t) + αβP∗W(t − τ) + αβµP∗W(t − σ)

= −α[1 + β(1 + µ)][W(t) − P∗]2 + snN∗(2 −
P∗

W(t)
−

W(t)
P∗

) + αβ[W(t) − P∗][W(t) −W(t − τ)]

+αβµ[W(t) − P∗][W(t) −W(t − σ)]

= −α[1 + β(1 + µ)][W(t) − P∗]2 + snN∗(2 −
P∗

W(t)
−

W(t)
P∗

) + αβ[W(t) − P∗]
∫ t

t−τ
Ẇ(ξ)dξ

+αβµ[W(t) − P∗]
∫ t

t−σ
Ẇ(ξ)dξ.

Further, it has from the system (9) that, for t ≥ σ,

Ẇ(t) = snN∗ + DW(t) − αW2(t) − αβW(t)W(t − τ) − αβµW(t)W(t − σ)

= snN∗ + DW(t) − α[1 + β(1 + µ)]W2(t) + αβW(t)
∫ t

t−τ
Ẇ(ξ)dξ + αβµW(t)

∫ t

t−σ
Ẇ(ξ)dξ

= −α[1 + β(1 + µ)][W(t) −W1][W(t) − P∗] + αβW(t)
∫ t

t−τ
Ẇ(ξ)dξ + αβµW(t)

∫ t

t−σ
Ẇ(ξ)dξ

= −α[1 + β(1 + µ)][W(t) −W1][W(t) − P∗] − αβW(t)[W(t − τ) − P∗] + αβW(t)[W(t) − P∗]
−αβµW(t)[W(t − σ) − P∗] + αβµW(t)[W(t) − P∗].
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Hence, it has that, for t ≥ σ,

|Ẇ(t)| ≤ α[1 + β(1 + µ)](M0 + ε −W1)|W(t) − P∗| + αβ(M0 + ε)|W(t − τ) − P∗| (12)
+αβ(M0 + ε)|W(t) − P∗| + αβµ(M0 + ε)|W(t − σ) − P∗| + αβµ(M0 + ε)|W(t) − P∗|.

By (12), it also has that, for t ≥ t2 + σ,

αβ[W(t) − P∗]
∫ t

t−τ
Ẇ(ξ)dξ ≤ αβ

∫ t

t−τ
|W(t) − P∗||Ẇ(ξ)|dξ

≤
1
2
α2β[1 + β(1 + µ)](M0 + ε −W1)

∫ t

t−τ
([W(t) − P∗]2 + [W(ξ) − P∗]2)dξ

+
1
2
α2β2(M0 + ε)

∫ t

t−τ
([W(t) − P∗]2 + [W(ξ − τ) − P∗]2)dξ

+
1
2
α2β2(M0 + ε)

∫ t

t−τ
([W(t) − P∗]2 + [W(ξ) − P∗]2)dξ

+
1
2
α2β2µ(M0 + ε)

∫ t

t−τ
([W(t) − P∗]2 + [W(ξ − σ) − P∗]2)dξ

+
1
2
α2β2µ(M0 + ε)

∫ t

t−τ
([W(t) − P∗]2 + [W(ξ) − P∗]2)dξ

=
1
2
µ1τ[W(t) − P∗]2 +

1
2
θ1

∫ t

t−τ
[W(ξ) − P∗]2dξ

+
1
2
α2β2(M0 + ε)

∫ t

t−τ
[W(ξ − τ) − P∗]2dξ

+
1
2
α2β2µ(M0 + ε)

∫ t

t−τ
[W(ξ − σ) − P∗]2dξ,

where

µ1 = µ1(ε) = α2β{[1 + β(1 + µ)](M0 + ε −W1) + 2β(1 + µ)(M0 + ε)},

θ1 = θ1(ε) = α2β{[1 + β(1 + µ)](M0 + ε −W1) + β(1 + µ)(M0 + ε)}.

Similarly, it has that, for t ≥ t2 + σ,

αβµ[W(t) − P∗]
∫ t

t−σ
Ẇ(ξ)dξ ≤

1
2
µ2σ[W(t) − P∗]2 +

1
2
θ2

∫ t

t−σ
[W(ξ) − P∗]2dξ

+
1
2
α2β2µ(M0 + ε)

∫ t

t−σ
[W(ξ − τ) − P∗]2dξ

+
1
2
α2β2µ2(M0 + ε)

∫ t

t−σ
[W(ξ − σ) − P∗]2dξ,

where

µ2 = µ2(ε) = µµ1(ε), θ2 = θ2(ε) = µθ1(ε).
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Hence, it has that, for t ≥ t2 + σ,

V̇1 ≤ −α[1 + β(1 + µ)][W(t) − P∗]2 + snN∗(2 −
P∗

W(t)
−

W(t)
P∗

)

+
1
2
µ1τ[W(t) − P∗]2 +

1
2
θ1

∫ t

t−τ
[W(ξ) − P∗]2dξ +

1
2
α2β2(M0 + ε)

∫ t

t−τ
[W(ξ − τ) − P∗]2dξ

+
1
2
α2β2µ(M0 + ε)

∫ t

t−τ
[W(ξ − σ) − P∗]2dξ

+
1
2
µ2σ[W(t) − P∗]2 +

1
2
θ2

∫ t

t−σ
[W(ξ) − P∗]2dξ +

1
2
α2β2µ(M0 + ε)

∫ t

t−σ
[W(ξ − τ) − P∗]2dξ

+
1
2
α2β2µ2(M0 + ε)

∫ t

t−σ
[W(ξ − σ) − P∗]2dξ.

Next, motivated by the methods in [1], [4], [16–18], [28], [31–33], and [35], let us define a series of
differentiable functionals Vi(i = 2, 3, 4, 5, 6, 7), and then consider their derivatives along the solutions of the
system (9), for t ≥ t2 + σ,

V2 =
1
2
θ1

∫ t

t−τ

∫ t

θ
[W(ξ) − P∗]2dξdθ,

V̇2 =
1
2
θ1τ[W(t) − P∗]2

−
1
2
θ1

∫ t

t−τ
[W(ξ) − P∗]2dξ,

V3 =
1
2
α2β2(M0 + ε)

{∫ t

t−τ

∫ t

θ
[W(ξ − τ) − P∗]2dξdθ + τ

∫ t

t−τ
[W(ξ) − P∗]2dξ

}
,

V̇3 =
1
2
α2β2(M0 + ε)τ[W(t) − P∗]2

−
1
2
α2β2(M0 + ε)

∫ t

t−τ
[W(ξ − τ) − P∗]2dξ,

V4 =
1
2
α2β2µ(M0 + ε)

{∫ t

t−τ

∫ t

θ
[W(ξ − σ) − P∗]2dξdθ + τ

∫ t

t−σ
[W(ξ) − P∗]2dξ

}
,

V̇4 =
1
2
α2β2µ(M0 + ε)τ[W(t) − P∗]2

−
1
2
α2β2µ(M0 + ε)

∫ t

t−τ
[W(ξ − σ) − P∗]2dξ,

V5 =
1
2
θ2

∫ t

t−σ

∫ t

θ
[W(ξ) − P∗]2dξdθ,

V̇5 =
1
2
θ2σ[W(t) − P∗]2

−
1
2
θ2

∫ t

t−σ
[W(ξ) − P∗]2dξ,

V6 =
1
2
α2β2µ(M0 + ε)

{∫ t

t−σ

∫ t

θ
[W(ξ − τ) − P∗]2dξdθ + σ

∫ t

t−τ
[W(ξ) − P∗]2dξ

}
,

V̇6 =
1
2
α2β2µ(M0 + ε)σ[W(t) − P∗]2

−
1
2
α2β2µ(M0 + ε)

∫ t

t−σ
[W(ξ − τ) − P∗]2dξ,

V7 =
1
2
α2β2µ2(M0 + ε)

{∫ t

t−σ

∫ t

θ
[W(ξ − σ) − P∗]2dξdθ + σ

∫ t

t−σ
[W(ξ) − P∗]2dξ

}
,

V̇7 =
1
2
α2β2µ2(M0 + ε)σ[W(t) − P∗]2

−
1
2
α2β2µ2(M0 + ε)

∫ t

t−σ
[W(ξ − σ) − P∗]2dξ.

Now, define the following Lyapunov functional,

V =

7∑
i=1

Vi.
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Then, along the solutions of the system (9), it has that, for t ≥ t2 + σ,

V̇ ≤ M[W(t) − P∗]2 + snN∗(2 −
P∗

W(t)
−

W(t)
P∗

) ≤M[W(t) − P∗]2,

where

M = M(ε) = −α[1 + β(1 + µ)] +
1
2
µ1τ +

1
2
µ2σ +

1
2
θ1τ +

1
2
θ2σ +

1
2
α2β2(M0 + ε)τ

+
1
2
α2β2µ(M0 + ε)τ +

1
2
α2β2µ(M0 + ε)σ +

1
2
α2β2µ2(M0 + ε)σ.

Since the condition (10) of Theorem 3.3 is equivalent to M = M(0) < 0, hence, for sufficiently small ε > 0, it
has that M = M(ε) < 0. Therefore, it has that, for t ≥ t2 + σ,

V̇(t) ≤M[W(t) − P∗]2
≤ 0.

Integrating the above inequality from t2 + σ to t yields that, for t ≥ t2 + σ,

V(t) +

∫ t

t2+σ
[W(u) − P∗]2du ≤ V(t2 + σ) = const..

Clearly, the above inequality implies that the function |W(t) − P∗| is bounded for t ≥ 0, and that
+∞∫

t2+σ

[W(t) −

P∗]2dt < +∞. Therefore, it has from Barbǎlat lemma that lim
t→+∞

W(t) = P∗.
This completes the proof of Theorem 3.3.

4. Numerical Simulations

In Section 3, the sufficient conditions for global stability of the equilibrium (T∗,N∗,P∗) of the system
(5) are given. In this section, let us give some numerical simulations to summarize the applications of
Theorem 3.3.

The parameters in Table 1 below are taken from [21, 22]. Then, it has that

T∗ = 71.3703, N∗ = 1.8197 × 106, P∗ = 1.0266 × 107, C = 171.3698,

D = 0.3727, β(1 + µ) = 2.5715,
D
2α

= 1.2423 × 107.

Clearly, the condition (H1) holds since C > 0. Furthermore, the conditions of Case (ii) in Theorem 3.3,
D > 0, β(1 + µ) > 1 and P∗ < D/2α, are also satisfied. The condition (10) becomes

f (τ3, τ4) = 1.8τ3 + 0.8τ4 < 0.8477. (13)

Let us choose the initial functions as ϕi(t) = 4 for t ∈ [−τ, 0], and time delays τ1 = τ2 = τ5 = 1. Figure 2
shows that the curves of the solutions of the system (5) converge to the equilibrium (T∗,N∗,P∗) as t → +∞
when τ3 = 0.2, τ4 = 0.5, f (τ3, τ4) = 0.76 < 0.8477.



Y. Li et al. / Filomat 31:2 (2017), 347–361 358

Table 1: Standard kinetic parameters for the model (2)

b0 = 100 r = 0.2 d = dn = 0 s = 1.0
b1 = 100 rn = 1.1 dp = 0.6 sn = 1.0
s04 = 0.4 rp = 1.5 dps = 0.95 sp = 0.5
s08 = 0.4 rps = 1.0 ds = 0.2 sm = 0.4
Ln = 105 rs = 0.1 d4 + t4 = 0.6 sr = 0.6
Kn = 2 × 107 r4 = 0.02 d8 + t8 = 0.6 s4 = 0.3
K = 108 K2 = 107 r8 = 0.02 s8 = 0.1
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Figure 2: Representative simulations of the system (5) with τ3 = 0.2, τ4 = 0.5, f (τ3, τ4) = 0.76 < 0.8477.
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Figure 3: Representative simulations of the system (5) with τ3 = 25, τ4 = 66, f (τ3, τ4) = 97.8 > 0.8477.
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Figure 4: Representative simulations of the system (5) with τ3 = 25, τ4 = 67, f (τ3, τ4) = 98.6 > 0.8477.
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Figure 5: Representative simulations of the system (5) with τ3 = 0.2, τ4 = 0.5, f (τ3, τ4) = 0.76 < 0.8477 and the
quasi-steady-state approximations (4).
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Figure 6: Representative simulations of the full model (2) with τ3 = 0.2, τ4 = 0.5, f (τ3, τ4) = 0.76 < 0.8477.

Furthermore, Figures 3-4 show that the curves of the solutions of the system (5) still converge to the
equilibrium (T∗,N∗,P∗) as t → +∞ when τ3 = 25, τ4 = 66, f (τ3, τ4) = 97.8 > 0.8477, and that the curves of
the solutions of the system (5) will become oscillated and do not converge to the equilibrium (T∗,N∗,P∗) as
t → +∞ when τ3 = 25, τ4 = 67, f (τ3, τ4) = 98.6 > 0.8477. Hence, the condition (10) in Theorem 3.3 still has
enough space to be improved.

Comparing Figure 5 with Figure 6, it is found that the system (5) captures dynamic behaviors of the full
model (2), though steady-state values for all thymic subsets except Tn(t) and N(t) may be slightly different.
It is also seen that the quasi-steady-state approximation is valid, and that thymic sub-populations show
similar asymptotic properties in mathematics (see, for example, [21] and [24]).

5. Conclusions

It is well known that T cells have important effects on regulating the stability of the environment in
human body. In this paper, an improved nonlinear delayed dynamic model (2) at cellular level is given to
describe the proliferation, differentiation and death of T cells in the thymus. In biology, theoretical analysis
on dynamic properties of the equilibrium of the model (2) is very important for a deep understanding of
the evolution mechanism of the proliferation, differentiation and maturation of T cells in the thymus.

Based on the method of quasi-steady-state approximation, the model (2) with seven state variables is
reduced to the system (5) with three state variables. The system (5) exists a unique positive equilibrium
(T∗,N∗,P∗) under the condition (H1). The main result of this paper is Theorem 3.3 which gives sufficient
conditions for global stability of the equilibrium (T∗,N∗,P∗) of the system (5). In biology, global stability
of the equilibrium (T∗,N∗,P∗) means that, as the time t increases and tends to infinity, the numbers of TN
cells, DN cells and DP cells shall tend to the constant values T∗, N∗ and P∗, respectively. For the Case (i)
in Theorem 3.3, it is seen that the time delays τ3 and τ4 are harmless for global stability of the equilibrium
(T∗,N∗,P∗). For the Case (ii) in Theorem 3.3, it is seen that the time delays τ3 and τ4 have effects on global
stability of the equilibrium (T∗,N∗,P∗). Notice the biological meanings of the parameters in the full model
(2) and the numerical simulations in Section 4, it has that the sufficient conditions in Theorem 3.3 for global
stability of the equilibrium (T∗,N∗,P∗) of the system (5) are reasonable.
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