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Abstract. This paper presents two kinds of symmetric tridiagonal plus paw form (hereafter TPPF) matrices,
which are the combination of tridiagonal matrices and bordered diagonal matrices. In particular, we exploit
the interlacing properties of their eigenvalues. On this basis, the inverse eigenvalue problems for the two
kinds of symmetric TPPF matrices are to construct these matrices from the minimal and the maximal
eigenvalues of all their leading principal submatrices respectively. The necessary and sufficient conditions

for the solvability of the problems are derived. Finally, numerical algorithms and some examples of the
results developed here are given.

1. Introduction

In 2006, Peng [1, 2] discussed the inverse eigenvalue problems for tridiagonal matrices and paw
form matrices respectively. Then Pickmann [3-5] made some refinements to Peng’s papers. A re-
markable idea in their papers is to construct an n X n matrix with special structure from the given list
(/\,(11), e, /\5.1), e, /\gl), e, A;j), e, Af{’)), such that /\;1) and /\;j ) are, respectively, the minimal and the max-
imal eigenvalues of all its j X j leading principal submatrix for any j = 1,2,...,n. Recently, Ref.[14] also
constructed a special matrix based on the method and showed that the inverse eigenvalue problem for a
symmetric quasi anti-bidiagonal matrix is equivalent to the problem for a certain symmetric tridiagonal

matrix on the basis of Ref.[13]. In this paper, We mimic the analogous strategy to consider the problem of
constructing two kinds of n-square real symmetric TPPF matrices
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from the special spectra information.

Apparently, eigenvalues of the above matrices are real. Furthermore, we note that the integers m and
p vary from 1 to n. If m = 1, then a matrix A of the form (1) is paw form; meanwhile if m = n, then it is a
tridiagonal matrix. Similarly, if p = 1, then a matrix A of the form (2) is tridiagonal; meanwhile if the integer
p = n, then it is a paw form matrix.

Therefore, this note will comprehensively consider the known inverse eigenvalue problems for sym-
metric tridiagonal matrices and bordered diagonal matrices. The inverse eigenvalue problems for these
matrices arise in different fields of control theory, vibration analysis, mathematics physics, structure design,
spectral graph theory [6-12] and so on.

Throughout this paper, let fj(A) =| AI; — A; | (or g;j(A) =| AI; — A; |) be the characteristic polynomial of
the j by j leading principal submatrix A; of a matrix A having the form (1) (or (2)), where I; is the identity
matrix with appropriate order. Meanwhile, the minimal and the maximal eigenvalues of the matrix A; are

denoted by /\ﬁl) and )\E.j ) respectively.
Now, the inverse eigenvalue problems for the matrices of the forms (1) and (2) are described respectively
as follows:

Problem 1.1. Given a list ()\fql), e, )\5.1), cee, )\(11), cee, A;j), cee, /\fq”)) of real numbers, find necessary and suffi-

cient conditions for the existence of an n by n symmetric TPPF matrix A of the form (1), such that /\;1) and
/\E.j ) are, respectively, the minimal and the maximal eigenvalues of its j-square leading principal submatrix
Ajforany j=1,2,...,n.

Problem 1.2. Constructing an n by n nonnegative symmetric TPPF matrix A of the form (1) when the
necessary conditions in Problem 1.1 are satisfied.
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Problem 1.3. Let ()\5,1), cee )\;1), s, )\(11), s, )\E.j), cee, /\,(1”)) be a list of real numbers, determine necessary and
sufficient conditions for the existence of an n by n symmetric TPPF matrix A of the form (2), such that
A and 1Y are, respectively, the minimal and the maximal eigenvalues of its j-square leading principal
submatrix A; forany j=1,2,...,n.

Problem 1.4. Constructing an n by n nonnegative symmetric TPPF matrix A of the form (2) when the
necessary conditions in Problem 1.3 are satisfied.

These problems show that how to assign values to the entries of a matrix A of the form (1) or (2), such
that it has the desired spectral properties.

It is not hard to note that the symmetric TPPF matrices are the generalized forms of Jacobi matrices. We
will solve the above problems fully, the paper is organized as follows: In Section 2, we begin by introducing
some basic concepts and results that will be used throughout this paper. Section 3 gives the necessary and
sufficient conditions to answer Problems 1.1 and 1.2 respectively. Section 4 also presents the necessary and
sufficient conditions for the solvability of Problems 1.3 and 1.4. Finally, Section 5 presents some examples
to illustrate the efficiency of our results.

2. Preliminaries

In this section, our main goal is to introduce some important preliminaries that will be used in the
following statements. Firstly, the well-known result-Cauchy’s Interlacing theorem, is quoted as follows.

Theorem 2.1. [15] Let A be an n-square Hermitian matrix and let B be an (n — 1) X (n — 1) principal submatrix of
A. If the nonincreasing lists {A;}, and {y;} , are the spectra of A and B respectively, then A, < py < Ay1 < py-1 <
<A< <Ay

An immediate consequence of Cauchy’s Interlacing theorem is the following.
Corollary 2.2. Let A be an n-square Hermitian matrix and let A; be its j by j leading principal submatrix, j =
1,2,...,n. Then the minimal and the maximal eigenvalues /\5.1), /\;]) of Aj, j=1,2,...,n, respectively satisfy

1 1 1 )]
A< Al <A < <AV << A 3)
For simplicity in the further statements, we present the following concepts.

Definition 2.3. Leto = (/\f}), e, /\El), e, /\(11), e, /\E.j), e, Ai,")) be a list of real numbers. If there exists an n
by n Hermitian matrix A such that /\;1) and )\;j ) are, respectively, the minimal and the maximal eigenvalues

of its j by j leading principal submatrix A;, j = 1,2,...,n, we shall say that A interlacily realizes o or that o
is interlacing realizable.

Lemma 2.4. Let A be an n-square symmetric TPPF matrix of the form (1) and let f;(A) be the characteristic polynomial
of its j by j leading principal submatrix for any j = 1,2,...,n. Then the sequence { fj(/\)}’]?:1 satisfies the recurrence

formulae

(A = a)fia(d) = B fia(M), i=1,...,m+1;

St = { (A =a)fa D) = 82, ([T (A=) fos ), j=m+2,.,m; @

where fo(A) = 1 and by = 0.
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Lemma 2.5. Let A bean n-square symmetric TPPF matrix of the form (2) and let g;(A) be the characteristic polynomial
of its j by j leading principal submatrix for any j = 1,2,...,n. Then the sequence {g]-(/\)}’j?:1 satisfies the recurrence

formulae
/\ —ai, ]: ;
(A —a2)g1(A) - b3, ‘ i=2
I =1 A -apgia) -2 (A=), j=3,....p ©)
(/\—aj)gj_l(A)—bjz._lgj_z(A), j=p+1,...,l’l.

Lemma 2.6. [16] A sequence of real polynomials @, (x), @u-1(x), -, @o(x) is referred to as a Sturm sequence in a
interval (a, b), if the following properties are satisfied:

1. @o(x) does not have real root in the interval (a, b);

2. Any two adjacent polynomials in the sequence can not have any same root in the interval (a, b);

3. Let xo € (a,b) be a root of a certain intermediate polynomial @;(x), i = 1,2,...,n — 1, in the sequence, then
@i-1(x0) and @i11(xo) have opposite signs.

3. Solvability Conditions of Problems 1.1 and 1.2
Based on the discussion about Hermitian matrices in [15, pp.115]. We can derive the following result.

Lemma 3.1. Let A be an n-square symmetric TPPF matrix of the form (1). Let /\5.1) and A;j) be the minimal and the
maximal eigenvalues of its j-square leading principal submatrix Aj, j = 1,2,...,n, respectively. Then we have

/\;(11)<"'</\§1)<"'<)\(11)<"'</\§-])<“'<)\51”)/ (6)
and
AV <a <AV i=12,. 5 j=2...n )

Proof. From Lemmas 2.4 and 2.6, we know that { f]-(/\)};?:;)l is a Sturm sequence. According to Corollary 2.2,
we without difficultly obtain that

AW << /\5.1) << aiic )\5.]) << A, (8)
In addition, from [14, Theorem 2] we also obtain that
AV <a <AV i=12,.. 5 j=2... m+1. )

Now it remains us to prove that if the following inequalities

and
o)) ) 0 :_ Lo
/\j <a,</\j,1—m+2,...,],]—m+2,...,n. (11)

hold, then the proof is completed.
From Corollary 2.2 and the inequalities (8) and (9), we also know

1) 1) 1) 1) (m+1) (m+2) (7-1) 0N _
/\j < )\j_l S SA L SA <AL <AL, S S /\j_l < /\j ,j=m+2,...,n, (12)
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and
AV <a <AV i=m+2,.. 5 j=m+2,...,n (13)
]' — ¥l = ]'/ - /'-'/]/]_ A L]

By inductive hypothesis and contradiction, the discussion shows as follows.
(1)If j = m + 2, by Lemma 2.4 we have

fnr2(A) = (A = aps2) 1 (A) — bng.l(/\ = 1) fm-1(A). (14)
Based on (12), we assume Af;lz = )\211, then by (14) we know

Fus2AD ) = =02 LAY~ a00) frua (A0 ) = 0.

From (9) we get AW < g1, then fm_l(/\;ﬂl) =0. But A" < /\Sll from (8), it means that /\Sll is not a

m+1 m+1
root of f,-1(A). Then we obtain a contradiction, i.e. /\212 < /\gll. Similarly, )\5:1:11) < /\5"1":22). Finally, the
inequality (12) is strict when j = m + 2, i.e. the inequality (10) holds.
Assume /\212 = A4 OF )\;T:zz) = 4,42 based on (13) again, by (14) we know f,,12(am+2) = —bfn 1@ —

Am+1) fn-1(@m+2) = 0. But from (8) and (10) we know that AW < /\2)_1 < Af;"__ll) < /\5"1":22). That is to say .+ is

m+2
not a root of fy,_1(A), i.e. Ays+2 = dm1. It contradicts Aglz < /\Sll <Ay < )\;Z'fll) < A;T:zz) from (9) and (10).
/\(m+2)

So we finally obtain /\filz <am2 <A, .5, ie. theinequality (11) holds.
(2) Assume the proposition holds when j = k, then we have

O &) (O] O} (m+1) (m+2) (k-1) ()
A <A < <AL, <A < AT < AT << AT <A, (15)
and
/\,((1)<ai</\,((k),i=m+2,...,k, (16)
from (10) and (11) respectively. Now if j = k + 1, then from (12-13) and (15-16) we respectively have
©) () (©)) O (m+1) (m+2) (k) (k+1)
Ak+1 < Ak <o /\m+2 < Am+1 < /\nT+1 < Anﬁz << /\k < /\k+1 ’ (17)
and
MY < g < AED. (18)

By Lemma 2.4, we obtain
firr ) = (A = ae) i) = B ( TTE 1A = 21) ) finra (M), (19)

Based on (17), we assume AL = /\,(3). Then

k+1
fer ) = =02 ( T, A = a) ) fur(A) = 0.

But from (9) and (15-16), we obtain A\ < a;,i =m+1,..., k. Thus [TL,,; (A" = ;) # 0. So fru-1 (A1) = 0, it
means that )\](cl) is a root of f,,—1(A). It contradicts )\]((1) < /\2)—1 from (8) and (15). Hence /\;<1+)1 < )\]((1). Similarly,
/\,(fk) < A% D holds. Finally, the inequality (10) is right.

k+1
@O _ (k+1) _
Assume Ak+1 = (41 OF /\k+1 =

fert @) = =0 ( T s @her — @) ) fr1 (@) = 0.

ax+1 based on (18) again, by (19) we derive

From the above verified results, we know A&)l < /\,(cl) <a; < /\]((k) < /\]((]:1), i=m+1,...,k Then Hi-‘:m 11 —

a;) # 0. Hence fy—1(ak+1) = 0. But /\,(:1 < /\ii)_1 < /\Sf:ll) < /\,((]:1) holds from (8) and (10), it means that
(k+1)

fm-1(ax+1) # 0. So we obtain a contradiction. Finally, we get /\,(:1 < <AL

holds from (10) and (16).
(3) In conclusion, the properties (10) and (11) hold for any positive integer j whenm +2 < j<n. O

. Hence the inequality (11)
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Remark 3.2. Based on Lemmas 2.6 and 3.1, it is not difficult to verify that: The characteristic polynomials
sequence fu+1(A), fu(A), -+, fi(A), fo(A) of an n-square symmetric TPPF matrix A of the form (1) is a Sturm
sequence in any interval (a b). But the other sequence {f;(A)},  , may not be a Sturm sequence. While
eigenvalues of A; (1 < i < m + 1) are simple and distinct, the properties of eigenvalues of A; (m +2 <i < n)
may not hold.

From Lemma 3.1 we get the following result.

Corollary 3.3. Let A be an n-square symmetric TPPF matrix A of the form (1). Let A; be the j by j leading
principal submatrix of A with f]()\ (1) and A(]) respectively, as its characteristic polynomial, minimal and maximal
eigenvalues forany j =1,2,...,n. Denote by az (m+1<i<n-1)thediagonal entry of A. Then

1. For & < )\;.1), we have (1) fi(&) > 0;
2. For5>A(,f) we have f{(&)>0;j=1,2,...,n
e 1 ' .
3. (-1)- 1]_[1 S )\()—a)>0 H] erl(/\(])—ai)>0,]—m+2,...,n.

Firstly, the solvability of Problem 1.1 is verified as follows. Furthermore, the proof has the form of an
algorithmic construction.

7 1 A
interlacily realized by an n X n symmetric TPPF matrix A of the form (1) iff the condition (6) holds.

Theorem 3.4. Let 0 = ()\,(11), e ,A§1), s AW ,/\;j), ‘e ,)\fq”)) be a list of real numbers. Then the list o can be

Proof. Sufficiency: Under the circumstance of the condition (6) is satisfied, we can construct an n by n
symmetric matrix A of the form (1) step by step, such that it has A?l) and /\j.j ) as the minimal and the maximal
eigenvalues of its j by jleading principal submatrix A;, j = 1,2,...,n, respectively.

(1) When 1 < j <m + 1, we can construct a symmetric tridiagonal matrix A,,+1 from [3, Theorem 1].

(2) If m+2 < j < n, we show that the existence of the matrix A of the form (1) is equivalent to the
solvability of the following system of equations

iy ”) = <A§” - a)fj- Mf) -2, (112 W(Am - ) fua (1) =0, o0
£ =AY =apfia @) - (H{ nn A =) fua Ay = 0
according to Lemma 2.4.
Transform the above system of equations into the following equivalent form of matrix product
fia@A) (I M(A“’ a)) fu-a(A) [ 0 } [ APF0D) o
fa Ay (T A =) fua A AV fiad)) |

Provided the determinant
= O (T4, 0 =) ) fur @) = Q) ( T1E,0 (A =) ) fua WD)

of the coefficient matrix in the systems of equations (20) and (21) is nonzero, the systems of the equations
will have solutions. From Lemma 3.1 and Corollary 3.3 we obtain that

Dyj = (<1)71Dy; = (-7 A ( 11,00 (A =) ) fura (A
+f] 1(/\(]))( 1)] m— 1( H{ m+1()\1)_a) )( 1 m— 1f B (/\(1))
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is larger than zero. As the value of 4,41 has been determined, the unique solutions of a; and b2._1 are

/\(1 f]— (/\(1)) <H1 m+1 /\(] )fm (/\(])) /\(])f]— (A ])) (Hz m+1( (1) _a))fm i (1))
Dy;

aj
(22)

i—10 7 () (1) (1) )
_ DA - A0 ])
Dy;
,j =m+2,...,n. Again, from condition (6) and Corollary 3.3 we explicitly find the denominator (—1)/~! (/\;j )

/\;1)) jfj_l(/\?)) fj_l()\j])) of 17]2._1 is larger than zero. Therefore bjz,_1 >0,j=m+2,...,n, except for the choice of
signs for bj_1.

Therefore, from (22) we know that there exists an n by n matrix A of the form (1) such that the given list
o can be interlacily realized.

Necessity: Suppose there exists an n by n interlacing realizable matrix A of the form (1), then from
Lemma 3.1 we can obtain the condition (6). Thus the proof is completed. [

From the above results, we can construct an n-square nonnegative symmetric TPPF matrix A of the form
(1), realizing the minimal and the maximal eigenvalues of its j-square leading principal submatrix A; for
any 1 < j < n. The solvable necessary and sufficient conditions of Problem 1.2 are given as follows.

Theorem 3.5. Let 0 = (/\(1) . ,/\5.1),--~ ,/\(11),--~ ,/\E.j),~-- ,)\,(1")) be a list of real numbers. The necessary and

suffficient conditions concerning the existence of an n-square nonnegative symmetric TPPF matrix A of the form (1),
such that o is interlacily realized by it, are

AD > g (23)
AP fa@D 0] “)
A(]) fia M fi- (M
M a0 (T =) far 1)
)\;’) Fin ()\‘” (Hl] ;H(/\(])—”))fm 1(A

in addition condition (6).

=2,...,m+1; (24)

L j=mA2,. (25)

Proof. Sufficiency: Suppose the conditions (6) and (23-25) hold. Firstly, we know that there exists a matrix
A of the form (1) from the sufficiency of Theorem 3.4. Hence we can derive the recurrence formulae (4)
in Lemma 2.4. Now it remains us to prove the nonnegativity of A. Since b?_l >0forall2 <j<mn,itis
equivalent to prove a; > 0 (1 < j < n) and take positive sign for any b;_;.
Because of )\(11) > 0, we without difficultly obtain a; = A(ll) > 0. Again, from condition (6) we obtain
AV > /\(11) > 0 forall 2 < j < n. Now we present two cases to discuss the nonnegativity of a; when2 < j <n.

(1) When 2 < j < m + 1, we can obtain a nonnegative symmetric tridiagonal matrix A,.; from [3,
Corollary 1].
(2) Whenm + 2 < j <n, we have

A |V 1A (T1,0 A = 3)) fua (A
A;f) (-1 ]_1fj—1(/\§-1 (HZ m+1(/\(]') _ ﬂi)) fmfl()\;j))

through multiplying the denominator and numerator of the right hand fraction in inequality (25) by (=1)/!
respectively. Again, by Corollary 3.3

W) (5,0 =0 ) fura (1) >0

(26)
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As a result, from inequality (26) we equivalently have
Noj = (17AV fa A ( T1Z,0 A =) ) s O)+(=1229 £ @) ( TIL,,0 (A =a) ) fua A7) 2 0,

Then from (22) we finally get
aj = : > 0. (27)

Therefore,a; > 0 forall1 < j<nand b;_; >0 forall 2 < j < n. Thatis to say the matrix A of the form (1)
is nonnegative.

Necessity: Suppose there exists an n-square nonnegative interlacing realizable matrix A of the form (1),
then from Lemma 3.1 we can obtain the condition (6). Because of 2; > 0 for all 1 < j < n, we can proceed as
follows.

(1) When 1 < j <m +1, from [3, Corollary 1] the conditions (23-24) hold.
(2) Whenm +2 < j<n,wehavea; >0, ie. a;= % > 0, where
2j

Ny = (DAL Fa A (T2, AP =) ) i @)+ (1249 s @) (T, (A =) ) fua D),

By Corollary 3.3, we get 52; > 0. It means that N»; > 0. So we have
)AL faOD) (TS0 =a) ) furaAP) 2 DAL [N (11,04 =) ) fuaa(AP). (28)
From Corollary 3.3, we know that
D fa D) (T A =) ) fua W) > 0.

As a result, the inequality (28) is equivalent to

/\El) (_1)]—11.‘]_1(/\5])) (Hlj;rlyﬂrl(/\il) - az)) fm—l(/\?))

A D) o7 = ) ot

Hence, the condition (25) holds.
Thus the proof is completed. [

4. Solvability Conditions of Problems 1.3 and 1.4

In this section, we firstly discuss the following properties that will be helpful to resolve Problems 1.3
and 1.4.

Lemma 4.1. Let A be an n-square symmetric TPPF matrix of the form (2), such that )\;1) and Ajj) are, respectively,

the minimal and the maximal eigenvalues of its j-square leading principal submatrix Aj,j = 1,2,...,n. Then we
have

A e c AW e c AW i c AV <o A (29)
n j 1 j n
and

AV <a <AV i=12,. 5 j=2,...n (30)
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Proof. Firstly, we konw that the following properties

AV <Al < <Al <o <AV <D =2, p, (31)
and

AV <a <AV i=12,..5 j=2...p. (32)
hold from [4, Lemma 4].

Then it remains us to prove if the following inequalities

/\5.1) << /\;{21 <A <AV < /\;’fll) << A;j), j=p+1,...,n, (33)
and

Aj.”<ai<A§.f),i:p+1,...,j,-j=p+1,...,n (34)

hold, then the proof is completed.
From Theorem 2.1, Corollary 2.2 and the inequalities (31-32), we know that

1 1 1 (@ (p+1) ()
AV <A <A < AP <AV < <AD, j=pa,n, (35)
and
AW <a<AY i=pt1,.. ., ij=p+1,...,n (36)
]' =MW = ]'/ p /-"/]/] P VARRNELY

Now we prove that the above inequalities (35) and (36) are strict by inductive hypothesis and contradiction.
If j =p+1, by Lemma 2.5 we obtain

gp1(A) = (A = a11)9,(A) = bpgp-1 (D). (37)

(€]
p+
that is to say /\;71) is not a root of g,-1(A), i.e. gp+1(/\;131) # 0. But this is a contradiction, then we have

®) (p+1
p < Ap+1

)= —bggp_l(AS)). From inequality (31) we obtain /\;,1) < AW

Assume A;l_zl = A;l), by (37) we have gp.1(A P17

AW < /\;,1). Similarly, we have A ). Therefore, when j =p + 1, the inequality (35) is strict.

p+1
Assume )\;1_31 = ap41 again, by (37) we have gp+1()\;1_21) = —b’%gp_l()\;{zl). From the above results we obtain
/\;{21 < /\;,1) < /\;1_)1, that is to say /\;{21 is not a root of g,-1(7), i.e. gp+1(/\;1:1) # 0. But this is a contradiction,
then we have /\Sjl < apy1. Similarly, we have g, < )\;’:1). Therefore, when j = p + 1, the inequality (36) is

strict.
In addition, suppose the inequalities (33) and (34) hold when j = k, then we have

M & M) _ 4@ _ 4@+ )

A <---</\p+l<)tp <A, <Ap+1 < <A (38)
and

M <g<A® i=p+1,...k (39)

Now if j = k + 1, we have

20

) ) ©) ) (p+1) (k) (k+1)
b1 S A <---</\p+1</\p <A, </\p+1 <A <A (40)

k+1

and

1 k+1
MY < g < 20D (41)
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from (35-36) and (38-39).
By Lemma 2.5 we obtain

Frr1(A) = (A = age1)ge(A) = brgeea (). (42)
Assume )\](21 = /\,((1), by (42) we have g1 (/\]({121) = —bigk_l (A;{l)). Furthermore, we know that )\](cl) < /\;(1_)1

)

g < A]((l). Similarly,

from (38). That is to say gk+1()tg)1) # 0. But this is a contradiction. Hence we have A
/\,(ck) < /\fﬁl). Therefore, the inequalities (35) and (40) are strict when j = k + 1.

Assume /\1(<1+)1 = a4 again, then we have gk+1(/\,(<1+)1) = —bigk_l()\g)l) by (42). From the above results, we
know A1(<1+)1 < )\](cl) < /\](Cl_)l. Then gk,l(Al({lJr)l) # 0. Furthermore, ngr](A]((l_zl) # 0. But this is a contradiction. Then
we have )\]((1:1 < fk41. Similarly, we can get a1 < )\]((':1). Therefore, the inequalities (36) and (41) are strict

when j=k+1.
In conclusion, the inequalities (33) and (34) hold for any positive integer j when p+1 < j < n. Therefore,
the inequalities (29) and (30) hold. [

Remark 4.2. Set go(A) = 1. Based on Lemmas 2.6 and 4.1, it is not difficult to verify that: The characteristic
polynomials sequence g,(A), gn-1(A), ..., g1(A), go(A), of an n-square symmetric TPPF matrix A of the form
(2) may not be a Sturm sequence in any interval (a, b).

From Lemma 4.1 we get the following results easily.

Corollary 4.3. Let A be an n-square symmetric TPPF matrix of the form (2), such that Aj,l) and /\;j  are, respectively,

the minimal and the maximal eigenvalues of its j by j leading principal submatrix Aj,j =1,2,...,n. Let g;(A) be the
characteristic polynomial corresponding to A;. Denote by a; (2 < i < p — 1) the diagonal entry of A. Then

1. For& < )\;.1), we have (—1)/g;(&) > 0;

2. For & > A;j), we have g;(&) >0;j=1,2,...,n.

3. (-1)i2 Hf.:l(/\;l) —a;) >0, H{;;(A§f> —a)>0;j=3,...,p.

Then from the above results, we derive the solvable conditions of Problem 1.3 as follows. Because its
proof is similar to the proof of Theorem 3.4, we omit it.

Theorem 4.4. Let 0 = ()\5,1), ‘e ,/\ﬁl), e ,Agl), e ,A;j), ‘e ,Aﬁ,”)) be a list of real numbers. Then the list o can be

interlacily realized by an n X n symmetric TPPF matrix A of the form (2) iff the condition (29) holds.

Similarly to the sufficient proof of Theorem 3.4, we obtain the entries of an n X n symmetric TPPF matrix
A of the form (2) as follows.

ap = /\gl);
() - AP5(13)
- @ @) !
71(A;°) = q1(A57) (43)
e - A=A N3 0
' 710 - (A9
gAML A = a) = A9 TS AL ~a)
a]- = — - - —
gAY LAY =a) = gD T (AP - a) w
o AP = 2AD)gi1(AD)g;(AD) .
- J_ _ ;
T OIS AY - a) - gD TTL A - a)
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forany j=3,...,p,and
Mg 1(AD)gj2(A) = AP ;1 (1) 921
aj = p -
951 (A91-2(A) = 9j2(1))gj2(AP)
() = 4091407147

®, o= ‘ ' /
T g0 g20]) - 914019205

(45)

forany j=p+1,...,n.
Then we can obtain the solvability conditions for Problem 1.4 as follows.

Theorem 4.5. Let 0 = (/\511), e ,/\5.1), e ,/\51), e ,/\;j), ‘e ,)\51")) be a list of real numbers. Then there exists an n

by n nonnegative symmetric TPPF matrix A of the form (2), such that o is interlacily realized by it, if and only if

1 2

M 0. Ay 91()\(2)).
At T
A )

AD g LAY —a)
—_ 2 — ,]=3,...,p;
A g TS0 - a)

(O () 1)
/\L N 9;’—1()\/ )gj-2(A;7)
() (Y] 0]
)\]-] gj—l(/\]- )91’—2(/\/)
and condition (29) holds.

,j=p+1,...,m

Proof. Similarly to the proof of Theorem 3.5, we can do it by the same method. So we omit the proof. [

Finally, if the diagonal entries in a matrix of the form (2) requires a; < a, < --- < a,, then we obtain the
following.

Theorem 4.6. Let 0 = ()\fql), e ,)\;1), e ,)\(11), e ,)\;j), e ,/\fq”)) be a list of real numbers and let it be interlacily
realized by a matrix A of the form (2). Then the diagonal entries a; (1 < i < n) of matrix A place in ascending order if

AP+ 29 2200, j=2,3,

A;l) _ aj*Z g]il(/\jl)) H{;; A;]) _ ai)
. < —— =
AV a5 g TS - a)

4,...,p,

and
/\El) -ai1 g j—l(/\j-j))!] jfz(/\j-l))
- > -
A? ) -1 g j—1(A§1))9 j—Z(A;]))

,j=p+1,...,n

Proof. (1) When a; < a,, from (43) we have

g (A5 = 1A

A(l)
7 A) = g1 (AP)

1

ap =

Then we obtain that /\(21) + /\(22) > 2/\5”.
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When g, < a3, from (44) we have

_ 0000 - @) - 179:057)A5 - a2)

Then we obtain that /\(31) + /\f’) >a1+ap = )\(21) + /\(22) > ZA(ll).
(2) Whenaj_1 <ajforany j=4,...,p, from (44) we have

A9 A TS (Y = a) = 1791 AN TS AL - a)
gAY LAY —a) = g O TTL (A - )

aj-1 <

Then by Corollary 4.3, we obtain

(
]

/\;j) ~aj gj—l(/\;j)) Hf;;(/\ﬁ-l) - a;)

A =aia 9GSO -a)
<

(3) Whena; i <ajforany j=p+1,...,n, from (45) we have

A;l)gjfl(/\g-l))gjf2(A§‘j)) _ Ay)gjfl(/\y))glfz(/\;l))
PR TE

aj-1 <

Then we can obtain
/\El) —ajq gjfl(/\j-j))gjfz(/\i-l))
- > -
)\5-] )4 -1 g j—l(/\él))g j—2(/\§-]))

by Corollary 4.3. [

5. Example Analysis

The processes of proving Theorems 3.4-3.5 and 4.4-4.5 respectively show the algorithmic constructive
procedures of the solvability of Problems 1.1-1.4. In this section, we will give some numerical examples
to further analyze the efficiency of our solvable conditions for Problems 1.1-1.4. Firstly, we conclude the
following results.

7 1 7
realized by two kinds of symmetric TPPF matrices of the forms (1) and (2) simultaneously if and only if

Corollary 5.1. Leto = (qul), ‘e ,A?),m AD L ,A;j),--' ,/\S’)) be a list of real numbers. Then it can be interlacily

AV iAW e c AW i QW < A,
j 1 j n
Proof. From Theorems 3.4 and 4.4, the proof is obvious. [J
Remark 5.2. Letalisto = (Ag,l), e, A;l), e, Agl), e, /\;j), e, Ai,”)) of real numbers be an interlacing realiz-
able spectrum. In a matrix of the form (1) (or (2)), if we take the value of m (or p) tobe 1,2,...,n, orderly,

then we can derive a wide class of realizable matrices of the two forms. Furthermore, by Perron-Frobenius
theorem, the maximal positive eigenvalue of a nonnegative matrix is at least as large as the absolute value

of any other eigenvalue, so we obtain )\?l) + )\;j '> 0, j=1,2,...,n, when o can be interlacily realized by a
nonnegative matrix of the form (1) or (2).
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Example 5.3. Let a list o be the following:

M 0 O O 0 @ 0 @ 46
AD AP A AW A0 A0 B 8 4
-0 8 -5 -2 1 3 4 7 o

The elements in the list o satisfy Theorems 3.4 and 4.4. Then we can construct an interlacing realizable
symmetric TPPF matrix

1.0000 by
by 0.0000 b,
A= by  -2.0000 b by
by 1.2400
by 1.0290

of the form (1) when m = 3, where by = +2.4495, b, = +3.4641, b; = +6.3498, by = +5.8882.
When m = 4, the interlacing realizable matrix of the form (1) is

1.0000 b
by 0.0000 by
A= b,  -2.0000 bs ,
by 12400 by
by  —2.3529

where by = +2.4495, b, = +3.4641, by = £6.3498, by = +6.3359.
When p = 3, the interlacing realizable matrix of the form (2) is

1.0000 by by
by 0.0000
A=| b —2.8572 by ,
by 20277 by

by -3.1042

where by = +£2.4495, b, = +£3.2071, b3 = +6.2505, by = +6.2579.
When p = 5, the interlacing realizable matrix of the form (2) is

1.0000 by by by by
by 0.0000
A=| b ~2.8572 ,
by ~2.0585
by —2.0116

where by = +2.4495, b, = £3.2071, b3 = +6.0938, b, = +5.8500.
Example 5.4. Let a list ¢ be the following:

M 0 O O O 0 @ 30 @ 6 6
A6 /\5 /\4 /\3 AZ Al AZ /\3 /\4 /\5 A()

-8 -5 -3 -2 -1 2 6 7 9 12 15

The elements in the list o satisfy Theorems 3.5 and 4.5. Then we can present the following nonnegative
matrix

2.0000 3.4641
3.4641 3.0000 2.8284
2.8284 2.0000 4.6507 6.1351 7.8383
4.6507 4.7865
6.1351 5.7015
7.8383 4.9481
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of the form (1) to interlacily realize o.
If m = 5 or p = 1, the nonnegative interlacing realizable matrix can be seen in Ref.[3].
When p = 6, the nonnegative interlacing realizable matrix of the form (2) is

2.0000 3.4641 2.8284 3.7081 5.8854 7.7938
3.4641 3.0000

2.8284 3.0000

3.7081 5.2500

5.8854 5.9664

7.7938 5.0238

Remark 5.5. Let A be a real matrix of the form (1) and let bf =¢f,i=12,...,n=1,and ¢, fi € R. Then
there exists a quasi symmetric TPPF matrix B = PAP!, where P = diag(d1,- -+, Om, -+, 0n),

Similarly, let A be a real matrix of the form (2) and let bf =¢f,i=1,2,...,n—1,and ¢, fi € R. Then there
also exists a quasi symmetric TPPF matrix B = PAP1, where P = diag(d1,-++ ,0p,** ,0n),

1,
[éi-1
i = fia
Sy | T

These imply that we can spread the interlacing realizable matrices in our paper to a wider range of
scenarios by a simple diagonal similarity, without changing their spectra.

Finally, we present some interesting perturbations on an interlacing realizable list 0 = (AS), cee, )\;1), cee, Agl)

()]
e ,)\jl,...,/\f:’)).

Theorem 5.6. Let 0 = (/\fql), e ,)\(.1), e ,)\(1), e ,)\(.j), e ,/\,(1”)) be a list of real numbers. If it can be interlacily
j 1 ]

realized by two kinds of symmetric TPPF matrices of the forms (1) and (2) simultaneously, then

@ o1 =AY =t AP =t AP £ A0 2D b AT o AL + 1) s also interlacing realizable by

them for any nonnegative number t.

2) oy = (AS), cee, )\;1), cee, /\g), )\(11), Aéz) +t,--, /\;j) +t,-, )\,(1") + t) is also interlacing realizable by them for any

nonnegative number t.

3) o3 = (AE,D -t /\5.1) -t /\(21) —t, /1(11), /1(22), e, /\;j), e, A;")) is also interlacing realizable by them for any

nonnegative number t.
@) o4 = (/\fql), e ,)\5.1), e A AW t, )\f), p ,)\;j), ‘e ,/\5,”)) is also interlacing realizable by them for any 0 <

ARV EEARS|
(€] @
i,‘<)\1 —Az.

(5) o5 = (A,(ql),-~- ,)\5.1),-~- AD AD 4 t, )\(22),~-- ,A;j), ‘e ,Aﬁf)) is also interlacing realizable by them for any 0 <

7270
F<AD A0,
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(6) 0¢ = ()\5,1) -1, ,)L;l) -1, ,/\(21) -1, )\(11),)\;2) +m,--- ,/\E.j) +m,--- ,/\ff') + m) is also interlacing realizable by
them for any nonnegative numbers | and m.

(7) o7 = (/\fql) — 1Ly, ,/\5.1) =l ,A(zl) -1, /\il) +t, )\(22) +my, - ,)\Y) +mj, .- ,A,(f) + my,) is also interlacing

realizable by them for any 0 < t < /\(22) - /\gl) when 0 <l <3<+~ <l,and 0 <mp <mz < -+ < m.

8) o5 = (/\,(11) — 1, ,/\5.1) =1, ,)\(21) — I, /\gl) —t, )\(22) +my, - ,)\E.j) +mj, e ,)\5,") + my,) is also interlacing

realizable by them for any 0 < t < /\(11) - /\(21) when 0 < <3<~ <l,and 0 <my <mz < -+ < my,.

Proof. Because from the item (7) we apparently know the items (1), (2), (3), (5) and (6), we only proof the
item (7).

Because the list 0 can be interlacily realized by two kinds of symmetric TPPF matrices of the forms (1)
and (2) simultaneously, from Corollary 5.1 we have AP <. < A;l) <. < A(ll) <. < /\;]) << AW

Then when 0 <[, <3 <---<l,and 0 Smy < mg < -ee < My We respectively have /\,(11) -, <<
AV~ <o <A —hand AD +my <o < A by < < AL 4 m,
Therefore the elements in the list o7 satisfy )\,(11) -, << /\;1) -lj<--< /\(21) -hL< /\(11) +t< )\(22) +my <

e < /\;]) +mj<---< AY 4 m,, for any0 <t < /\(22) - )\51). Thus the list 07 is also interlacing realizable by two
kinds of symmetric TPPF matrices of the form (1) and (2) simultaneously from Corollary 5.1.

Finally, the proof of the item (8) is similar to that of the item (7), so the list 03 is interlacing realizable.
From the item (8), we apparently know that the list 04 in the item (4) is also interlacing realizable. [
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