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Abstract. In this paper, we propose a second-order corrector interior-point algorithm for solving P∗(κ)-
linear complementarity problems. The method generates a sequence of iterates in a wide neighborhood of
the central path introduced by Ai and Zhang. In each iteration, the method computes a corrector direction in
addition to the Ai-Zhang direction, in an attempt to improve performance. The algorithm does not depend
on the handicap κ of the problem, so that it can be used for any P∗(κ)–linear complementarity problems. It
is shown that the iteration complexity bound of the algorithm is O

(
(1 + κ)3

√
nL

)
. Some numerical results

are provided to illustrate the performance of the algorithm.

1. Introduction

The P∗(κ)-linear complementarity problem (LCP) requires the computation of a vector pair (x, s) ∈ R2n

satisfying

−Mx + s = q, xs = 0, x, s ≥ 0, (1)

where q ∈ Rn and M ∈ Rn×n is a P∗(κ)-matrix. The class of P∗-matrices was introduced by Kojima et al.
[4] and it contains many types of matrices encountered in practical applications. Let κ be a nonnegative
number. A matrix M is called a P∗(κ)-matrix iff it satisfies the following condition:

(1 + 4κ)
∑
i∈I+

xi(Mx)i +
∑
i∈I−

xi(Mx)i ≥ 0, ∀x ∈ Rn,

where I+ = {i : xi(Mx)i ≥ 0} and I− = {i : xi(Mx)i < 0} are two index sets. The class of all P∗(κ)-matrices is
denoted by P∗(κ), and the class P∗ is defined by P∗ =

⋃
κ≥0 P∗(κ), i.e., M is a P∗-matrix iff M ∈ P∗(κ) for some

κ ≥ 0. Obviously, P∗(0) is the class of positive semidefinite matrices.
LCPs have many applications, e.g., linear and quadratic programming, finding a Nash-equilibrium

in bimatrix games and calculating the interval hull of linear systems of interval equations [2, 14]. There
are a variety of solution approaches for LCPs which have been studied intensively. Among them, the
interior-point methods (IPMs) gained much attention than other methods. IPMs not only have polynomial
complexity but also they are the most effective methods for solving large scale optimization problems.
Examples of IPMs that are reliable both in theory and in practice include the primal-dual path-following
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methods of Kojima et al. [5] and since then many other algorithms have been developed based on the primal-
dual strategy. Mizuno, Todd and Ye [10] proposed the MTY predictor-corrector algorithm. It was the first
algorithm for linear optimization (LO) that had both polynomial complexity and superlinear convergence.
More precisely, it has O(

√
nL) iteration complexity and the duality gap of the sequence generated by the

MTY algorithm converges to zero quadratically [17]. In 1995 [9] Miao extended the MTY predictor-corrector
method for P∗(κ)-LCP. His algorithm has O((1+κ)

√
nL) iteration complexity and is quadratically convergent

for nondegenerate problems. However, the constant κ is explicitly used in the construction of the algorithm,
which implies that the algorithm can not be used for sufficient linear complementarity problems. Potra
and Sheng [13] generalized the MTY predictor-corrector method for sufficient complementarity problems.
Although the algorithms of [13] do not depend on the constant κ, their computational complexity does: if
the problem is a P∗(κ)-LCP they terminate in at most O((1 + κ)

√
nL) iterations. The proposed algorithm in

[13] has Q-order 2 in nondegenerate case, and 1.25 in the degenerate case. Predictor-corrector algorithms
with higher order of convergence for degenerate sufficient LCPs were given in [15]. These algorithms have
O((1 + κ)

√
nL) iteration complexity for P∗(κ)–LCPs [16].

Although some of the above mentioned algorithms have optimal iteration complexity, in practice those
which use wide neighborhood perform better. This is one of the paradoxes of the interior-point methods
because algorithms which use large neighborhoods of the central path are usually more difficult to analyze
and, in general, their computational complexity is worse than the corresponding one for algorithms using
smaller neighborhoods. Potra and Liu [12] presented two predictor-corrector methods for sufficient linear
complementarity problems based on the N−∞ wide neighborhood. The first algorithm depends on the
handicap κ while the second does not. Both algorithms are superlinearly convergent even for degenerate
problems and have O((1 + κ1+1/m)

√
nL) iteration complexity. In the next paper, the authors presented a

corrector-predictor algorithm acting in the wide neighborhoodN−∞ of the central path that does not depend
on the handicap κ of the problem, has O((1 + κ)

√
nL) iteration complexity, and is superlinearly convergent

even for general sufficient linear complementarity problems.

Considering other wide neighborhoods that are different from the classical N−∞ neighborhood could
be a choice for improving the complexity of interior-point methods. In [1] Ai and Zhang introduced a
new wide neighborhood Ñ−τ (α) of the central path. Their algorithm decomposes the classical Newton
direction into two orthogonal directions using different step-length for each of them. Based on Ai and
Zhang idea, Liu and Liu [6] proposed a primal-dual second order corrector IPM for linear programming
(LP). The main difference between the method in [1] and [6] lies in that at each iteration, the latter method
computes a corrector direction in addition to the Ai-Zhang direction. Later on, the authors generalized
the proposed algorithm in [6] to semidefinite optimization (SDO) [7]. Recently, Potra [11] presented three
interior-point algorithms for sufficient horizontal linear complementarity problems (HLCP) acting in a wide
neighborhood of the central path proposed by Ai and Zhang. Motivated by the above mentioned works,
we present a second-order corrector interior-point algorithm for P∗(κ)-LCP based on the Ai-Zhang wide
neighborhood, and we derive the complexity bound for our algorithm. Numerical results show that our
algorithm is promising.

The outline of this paper is as follows. In section 2, we introduce P∗(κ)-LCP and review some basic
concepts for IPMs for solving LCPs, such as the central path. In section 3, we state and prove some
technical lemmas and then, based on these results, we establish the iteration complexity bound of the
proposed algorithm. Numerical results are presented in section 4. Finally, some conclusions and remarks
are given in section 5.

The following notations are used through the paper. Rn denotes the n-dimensional Euclidean space. All
the vectors are column vectors and e denotes the vector with all components equal to one. For any vectors
x and s, xs denotes componentwise product (Hadamard product) of vectors x and s, and so is true for other
operations, e.g., if x ∈ Rn

+, then
√

x denotes the vector with component
√

xi and (xs)−
1
2 with component

1
√

xisi
.The positive and negative parts of a vector v ∈ Rn are defined by v+ = max{v, 0} and v− = min{v, 0}, so

that v+
≥ 0 , v− ≤ 0 and v = v+ + v−.
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2. The Central Path and Wide Neighborhood

The concept of the central path plays a critical role in the development of IPMs. Kojima et al. [4]
first proved the existence and uniqueness of the central path for P∗(κ)-LCP. Throughout the paper, we
assume that P∗(κ)-LCP satisfies the interior-point condition (IPC), i.e., there exists a pair (x0, s0) > 0 such
that s0 = Mx0 + q, which implies the existence of a solution for P∗(κ)-LCP [4]. The set of feasible interior
points is denoted by

F
0 :=

{
(x, s) ∈ R2n : s = Mx + q, (x, s) > 0

}
.

The basic idea of IPMs is to replace the second equation in (1), the so-called complementarity condition for
P∗(κ)-LCP, by the relaxed equation xs = µe, with µ > 0. Thus, we consider the system

−Mx + s = q, xs = µe, x, s ≥ 0. (2)

Since M is a P∗(κ)-matrix and the IPC holds, the system (2) has a unique solution for each µ > 0 (cf. Lemma
4.3 in [4]). This solution is denoted as (x(µ), s(µ)) and is called the µ-center of P∗(κ)-LCP. The set of µ-centers
with all µ > 0 gives the central path of P∗(κ)-LCP, i.e.,

C :=
{
(x, s) ∈ F 0 : xs = µe

}
.

It has been shown that the limit of the central path (as µ goes to zero) exists and yields a solution for
P∗(κ)-LCP (Theorem 4.4 in [4]).

Applying Newton’s method to (2) for a given feasible point (x, s) gives the following linear system of
equations

M∆x − ∆s = 0, x∆s + s∆x = µe − xs. (3)

Since M is P∗(κ)-matrix, the system (3) uniquely defines (∆x,∆s) for any x > 0 and s > 0. At each iteration,
the method would choose a target on the central path and apply the Newton method to move closer to the
target, while confining the iterate to stay within a certain neighborhood of the central path.

As usual according, a neighborhood of the central path, the so-called small neighborhood, is defined as

N2(β) :=
{
(x, s) ∈ F 0 : ‖xs − µe‖2 ≤ βµ

}
,

where β ∈ (0, 1) is a given constant and µ = xTs
n . Alternatively, the so-called wide neighborhood is defined

as follows:
N
−

∞(α) :=
{
(x, s) ∈ F 0 : xs ≥ αµe

}
,

where 0 < α < 1. In this paper, we will work with the following neighborhood considered in [1]:

Ñ
−

τ (α) =
{
(x, s) ∈ F 0 :

∥∥∥(xs − τµe)−
∥∥∥

2
≤ ατµ

}
. (4)

It is clear that
∥∥∥(xs − τµe)−

∥∥∥
2

= 0, for all (x, s) ∈ N−∞(τ), and that for any (x, s) ∈ Ñ−τ (α) we have∥∥∥(xs − τµe)−
∥∥∥

2
≤ ατµ and xisi ≤ τµ,

which imply

0 ≤ 1 −
xisi

τµ
≤ α, and or equivalently xisi ≥ (1 − α)τµ. (5)

Therefore,

N
−

∞(τ) ⊂ Ñ−τ (α) ⊂ N−∞((1 − α)τ) ∀α, τ ∈ (0, 1). (6)

Since N−∞(τ) is a wide neighborhood, so is Ñ−τ (α). We note that an interior–point method from [1, 6] use
the neighborhood Ñ−τ (α) only for α ∈ (0, 1

2 ], while in this paper we will construct an interior–point method
based on the neighborhood Ñ−τ (α) for any value of α ∈ (0, 1).
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3. A Large Update Path–Following Algorithm

In this section, we present a large update path–following method for solving P∗(k)-LCP. Our algorithm
generalizes the large update path–following method proposed in [6] for P∗(k)-LCP. Similar to Ai and Zhang
[1] and Liu et al. [6], we decompose the Newton direction (3), from xs to the target on the central path τµe
(large update), into two separate parts according to the positive and negative parts of τµe − xs. Then, we
solve the following two systems:

M∆x− − ∆s− = 0,
s∆x− + x∆s− = (τµe − xs)−, (7)

and

M∆x+ − ∆s+ = 0,
s∆x+ + x∆s+ = (τµe − xs)+.

(8)

Based on the direction from (7), we compute the corrector direction by

M∆xc
−
− ∆sc

−
= 0,

s∆xc
−

+ x∆sc
−

= −∆x−∆s−.
(9)

Finally, the new iterate is given by

(x(θ), s(θ)) := (x, s) + (∆x(θ),∆s(θ))
:= (x, s) + θ1(∆x−,∆s−) + θ2(∆x+,∆s+) + θ2

1(∆xc
−,∆sc

−), (10)

where θ = (θ1, θ2), 0 ≤ θ1, θ2 ≤ 1 is the step length vector. To get the best step length for three of the
directions, we expect to solve the following subproblem

min
θ∈[0,1]×[0,1]

µ(θ)

s.t. (x(θ), s(θ)) ∈ Ñ−τ (α).
(11)

We are now in the position to describe our second-order corrector algorithm for P∗(k)-LCPs.

Second −Order Corrector Al1orithm
Input :

accuracy parameter ε > 0;
neighborhood parameter α, 0 < α < 1;
centering parameter τ, 0 < τ ≤ 0.5;
an initial point (x, s) ∈ Ñ−τ (α), µ0 = (x0)Ts0/n;
set k := 0.

begin
while (xk)Tsk > ε do

compute the directions (∆xk
−
,∆sk

−
) by (7) and (∆xk

+,∆sk
+) by (8).

compute the directions (∆xc,k
−
,∆sc,k

−
) by (9). Find a step length

vector θk = (θk
1, θ

k
2) giving a sufficirent reduction of µk and

assuring (x(θk), s(θk)) ∈ Ñ−τ (α).
let (xk+1, sk+1) := (x(θk), s(θk)) , µk+1 = (xk+1)Tsk+1/n.
set k := k + 1.

end

Figure 1 : The algorithm

Here, we give two technical lemmas that will be used during the analysis. Their proofs are the same to the
proofs of the lemmas 3.1 and 3.4 in [6].
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Lemma 3.1. Let (x, s) ∈ F 0, (∆x−,∆s−) be the solution of (7). Note I+ = {i ∈ I : (∆x−)i(∆s−)i) > 0} and
I− = I\I+ Then

(∆x−)i(∆s−)i ≤
xisi

4
, ∀i ∈ I+.

Lemma 3.2. Suppose that (x, s) ∈ F 0 and a + 2xs ≥ 0 . Let (u, v) be the solution of

Mu − v = 0,
su + xv = a. (12)

If (x + t0u)(s + t0v) > 0 for some 0 < t0 ≤ 1, then (x + tu)(s + tv) > 0 for all 0 ≤ t ≤ t0.

It is easy to verify that (∆x(θ),∆s(θ)) as defined in (10) satisfies the following system:

M∆x(θ) − ∆s(θ) = 0,
s∆x(θ) + x∆s(θ) = θ1(τµe − xs)− + θ2(τµe − xs)+

− θ2
1∆x−∆s−.

(13)

The term a + 2xs is sometimes called the target to be tracked, and it is naturally nonnegative for most IPMs.
In particular, for Algorithm in Fig.1, this property is given in the next lemma.

Lemma 3.3. Let (x, s) ∈ Ñ−τ (α) and let (x(θ), s(θ)) be defined by (10). Then (x(θ), s(θ)) ∈ Ñ−τ (α) if and only if

µ(θ) =
(x(θ))Ts(θ)

n
> 0 and ‖(x(θ)s(θ) − τµ(θ)e)−‖2 ≤ ατµ(θ).

Proof. Let us assume that µ(θ) > 0 and ‖(x(θ)s(θ) − τµ(θ)e)−‖2 ≤ ατµ(θ). Since M∆x(θ) − ∆s(θ) = 0, we
obtain s(θ) = Mx(θ) + q. In order to complete the proof of lemma, it suffices to show that x(θ) > 0 and
s(θ) > 0. From (5) we deduce that x(θ)s(θ) > 0. According to Lemma 3.2, it is sufficient to prove that
s∆x(θ) + x∆s(θ) + 2xs ≥ 0. From (13) it follows that the left-hand side of this inequality is equal to

2xs + θ1(τµe − xs)− + θ2(τµe − xs)+
− θ2

1∆x−∆s−. (14)

We consider the following cases:
Case 1: Let i ∈ I−. In this case, either xisi ≤ τµ or xisi ≥ τµ, the relation (14) becomes positive.
Case 2: Let i ∈ I+ and xisi ≤ τµ. In this case, the ith component of (14) becomes

2xisi + θ2(τµ − xisi) − θ2
1(∆x−)i(∆s−)i ≥

(
2 − θ2 −

θ2
1

4

)
xisi + θ2τµ > 0.

Case 3: Let i ∈ I+ and xisi ≥ τµ. In this case the ith component of (14) reduces to

2xisi + θ1(τµ − xisi) − θ2
1(∆x−)i(∆s−)i ≥

(
2 − θ1 −

θ2
1

4

)
xisi + θ1τµ > 0.

Note that in case 2 and case 3 the first inequalities follow by Lemma 3.1. These complete the proof.

It follows that the optimization problem (11) is equivalent to

min
θ∈[0,1]×[0,1]

µ(θ)

s.t. µ(θ) > 0,
‖(x(θ)s(θ) − τµ(θ)e)−‖2 ≤ ατµ(θ).

(15)

If θ+ = (θ+
1 , θ

+
2 ) is the solution of the above minimization problem, then according to lemma 3.3 the point

(x(θ+), s(θ+)) belongs to the wide neighborhood Ñ−τ (α) and the process can be repeated.

Lemma 3.4. (cf. Lemma 2 in [3]) If LCP is P∗(k), then for any (x, s) ∈ R2n
++and any a ∈ Rn the linear system (12)

has a unique solution (u, v) for which the following estimates hold

‖uv‖2 ≤
( 1
√

8
+ κ

)
‖̃a‖22, − κ‖̃a‖

2
2 ≤ uTv ≤

1
4
‖̃a‖22,

where ã = (xs)−1/2a.
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Lemma 3.5. The solutions of (7) and (13) satisfy the following inequalities:

‖∆x−∆s−‖2 ≤
( 1
√

8
+ κ

)
nµ, − κnµ ≤ ∆xT

−∆s− ≤
nµ
4
, (16)

‖∆x(θ)∆s(θ)‖2 ≤ µ
( 1
√

8
+ κ

)(√
nθ2

1 +
θ2

2α
2τ

1 − α
+

nθ2
1√

(1 − α)τ

( 1
√

8
+ κ

))2

, (17)

∆x(θ)T∆s(θ) ≥ −κµ
(√

nθ2
1 +

θ2
2α

2τ

1 − α
+

nθ2
1√

(1 − α)τ

( 1
√

8
+ κ

))2

, (18)

∆x(θ)T∆s(θ) ≤
µ

4

(√
nθ2

1 +
θ2

2α
2τ

1 − α
+

nθ2
1√

(1 − α)τ

( 1
√

8
+ κ

))2

. (19)

Proof. For any (x, s) ∈ R2n
++ there holds

‖(xs)−1/2(τµe − xs)−‖22 = ‖(xs)−1/2(xs − τµe)+
‖

2
2 ≤ ‖(xs)1/2

‖
2
2 = nµ.

By considering (u, v) = (∆x−,∆s−) and a = (τµe − xs)−in system (12), using Lemma 3.4 and the above
inequality, we obtain

‖∆x−∆s−‖2 ≤
( 1
√

8
+ κ

)
‖(xs)−1/2(τµe − xs)−‖22 ≤

( 1
√

8
+ κ

)
nµ,

and

−κnµ ≤ −κ‖(xs)−1/2(τµe − xs)−‖22 ≤ ∆xT
−∆s− ≤

1
4
‖(xs)−1/2(τµe − xs)−‖22 ≤

nµ
4
.

The above inequalities prove (16). If (x, s) ∈ Ñ−τ (α) , then according to (5) we can write

‖(xs)−1/2(τµe − xs)+
‖

2
2 ≤
‖(τµe − xs)+

‖
2
2

(1 − α)τµ
≤
τµα2

1 − α
.

Therefore, using the orthogonality of (τµe − xs)− and (τµe − xs)+ we have∥∥∥∥(xs)−1/2
(
θ1(τµe − xs)− + θ2(τµe − xs)+

)∥∥∥∥2

2

= θ2
1

∥∥∥∥(xs)−1/2(τµe − xs)−
∥∥∥∥2

2
+ θ2

2

∥∥∥∥(xs)−1/2(τµe − xs)+
∥∥∥∥2

2

≤ nµθ2
1 +

τµα2θ2
2

1 − α
.

Further, from (5) and (16) we get∥∥∥∥(xs)−1/2
(
∆x−∆s−

)∥∥∥∥2

2
≤
‖∆x−∆s−‖22
(1 − α)τµ

≤
n2µ2

(1 − α)τµ

( 1
√

8
+ κ

)2
.

Now, comparing system (12) with the system (13) and considering (u, v) = (∆x(θ),∆s(θ)) and a = θ1(τµe −
xs)− + θ2(τµe − xs)+

− θ2
1∆x−∆s−, we have

‖̃a‖2 =
∥∥∥(xs)−1/2

(
θ1(τµe − xs)− + θ2(τµe − xs)+

− θ2
1∆x−∆s−

)∥∥∥
2

≤

∥∥∥(xs)−1/2
(
θ1(τµe − xs)− + θ2(τµe − xs)+

)∥∥∥
2

+ θ2
1

∥∥∥(xs)−1/2
(
∆x−∆s−

)∥∥∥
2

≤

(√
nθ2

1 +
τα2θ2

2

1 − α
+

nθ2
1√

(1 − α)τ

( 1
√

8
+ κ

))√
µ. (20)
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The inequalities (17), (18) and (19) can be derived from (20) and Lemma 3.4. The proof of lemma is
complete.

In the sequel, we denote

ψ(θ) := ψ(θ1, θ2) :=
(√

nθ2
1 +

τα2θ2
2

1 − α
+

nθ2
1√

(1 − α)τ

( 1
√

8
+ κ

))2

. (21)

In the next lemma we give upper and lower bounds for µ(θ). We first note that, from (10) and the second
equation of (13), we have

x(θ)s(θ) = (x + ∆x(θ))(s + ∆s(θ)) = xs + s∆x(θ) + x∆s(θ) + ∆x(θ)∆s(θ)
= xs + θ1(τµe − xs)− + θ2(τµe − xs)+

− θ2
1∆x−∆s− + ∆x(θ)∆s(θ). (22)

Moreover,

µ(θ) =
x(θ)Ts(θ)

n
=

eT(x(θ)s(θ))
n

= µ + θ1
eT(τµe − xs)−

n
+ θ2

eT(τµe − xs)+

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

. (23)

Since

n(1 − τ)µ = eT(xs − τµe) = eT(xs − τµe)+ + eT(xs − τµe)−, (24)

by applying the Cauchy-Schwartz inequality and the definition of the neighborhood Ñ−τ (α), we get

|eT(xs − τµe)−| ≤
√

n‖(xs − τµe)−‖2 ≤ ταµ
√

n. (25)

It follows from (24) and (25) that

n(1 − τ)µ ≤ eT(xs − τµe)+
≤

(
n(1 − τ) + τα

√
n
)
µ. (26)

Lemma 3.6. For any (x, s) ∈ Ñ−τ (α) and θ = (θ1, θ2) with 0 ≤ θ1 ≤ θ2 ≤ 1, we have

µ(θ) ≤
(
1 −

(
1 − τ +

τα
√

n

)
θ1 +

ταθ2
√

n
+ κθ2

1 +
ψ(θ)
4n

)
µ, (27)

µ(θ) ≥
(
1 − θ1(1 − τ) −

1
4
θ2

1 −
κψ(θ)

n

)
µ. (28)

Proof. By using (23), the equality (τµe − xs)− = −(xs − τµe)+, (24), (25) and (26) we obtain

µ(θ) = µ − θ1
eT(xs − τµe)+

n
− θ2

eT(xs − τµe)−

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

(29)

= µ − θ1
n(1 − τ)µ − eT(xs − τµe)−

n
− θ2

eT(xs − τµe)−

n

−θ2
1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

= µ − θ1(1 − τ)µ − (θ2 − θ1)
eT(xs − τµe)−

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

≤ µ − θ1(1 − τ)µ + (θ2 − θ1)
ταµ
√

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

= µ − θ1(1 − τ +
τα
√

n
)µ + θ2

ταµ
√

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

≤

(
1 −

(
1 − τ +

τα
√

n

)
θ1 +

ταθ2
√

n
+ κθ2

1 +
ψ(θ)
4n

)
µ,
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where the last inequality derives from (16) and (19), which proves the inequality (27). Similarly, we get

µ(θ) = µ − θ1(1 − τ)µ − (θ2 − θ1)
eT(xs − τµe)−

n
− θ2

1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

≥ µ − θ1(1 − τ)µ − θ2
1
∆xT
−
∆s−

n
+

∆x(θ)T∆s(θ)
n

≥

(
1 − θ1(1 − τ) −

1
4
θ2

1 −
κψ(θ)

n

)
µ,

where the last inequality holds due to (16) and (18). This completes the proof of (28).

To follow the central path, we need to make sure that the iterates remain in the prescribed neighborhood of
the central path. So in the next lemma we give an upper bound for 2-norm of (x(θ)s(θ) − τµ(θ)e)−.

Lemma 3.7. For any (x, s) ∈ Ñ−τ (α) and θ = (θ1, θ2) with

ταθ2

(1 − τ)
√

n + ατ
≤ θ1 ≤ θ2 ≤ 1, (30)

we have∥∥∥(x(θ)s(θ) − τµ(θ)e)−
∥∥∥

2
≤

(
(1 − θ2)τα + θ2

1

( 1
√

8
+ κ

)
n +

( 1
√

8
+ κ

)
ψ(θ)

)
µ.

Proof. By subtracting and adding τµe to the right-hand side of (22) we obtain

x(θ)s(θ) = τµe + (xs − τµe) − θ1(xs − τµe)+
− θ2(xs − τµe)− − θ2

1∆x−∆s− + ∆x(θ)∆s(θ)

= τµe + (1 − θ1)(xs − τµe)+ + (1 − θ2)(xs − τµe)− − θ2
1∆x−∆s− + ∆x(θ)∆s(θ).

From the above equality and (29) we deduce that

x(θ)s(θ) − τµ(θ)e = (1 − θ1)(xs − τµe)+ + (1 − θ2)(xs − τµe)−

+ τθ1
eT(xs − τµe)+

n
e + τθ2

eT(xs − τµe)−

n
e − θ2

1∆x−∆s−

+ ∆x(θ)∆s(θ) + τθ2
1

∆xT
−
∆s−

n
e − τ

∆x(θ)T∆s(θ)
n

e.

On the other hand, by (24), (25) and (30), we have

θ1
eT(xs − τµe)+

n
+ θ2

eT(xs − τµe)−

n
= θ1

eT(xs − τµe)
n

+ (θ2 − θ1)
eT(xs − τµe)−

n

≥ (1 − τ)µθ1 − (θ2 − θ1)
ταµ
√

n

=
(
1 − τ +

τα
√

n

)
µθ1 −

ταµ
√

n
θ2 ≥ 0.

Therefore, we obtain the following inequality

x(θ)s(θ) − τµ(θ)e ≥ (1 − θ2)(xs − τµe)− + θ2
1

(τ∆xT
−
∆s−

n
e − ∆x−∆s−

)−
+

(
∆x(θ)∆s(θ) −

τ∆x(θ)T∆s(θ)
n

e
)−
,
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which implies, by v ≥ u⇒ ‖v−‖2 ≤ ‖u−‖2 and ‖u−‖2 ≤ ‖u‖2,∥∥∥∥(x(θ)s(θ) − τµ(θ)e
)−∥∥∥∥

2
≤ (1 − θ2)

∥∥∥(xs − τµe)−
∥∥∥

2
+ θ2

1

∥∥∥∥∆x−∆s− −
τ∆xT

−
∆s−

n
e
∥∥∥∥

2

+
∥∥∥∥∆x(θ)∆s(θ) −

τ∆x(θ)T∆s(θ)
n

e
∥∥∥∥

2

≤ (1 − θ2)ταµ + θ2
1

∥∥∥∆x−∆s−
∥∥∥

2
+

∥∥∥∆x(θ)∆s(θ)
∥∥∥

2

≤

(
(1 − θ2)τα + θ2

1

( 1
√

8
+ κ

)
n +

( 1
√

8
+ κ

)
ψ(θ)

)
µ,

where the last inequality follows from (16) and (17), and the proof of lemma is complete.

Lemma 3.8. If 0 < τ ≤
1
2

, then the point (x(θ), s(θ)) defined in (10) belongs to Ñ−τ (α) for any θ = (θ1, θ2) satisfying

θ1 =

√
ταθ2

(1 − τ)
√

n
, n ≥ 2, 0 < θ2 ≤ θ̃2 :=

(1 − α)(1 − τ)4(
5
√

2κ + 4
)( √8 + 1
√

8
+ κ

)2
. (31)

Proof. We first note that the first equation in (31) implies that

(1 − τ)θ1 =

√
ταθ2
√

n
≤

1
2
. (32)

Now, by using (21) and the first equation of (32), we obtain

ψ(θ) ≤
(√

α

(1 − τ)2 +
α2

1 − α
+

α
√

1 − α(1 − τ)2

( 1
√

8
+ κ

))2

τθ2
2

=

( √
α(1 − α) + α2(1 − τ)2

√
1 − α(1 − τ)

+

α
( 1
√

8
+ κ

)
√

1 − α(1 − τ)2

)2

τθ2
2

=

( (1 − τ)
√
α(1 − α) + α2(1 − τ)2 + α

( 1
√

8
+ κ

)
√

1 − α(1 − τ)2

)2

τθ2
2

≤

τα
( √8 + 1
√

8
+ κ

)2
θ2

2

(1 − α)(1 − τ)4 , (33)

where the last inequality follows from
1
2
≤ 1 − τ < 1 and α ≤

√
α. It follows from (28) and (33) that

µ(θ)
µ
≥ 1 − θ1(1 − τ) −

1
4
θ2

1 −

κτα
( √8 + 1
√

8
+ κ

)2
θ2

2

n(1 − α)(1 − τ)4

≥
1
2
−

1
4
−

κτα
( √8 + 1
√

8
+ κ

)2
θ2

n(1 − α)(1 − τ)4

≥
1
4
−

κτα

n(5
√

2κ + 4)

≥
1
4

(
1 −

κ

5
√

2κ + 4

)
> 0,



B. Kheirfam, M. Chitsaz / Filomat 31:20 (2017), 6379–6391 6388

where the second inequality follows from the inequality of (32) and θ1 ≤ 1 and the third inequality follows
from (31). Now, by using Lemma 3.7, (33) and (28) we deduce that∥∥∥(x(θ)s(θ) − τµ(θ)

)−∥∥∥
2
− ταµ(θ)

≤

(
(1 − θ2)τα + θ2

1(
1
√

8
+ κ)n + (

1
√

8
+ κ)

τα
( √8 + 1
√

8
+ κ

)2
θ2

2

(1 − α)(1 − τ)4

)
µ

−τα

(
1 − θ1(1 − τ) −

1
4
θ2

1 −
κ
n

τα
( √8 + 1
√

8
+ κ

)2
θ2

2

(1 − α)(1 − τ)4

)
µ

=

(
nθ2

1

(( 1
√

8
+ κ

)
+
τα
4n

)
+

τα
( √8 + 1
√

8
+ κ

)2
θ2

2

(1 − α)(1 − τ)4

( 1
√

8
+ κ +

τακ
n

)
−

(
θ2 − (1 − τ)θ1

)
τα

)
µ

≤

((5
4
κ +

8 +
√

2

16
√

2

)( 1
(1 − τ)2 +

( √8 + 1
√

8
+ κ

)2

(1 − α)(1 − τ)4

)
θ2 −

(
1 −
√
τα
√

n

))
ταθ2µ

≤

((5
√

2κ + 4

4
√

2

)( 1
(1 − τ)2 +

( √8 + 1
√

8
+ κ

)2

(1 − α)(1 − τ)4

)
θ2 −

(
1 −
√
τα
√

n

))
ταθ2µ

≤

(
1

4
√

2

( (1 − α)(1 − τ)2( √8 + 1
√

8
+ κ

)2
+ 1

)
− 1 +

√
τα
√

n

)
ταθ2µ

≤

(
1

2
√

2
−

1
2

)
ταθ2µ < 0,

where the second inequality follows from the first equation of (32) and the following inequalities

1
√

8
+ κ +

τα
4n
≤

5
4
κ +

8 +
√

2

16
√

2
,

1
√

8
+ κ +

τακ
n
≤

5
4
κ +

8 +
√

2

16
√

2
.

Thus under the hypothesis of our lemma, we showed that ‖(x(θ)s(θ) − τµ(θ)e)−‖2 ≤ ατµ(θ) and µ(θ) > 0.
This completes the proof of lemma according to Lemma 3.3.

In the reminder of this paper, we will use the notations

θ̃2 :=
(1 − α)(1 − τ)4(

5
√

2κ + 4
)( √8 + 1
√

8
+ κ

)2
, θ̃1 :=

√
ταθ̃2

(1 − τ)
√

n
, θ̃ := (θ̃1, θ̃2). (34)

Theorem 3.9. If LCP is P∗(κ), then the Algorithm 1 is well defined, produces a sequence of points (xk, sk) belonging
to the neighborhood Ñ−τ (α), and

µk+1 ≤

(
1 −

c(α, τ)

(5
√

2κ + 4)
( √8 + 1
√

8
+ κ

)2√
n

)
µk, k = 0, 1, . . . (35)
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where

c(α, τ) =

√
τα(1 − α)(1 − τ)4

4
. (36)

Proof. The first part of the theorem follows from the definition of Algorithm 1 and Lemma 3.8. Let us denote

φ(θ) = φ(θ1, θ2) = 1 −
(
1 − τ +

τα
√

n

)
θ1 +

ταθ2
√

n
+ κθ2

1 +

τα
( √8 + 1
√

8
+ κ

)2
θ2

2

4n(1 − α)(1 − τ)4 ,

so that according to (27) we have µ(θ) ≤ φ(θ)µ. It is easy to verify that

φ

( √
ταθ2

(1 − τ)
√

n
, θ2

)
= 1 −

(
1 − τ +

τα
√

n

)√
ταθ2

(1 − τ)
√

n
+
ταθ2
√

n
+

(
κ

(1 − τ)2 +

( √8 + 1
√

8
+ κ

)2

4(1 − α)(1 − τ)4

)
ταθ2

2

n

≤ 1 −
√
ταθ2
√

n
+
ταθ2
√

n
+

(
κ

(1 − τ)2 +

( √8 + 1
√

8
+ κ

)2

4(1 − α)(1 − τ)4

)
ταθ2

2

n

≤ 1 −
√
ταθ2
√

n

(
1 −
√
τα −

(
κ

(1 − τ)2 +

( √8 + 1
√

8
+ κ

)2

4(1 − α)(1 − τ)4

) √
ταθ2
√

n

)
≤ 1 −

√
ταθ2
√

n

(
1 −
√
τα −

κ
√
τα(1 − α)(1 − τ)2

(5
√

2κ + 4)
( √8 + 1
√

8
+ κ

)2√
n

−

√
τα

4
√

n(5
√

2κ + 4)

)

≤ 1 −
√
ταθ2
√

n

(
1 −

√
2

2
−

141
17290

−
1
32

)
= 1 −

507
2000

√
ταθ2
√

n
≤ 1 −

√
ταθ2

4
√

n
.

With the notation from (34), it follows that

µ(θ+) ≤ µ(θ̃) ≤
(
1 −

c(α, τ)

(5
√

2κ + 4)
( √8 + 1
√

8
+ κ

)2√
n

)
µ.

This completes the proof.

Corollary 3.10. Under the hypothesis of Theorem 3.9, Algorithm 1 produces a point (x, s) ∈ Ñ−τ (α) with µ(x, s) ≤ ε
in at most

O
(
(1 + κ)3√nL

)
iterations, where L = Lε = log

(µ(x0, s0)
ε

)
.

4. Numerical Results

In this section, we present some numerical results for the test problems (LCP), in order to get a feel of
how the algorithm might perform in practice. Numerical results were obtained by using MATLAB R2009a,
version 7.8.0.347, on an 32-bit system. We choose the parameters α = 0.5 and τ = 0.001. Furthermore, we
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take q = e −Me to obtain an LCP problem with the starting interior point (x0, s0) = (e, e). The algorithm
terminates if the relative duality gap (Relgap) satisfies

xTs
1 + (x0)Ts0 ≤ 10−8.

The set of testing LCP problems are generated as follows. After one inputs any positive integer n, MATLAB
generates an n × n matrix A = rand(n) randomly. Then, we take M = ATA and q = e −Me. The numerical
results presented in Table 1. To test the influence from the skewness of matrix M, we also test the LCPs
generated as follows: A = rand(n),B = rand(n),M = ATA + (B − BT) and q = e − Me. The numerical
results of this set of problems are showed in Table 2. It turns out that the number of iterations (Iter.) and
CPU time (seconds) is better than those required when M is purely positive semidefinite. Our preliminary
implementations show that this algorithm is promising.

Table 1
n Iter. CPU Relgap

100 7 0.1481 2.7653E-11
200 10 0.4998 1.2059E-13
250 7 0.6149 2.0529E-11
300 8 1.1113 1.8348E-12
500 8 3.9769 1.1422E-12
700 10 10.7753 1.9856E-12
900 8 16.1180 4.3346E-12
1000 9 24.6277 2.1069E-13
1300 9 48.1333 5.7763E-12

Table 2
n Iter. CPU Relgap

100 4 0.0338 1.5245E-11
200 4 0.2617 5.9142E-12
250 4 0.3364 3.9534E-12
300 4 0.6456 3.9545E-12
500 4 1.9302 1.9822E-12
700 4 4.4852 1.9804E-12
900 4 8.1951 1.9779E-12

1000 4 10.8264 1.0021E-12
1300 4 21.3097 1.0014E-12

5. Conclusion

In this paper, we have extended the recently proposed second-order corrector interior-point algorithm
of Liu et al. for LP to P∗(κ)-LCP and derived the iteration bound for the algorithm, namely, O

(
(1 +

κ)3√n log(
(x0)Ts0

ε
)
)
. Moreover, we use the neighborhood Ñ−τ (α) for any value of α ∈ (0, 1), while in [6] this

neighborhood has been used only for α ∈
(
0,

1
2

)
. Our algorithm does not use explicitly the handicap κ of

the problem, and it can solve any LCPs. Furthermore, our preliminary numerical experiments show that
the new algorithm may also perform well in practice.
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