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Abstract. Fuglede-Putnam Theorem has been proved for a considerably large number of class of operators.
In this paper by using the spectral theory, we obtain a theoretical and general framework from which
Fuglede-Putnam theorem may be promptly established for many classes of operators.

1. Introduction and Basic Definitions

Fuglede-Putnam Theorem has been studied in the last two decades by several authors and most of them
have essentially proved such theorem for special classes of operators. Many times the arguments used, to
prove Fuglede-Putnam Theorem are similar, but in this paper we show that it is possible to bring back up
this theorem from some general common properties. We use the spectral theory to obtain a theoretical and
general framework from which Fuglede-Putnam theorem is established, and we can deduce that Fuglede-
Putnam Theorem hold for many classes of operators. Let H be an infinite complex Hilbert space and
consider two bounded linear operators A,B ∈ L(H). Let LA ∈ L(L(H)) and RB ∈ L(L(H)) be the left and the
right multiplication operators, respectively, and denote by dA,B ∈ L(L(H)) either the elementary operator
∆A,B(X) = AXB − X or the generalized derivation δA,B(X) = AX − XB.
Given T ∈ L(H), ker(T), R(T), σ(T) and σp(T) will stand for the null space, the range of T, the spectrum of T
and the point spectrum of T. Recall that if M, N are linear subspaces of a normed linear space V, then M is
orthogonal to N in the sense of Birkhoff, M⊥N for short, if ‖m‖ ≤ ‖m + n‖ for all m ∈M and n ∈ N.

It is known that if A, B∗ ∈ L(H) are hyponormal operators, then dA,B satisfies the asymmetric Putnam
Fuglede commutativity property ker dA,B ⊆ ker dA∗,B∗ , hence ker dA,B⊥R(dA,B). From the fact that hyponormal
operators are closed under translation and multiplication by scalars, B. P. Duggal in [12] deduced that if A
and B∗ are hyponormal, then

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI),∀λ ∈ C, (1)

where λ is the conjugate of the complex number λ. An operator T ∈ L(H) is said to be p-hyponormal,
0 < p ≤ 1, if |T∗|2p

≤ |T|2p, where |T| = (T∗T)
1
2 . An invertible operator T ∈ L(H) is log-hyponormal if

log |T∗|2 ≤ log |T|2. In [12] B. P. Duggal proved that if A and B∗ are p-hyponormal or log-hyponormal, then
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ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI) and ker(dA,B − λI)⊥R(dA,B − λI), for every complex number λ. An operator
T ∈ L(H) is said to be w-hyponormal if (|T∗|

1
2 |T||T∗|

1
2 )

1
2 ≥ |T∗|, see [19]. It is shown in [2, 3] that the class of

w-hyponormal properly contains the class of p-hyponormal (0 < p ≤ 1), and log-hyponormal. T. Furuta, M.
Ito and T. Yamazaki [15] introduced a very interesting classA operators defined by |T2

| − |T|2 ≥ 0, and they
showed that classA is a subclass of paranormal operators (i.e., ‖Tx‖2 ≤ ‖T2x‖‖x‖, for all x ∈ H ) and contains
w-hyponormal operators. An operator T ∈ L(H) is said to be classA(s, t), where s and t are strictly positive
integers, if |T∗|2t

≤ (|T∗|t|T|2s
|T∗|t)

t
t+s . Then T ∈ A( 1

2 ,
1
2 ) if and only if T is w-hyponormal and T ∈ A(1, 1) if and

only if T is classA.
I. H. Jeon and I. H. Kim [20] introduced quasi-class A operators defined by T∗(|T2

| − |T|2)T ≥ 0, as an
extension of the notion of class A operators. K. Tanahash, I. H. Jeon, I, H. Kim and A. Uchiyama [26]
introduced k-quasi-classA operators defined by T∗k(|T2

|− |T|2)Tk
≥ 0, for a positive integer k as an extension

of the notion of quasi-classA operators, for interesting properties of k-quasi-classA operators, called also
quasi-class (A, k), see [17, 26].
In [9, Lemma 2.4], [5, Theorem 3.6] and [13, Lemma 2.4] the authors proved that if A, B∗ ∈ L(H) are w-
hyponormal operators with ker A ⊆ ker A∗ and ker B∗ ⊆ ker B, then dA,B satisfies the asymmetric Putnam
Fuglede commutativity property ker dA,B ⊆ ker dA∗,B∗ . Recently B.P. Duggal, C. S. Kubruslly and I. H. Kim
in [13, Theorem 2.5] have proved that if A ∈ A(s1, t1) and B∗ ∈ A(s2, t2), where 0 < s1, s2, t1, t2 ≤ 1 are such
that ker A ⊆ ker A∗ and ker B∗ ⊆ ker B, then δA,B satisfies the asymmetric Putnam Fuglede commutativity
property ker δA,B ⊆ ker δA∗,B∗ .Starting from the fact that all class of operators satisfying (1) share the following
conditions

i) A and B∗ are reduced by each of its eigenspaces,
ii) A and B∗ are polaroid,

iii) A and B∗ have property (β).

In this paper we prove that if A and B∗ satisfy the conditions i), ii) and iii), then property (1) holds. Which
give a generalization of all results obtained before. Now we recall some definitions

Definition 1.1. An operator T ∈ L(H) has Bishop’s property (β) if for every open set U ⊂ C and every sequence of
analytic functions fn : U→ X, with the property that (T − λI) fn(λ)→ 0 uniformly on every compact subset of U, it
follows that fn → 0, again locally uniformly on U.

For more information on Bishop’s property (β) we refer the interested reader to [22]. Recall that the ascent
p(T) of an operator T, is defined by p(T) = inf{n ∈ N : ker Tn = ker Tn+1

} and the descent q(T) = inf{n ∈ N :
R(Tn) = R(Tn+1)}, with inf ∅ = ∞. It is well known that if p(T) and q(T) are both finite then p(T) = q(T). We
denote by Π(T) = {λ ∈ C : p(T − λI) = q(T − λI) < ∞} the set of poles of the resolvent. An operator T ∈ L(H)
is called Drazin invertible if and only if it has finite ascent and descent. The Drazin spectrum of an operator
T is defined by

σD(T) = {λ ∈ C : T − λI is not Drazin invertible}.

In the sequel we shall denote by accS and isoS, the set of accumulation points and the set of isolated points
of S ⊂ C, respectively

Definition 1.2. An operator T ∈ L(H) is said to be polaroid if

isoσ(T) ⊆ Π(T).

It is easily seen that, if T ∈ L(H) is polaroid, then Π(T) = E(T), where E(T) is the set of eigenvalues of T
which are isolated in the spectrum of T
An important subspace in local spectral theory is the the quasinilpotent part of T, given by

H0(T) = {x ∈ H : lim
n→∞
‖Tn(x)‖

1
n = 0}.
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It is easily seen that ker Tn
⊂ H0(T) for every n ∈N, see [1] for information on H0(T).

The range-kernel orthogonality of dA,B in the sense of G. Birkhoff, ‖X‖ ≤ ‖X − (dA,B − λI)Y‖, for all X ∈
ker(dA,B−λI) and Y ∈ L(H),was studied by numerous mathematicians, see [4, 5, 10, 21, 27] and the references
therein. A sufficient condition guaranteeing the range-kernel orthogonality of dA,B is that ker dA,B ⊆ ker dA∗,B∗

[10]. The main objective of this paper is to give sufficient conditions to have ker(dA,B −λI) ⊆ ker(dA∗,B∗ −λI),
for every complex number λ. After section one where several basic definitions are assembled, in section
two, we prove that if A and B∗ satisfy the conditions i), ii) and iii), then ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI)
for every complex number λ and that the elementary operator dA,B satisfies the range-kernel orthogonality.
We apply the results obtained to k-quasi-class A operators. We prove that dA,B satisfies the asymmetric
Putnam Fuglede commutativity property ker dA,B ⊆ ker dA∗,B∗ , if A and B∗ are k-quasi-classA operator with
ker A ⊆ ker A∗ and ker B∗ ⊆ ker B. Our results generalizes the ones given by B. P. Duggal in [12, Theorem
2.3], A. Bachir and F. Lombarkia in [5, Theorem 3.6], B. P. Duggal in [13, Lemma 2.4] and B. P. Duggal in
[13, Theorem 2.5].

2. Main Results

Let T ∈ L(H) be reduced by each of its eigenspaces. If we let M =
∨
{ker(T − µI), µ ∈ σp(T)} (where

∨
(.)

denotes the closed linear span), it follows that M reduces T. Let T1 = T|M and T2 = T|M⊥ . By [7, Proposition
4.1] we have

• T1 is normal with pure point spectrum,

• σp(T1) = σp(T),

• σ(T1) = clσp(T1) (here cl denotes the closure),

• σp(T2) = ∅.

The classical and most known form of the Fuglede Putnam theorem is the following

Theorem 2.1. [16, 25] If X,A and B are bounded operators acting on complex Hilbert space H such that A and B are
normal, then

AX = XB =⇒ A∗X = XB∗.

Now we give our main results

Theorem 2.2. Suppose that A,B∗ ∈ L(H) are reduced by each of its eigenspaces, polaroid and have Bishop’s property
(β), then

ker(δA,B − λI) ⊆ ker(δA∗,B∗ − λI), ∀λ ∈ C.

Proof. Since A and B∗ are reduced by each of its eigenspaces, then there exists

M1 =
∨
{ker(A − βI), β ∈ σp(A)} and M2 = H 	M1

on the one hand and
N1 =

∨
{ker(B∗ − αI), α ∈ σp(B∗)} and N2 = H 	N1

on the other hand such that A and B have the representations

A =

(
A1 0
0 A2

)
on H = M1 ⊕M2,
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and

B =

(
B1 0
0 B2

)
on H = N1 ⊕N2.

Recall from [14] that σ(δA,B) = σ(A) − σ(B). We consider the following cases:
Case 1: If λ ∈ C\σ(δA,B), then ker(δA,B − λI) = {0} and hence

ker(δA,B − λI) ⊆ ker(δA∗,B∗ − λI).

Case 2: If λ ∈ isoσ(δA,B), then there exists finite sequences {µi}
n
i=1 and {νi}

n
i=1, where µi ∈ isoσ(A) and

νi ∈ isoσ(B) such that
λ = µi − νi, for all 1 ≤ i ≤ n

Since the spectrum of A2 and the spectrum of B2 does not contains isolated points, then λ < σ(δAi,B j )
for all 1 ≤ i, j ≤ 2 other than i = j = 1. Consider X ∈ ker(δA,B − λI) such that X : N1 ⊕ N2 −→ M1 ⊕

M2 have the representation X = [Xkl]2
k,l=1. Hence

(δA,B − λI)(X) =

(
(δA1,B1 − λI)(X11) (δA1,B2 − λI)(X12)
(δA2,B1 − λI)(X21) (δA2,B2 − λI)(X22)

)
= 0.

Observe that δAi,B j − λI is invertible for all 1 ≤ i, j ≤ 2 other than i = j = 1. Hence X22 = X21 = X12 = 0. Since
A1 − µi and B1 − νi are normal, it follows from Fuglede-Putnam theorem that

(A∗1 − µi)X11 − X11(B∗1 − νi) = 0,

consequently
X = X11 ⊕ 0 ∈ ker(δA∗,B∗ − λI).

Case 3: If λ ∈ accσ(δA,B), it follows from [24, Lemma 3.1] that λ ∈ (σ(A)− accσ(B))∪ (accσ(A)− σ(B)), then
there exists µ ∈ σ(A) and ν ∈ σ(B) such that λ = µ− ν ∈ (σ(A)− accσ(B)) or λ = µ− ν ∈ (accσ(A)− σ(B)). Since
A and B are polaroid, then accσ(A) = σD(A) and accσ(B) = σD(B), it is easy to see that

σD(A) = σD(A1) ∪ σD(A2) and σD(B) = σD(B1) ∪ σD(B2),

since σp(A2) = σp(B∗2) = ∅, then σD(A2) = σ(A2) and σD(B2) = σ(B2). Hence we have

µ ∈ σD(A1) ∪ σ(A2) and ν ∈ σ(B1) ∪ σ(B2).

Or
µ ∈ σ(A1) ∪ σ(A2) and ν ∈ σD(B1) ∪ σ(B2).

Let X ∈ ker(δA,B − λI) such that

X : N1 ⊕N2 −→M1 ⊕M2 have the representation X = [Xkl]2
k,l=1.

Hence

(δA,B − λI)(X) =

(
(δA1,B1 − λI)(X11) (δA1,B2 − λI)(X12)
(δA2,B1 − λI)(X21) (δA2,B2 − λI)(X22)

)
= 0.

We consider the following cases

• µ ∈ σ(A1) and ν ∈ σD(B1), or

• µ ∈ σ(A1) and ν ∈ σ(B2), or

• µ ∈ σ(A2) and ν ∈ σD(B1), or

• µ ∈ σ(A2) and ν ∈ σ(B2).
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or

• µ ∈ σD(A1) and ν ∈ σ(B1), or

• µ ∈ σD(A1) and ν ∈ σ(B2), or

• µ ∈ σ(A2) and ν ∈ σ(B1).

We start by studying these cases

• If µ ∈ σ(A1) and ν ∈ σD(B1). Since µ < σ(A2) and ν < σ(B2), then δAi,B j −λI is invertible for all 1 ≤ i, j ≤ 2
other than i = j = 1. Let X ∈ ker(δA,B − λI). Hence X12 = X21 = X22 = 0. Since A1 − µ and B1 − ν are
normal, it follows from Fuglede-Putnam theorem that

(A∗1 − µi)X11 − X11(B∗1 − νi) = 0,

consequently
X = X11 ⊕ 0 ∈ ker(δA∗,B∗ − λI).

• If µ ∈ σ(A1) and ν ∈ σ(B2), let X ∈ ker(δA,B − λI), then X22 = X21 = X11 = 0 and

A1X12 = X12(B2 − λ). (2)

Let x is any vector in N2, then X12x ∈M1, hence X12x =
∑

anϕn, whereϕn are the eigenvector associated
to the eigenvalue µn of the normal operator A1 (A1ϕn = µnϕn). Form equation (2) we get

(B∗2 − λ − µn)X∗12ϕn = X∗12(A∗1 − µn)ϕn = 0,

which implies that X∗12ϕn = 0, since B∗2 − (λ + µn) is injective.
Thus ‖X12x‖2 = 〈X12x,

∑
anϕn〉 = 〈x,

∑
anX∗12ϕn〉 = 0, whence X12 = 0 and

X = 0 ∈ ker(δA∗,B∗ − λI).

• If µ ∈ σ(A2) and ν ∈ σD(B1), let X ∈ ker(δA,B−λI), then X11 = X22 = X12 = 0 and (A2−λ)X21 = X21B1. Let
x is any vector in M2, then X∗21x ∈ N1, hence X∗21x =

∑
anϕn, where ϕn are the eigenvector associated

to the eigenvalue νn of the normal operator B1 (B1ϕn = νnϕn). Similarly as in the precedent case we
obtain X21 = 0, hence

X = 0 ∈ ker(δA∗,B∗ − λI).

• If µ ∈ σ(A2) and ν ∈ σ(B2). Since A has Bishop’s property (β) it follows from [6, Remarks 3.2] that A2
has property (β), applying [1, Theorem 2.20] we get H0(A2 − µ) is closed and from [22, Proposition
1.2.20] that σ(A2|H0(A2−µ)) ⊆ {µ}. If σ(A2|H0(A2−µ)) = ∅, then H0(A2 − µ) = {0}, the case σ(A2|H0(A2−µ)) = {µ}
is not possible, since the spectrum of the operator A2 does not contains isolated points. Hence
H0(A2 − µ) = {0}. let X ∈ ker(δA,B − λI), then X21 = X12 = X11 = 0 and (A2 − µ)X22 = X22(B2 − ν), this
implies that, if t ∈ H0(B2 − ν), then X22t ∈ H0(A2 − µ) = {0}. Hence X22t = 0. Since t ∈ H0(B2 − ν), using
properties of quasinilpotent part, we get (B2 − ν)(t) ∈ H0(B2 − ν), consequently N2 = H0(B2 − ν). So
X22 = 0, hence

X = 0 ∈ ker(δA∗,B∗ − λI).

The cases

• µ ∈ σD(A1) and ν ∈ σ(B1), or

• µ ∈ σD(A1) and ν ∈ σ(B2), or
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• µ ∈ σ(A2) and ν ∈ σ(B1),

can be proved similarly.

Theorem 2.3. Let A,B ∈ L(H). If all the eigenvalues of A, B∗ are reduced by each of its eigenspaces, polaroid and
have Bishop’s property (β), then

ker(∆A,B − λI) ⊆ ker(∆A∗,B∗ − λI), ∀λ ∈ C.

Proof. Since A and B∗ are reduced by each of its eigenspaces, then then there exists

M1 =
∨
{ker(A − βI), β ∈ σp(A)} and M2 = H 	M1

on the one hand and
N1 =

∨
{ker(B∗ − αI), α ∈ σp(B∗)} and N2 = H 	N1

on the other hand such that A and B have the representations

A =

(
A1 0
0 A2

)
on H = M1 ⊕M2

and

B =

(
B1 0
0 B2

)
on H = N1 ⊕N2.

Recall from [14] that σ(∆A,B) = σ(A)σ(B) − {1}. We consider the following cases.
Case 1: If λ ∈ C\σ(∆A,B), the result is immediate.
Case 2: Ifλ ∈ isoσ(∆A,B) andλ , −1, then there exists finite sequences {µi}

n
i=1 and {νi}

n
i=1, whereµi ∈ isoσ(A)

and νi ∈ isoσ(B) such that
λ = µiνi − 1, for all 1 ≤ i ≤ n

Since the spectrum of A2 and the spectrum of B2 does not contains isolated points, then λ < σ(∆Ai,B j ) for all
1 ≤ i, j ≤ 2 other than i = j = 1. Let X ∈ ker(∆A,B − λI) such that

X : N1 ⊕N2 −→M1 ⊕M2 have the representation X = [Xkl]2
k,l=1.

Hence

(∆A,B − λI)(X) =

(
(∆A1,B1 − λI)(X11) (∆A1,B2 − λI)(X12)
(∆A2,B1 − λI)(X21) (∆A2,B2 − λI)(X22)

)
= 0.

Observe that ∆Ai,B j −λI is invertible for all 1 ≤ i, j ≤ 2 other than i = j = 1. Hence X22 = X21 = X12 = 0. Since
A1 and B1 are normal, it follows from Fuglede-Putnam theorem and [11, Theorem 2] that

1

1 + λ
A∗1X11B∗1 − X11 = 0,

consequently
X = X11 ⊕ 0 ∈ ker(∆A∗,B∗ − λI).

If λ = −1, we consider the case −1 ∈ isoσ(∆A,B), that is 0 ∈ isoσ(LARB), hence either 0 ∈ isoσ(A) and
0 ∈ isoσ(B) or 0 ∈ isoσ(A) and 0 < σ(B) or 0 ∈ isoσ(B) and 0 < σ(A). If 0 ∈ isoσ(A) and 0 ∈ isoσ(B).
Let X : N1 ⊕ N2 −→ M1 ⊕ M2, have the matrix representation X = [Xkl]2

k,l=1. If X ∈ ker(LARB), then(
A1X11B1 A1X12B2
A2X21B1 A2X22B2

)
= 0, it follows that X22 = X21 = X12 = 0, and A1X11B1 = 0, hence X11 ∈ ker LA∗1 RB∗1 .

Thus X ∈ ker(LA∗RB∗ ).
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If 0 ∈ isoσ(A) and 0 < σ(B), then B is invertible. Let X : N1⊕N2 −→M1⊕M2, have the matrix representation

X = [Xkl]2
k,l=1. If X ∈ ker(LARB), then

(
A1X11B1 A1X12B2
A2X21B1 A2X22B2

)
= 0, it follows that X22 = X21 = X12 = 0, and

A1X11B1 = 0, hence X11 ∈ ker LA∗1 RB∗1 . Thus X ∈ ker(LA∗RB∗ ).
The proof of the other remaining case can be proved similarly.
Case 3: If λ ∈ accσ(∆A,B) = (accσ(A)σ(B) − 1) ∪ (σ(A)accσ(B) − 1), and λ = −1 then 0 ∈ σ(A)accσ(B) or

0 ∈ accσ(A)σ(B). Since A and B are polaroid, then 0 ∈ accσ(A) = σD(A) and 0 ∈ accσ(B) = σD(B).

• If 0 ∈ σ(A1) and 0 ∈ σD(B1). Observe that LAi RB j is invertible for all 1 ≤ i, j ≤ 2 other than i = j = 1,
let X ∈ ker(LARB). Hence X12 = X21 = X22 = 0. Since A1 and B1 are normal, it follows from Fuglede-
Putnam theorem that

A∗1X11B∗1 = 0,

consequently
X = X11 ⊕ 0 ∈ ker(LA∗RB∗ ).

• If 0 ∈ σ(A1) and 0 ∈ σ(B2). Let X ∈ ker(LARB), then X22 = X21 = X11 = 0. We have A1X12B2 = 0 this
implies that A1X12 = 0. Since A1 is normal, then A∗1X12 = 0, consequently A∗1X12B∗2 = 0. Hence

X =

(
0 X12
0 0

)
∈ ker(LA∗RB∗ ).

• If 0 ∈ σ(A2) and 0 ∈ σD(B1), this case can be proved similarly as the precedent one.

• If 0 ∈ σ(A2) and 0 ∈ σ(B2). Let X ∈ ker(LARB), then X12 = X21 = X11 = 0. Since A2 and B∗2 are injective,
then X22 = 0. Hence

X = 0 ∈ ker(LA∗RB∗ ).

Case 4: If λ ∈ accσ(∆A,B) = (accσ(A)σ(B) − 1) ∪ (σ(A)accσ(B) − 1) and λ , −1, then there exists µ ∈ σ(A)
and ν ∈ σ(B) such that λ = µν ∈ (σ(A)accσ(B) − 1) or λ = µν ∈ (accσ(A)σ(B) − 1).

• If µ ∈ σ(A1) and ν ∈ σD(B1). Observe that ∆Ai,B j − λI is invertible for all 1 ≤ i, j ≤ 2 other than i = j = 1,
let X ∈ ker(∆A,B − λI). Hence X12 = X21 = X22 = 0. Since A1 and B1 are normal, it follows from
Fuglede-Putnam theorem and [11, Theorem 2] that

1

1 + λ
A∗1X11B∗1 − X11 = 0,

consequently
X = X11 ⊕ 0 ∈ ker(∆A∗,B∗ − λI).

• Ifµ ∈ σ(A1) and ν ∈ σ(B2). Let X ∈ ker(∆A,B−λI), then X22 = X21 = X11 = 0 and A1X12B2−(1+λ)X12 = 0.
Let x is any vector in N2, then X12x ∈M1, hence X12x =

∑
anϕn, whereϕn are the eigenvector associated

to the eigenvalue µn of the normal operator A1 (A1ϕn = µnϕn). Note that

B∗2X∗12(A∗1 − µn)ϕn − (1 + λ − µnB∗2)X∗12ϕn = 0,

which implies that X∗12ϕn = 0, since σp(B∗2) = ∅. Thus ‖X12x‖2 = 〈X12x,
∑

anϕn〉 = 〈x,
∑

anX∗12ϕn〉 = 0,
whence X12 = 0 and

X = 0 ∈ ker(∆A∗,B∗ − λI).

• If µ ∈ σ(A2) and ν ∈ σD(B1), this case can be proved similarly as the precedent one.
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• If µ ∈ σ(A2) and ν ∈ σ(B2). Since A has property (β) it follows from [6, Remarks 3.2] that A2 has
property (β), applying [1, Theorem 2.20] we get H0(A2 − µ) is closed and from [22, Proposition 1.2.20]
That σ(A2|H0(A2−µ)) ⊆ {µ}. If σ(A2|H0(A2−µ)) = ∅, then H0(A2 − µ) = {0}, the case σ(A2|H0(A2−µ)) = {µ}
is not possible, since the spectrum of the operator A2 does not contains isolated points. Hence
H0(A2 − µ) = {0}, we have X ∈ ker(∆A,B − λI), then X21 = X12 = X11 = 0 and A2X22B2 − (1 + λ)X22 = 0,
this implies that

(A2 − µ)X22(B2 − ν) + ν(A2 − µ)X22 + µX22(B2 − ν) = 0.

if t ∈ H0(B2 − ν), then X22t ∈ H0(A2 − µ) = {0}. Hence X22t = 0. Since t ∈ H0(B2 − ν), using properties of
quasinilpotent part, we get (B2 − ν)(t) ∈ H0(B2 − ν), consequently N2 = H0(B2 − ν). So X22 = 0, hence

X = 0 ∈ ker(∆A∗,B∗ − λI).

The other cases can be proved similarly.

Theorem 2.4. Suppose that A,B∗ ∈ L(H) are reduced by each of its eigenspaces, polaroid and have Bishop’s property
(β), then R(dA,B − λI) is orthogonal to ker(dA,B − λI), for all λ ∈ C.

Proof. Follows from [10, Lemma 4]

Corollary 2.5. [12, Lemma 2.1] Suppose that A,B∗ ∈ L(H) are p-hyponormal or log-hyponormal, then

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI), ∀λ ∈ C

Corollary 2.6. [9, Lemma 2.4] Let A,B∗ ∈ L(H) be w-hyponormal operators such that ker A ⊆ ker A∗ and ker B∗ ⊆
ker B, then

ker dA,B ⊆ ker dA∗,B∗ .

Corollary 2.7. [5, Theorem 3.6],[13, Lemma 2.4] Let A,B∗ ∈ L(H) be w-hyponormal operators such that ker A ⊆
ker A∗ and ker B∗ ⊆ ker B, then

ker δA,B ⊆ ker δA∗,B∗ .

Corollary 2.8. [13, Theorem 2.5] Let A,B∗ ∈ L(H). If A ∈ A(s1, t1) and B∗ ∈ A(s2, t2), 0 < s1, s2, t1, t2 ≤ 1 are such
that ker A ⊆ ker A∗ and ker B∗ ⊆ ker B, then

ker δA,B ⊆ ker δA∗,B∗ .

As a nice application of our main results the Fuglede Putnam theorem for k-quasi-class A operators
which contains all the precedent classes of operators.

Theorem 2.9. Let A,B∗ ∈ LH) be k-quasi-class A operators, then

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI),

for all non null complex number λ.

Proof. We know from [18, Theorem 2.4] that k-quasi-classA operators are polaroid and from [26, Lemma 11]
that k-quasi-classA operators have Bishop’s property (β). Since by [26, Lemma 13], A and B∗ are reduced
by each of its eigenspaces, then the conclusion follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.10. Let A,B∗ ∈ L(H) be k-quasi-classA operators such that ker A ⊆ ker A∗ and ker B∗ ⊆ ker B, then

ker dA,B ⊆ ker dA∗,B∗ .

Proof. The conditions ker A ⊆ ker A∗ and ker B∗ ⊆ ker B imply that 0 is normal eigenvalue of both A and B∗.
It follows from Theorem 2.2 and Theorem 2.3 that ker dA,B ⊆ ker dA∗,B∗ .
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