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Abstract. It is known that the power function f (t) = t2 is not matrix monotone. Recently, it has been
shown that t2 preserves the order in some matrix inequalities. We prove that if A = (A1, · · · ,Ak) and
B = (B1, · · · ,Bk) are k-tuples of positive matrices with 0 < m ≤ Ai,Bi ≤ M (i = 1, . . . , k) for some positive
real numbers m < M, then

Φ2
(
A−1

1 , · · · ,A
−1
k

)
≤

(
(1 + vk)2

4vk

)2

Φ−2(A1, · · · ,Ak)

and

Φ2
(A1 + B1

2
, · · · ,

Ak + Bk

2

)
≤

(
(1 + vk)2

4vk

)2

Φ2 (
A1]B1, · · ·Ak]Bk

)
,

where Φ is a unital positive multilinear mapping and v = M
m is the condition number of each Ai.

1. Introduction

Throughout the paper, assume that Mn := Mn(C) is the algebra of all n × n complex matrices and
I denotes the identity matrix. A Hermitian matrix A is called positive (denoted by A ≥ 0) if all of its
eigenvalues are nonnegative. If in addition A is invertible, then A is called strictly positive (denoted by
A > 0). For Hermitian matrices A,B ∈ Mn, the inequality A ≤ B means that B − A ≥ 0. If m is a real scalar,
then by m ≤ A we mean that mI ≤ A.

Let J ⊆ R be an interval. A continuous real function f : J → R is called matrix monotone if A ≤ B
implies that f (A) ≤ f (B) for all Hermitian matrices A and B whose eigenvalues are in J. A celebrated result
of Löwner–Heinz (see for example [9, 10]) asserts that f (t) = tr is matrix monotone for all 0 ≤ r ≤ 1. In fact
the converse is also true, if f (t) = tr is matrix monotone, then 0 ≤ r ≤ 1. This concludes that the power
function f (t) = tr does not preserve the matrix order in general except for 0 ≤ r ≤ 1. For example, A ≤ B

does not imply A2
≤ B2. To see this, it is enough to set A =

(
1 0
0 0

)
and B =

(
2 1
1 1

)
.
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However, there have recently been some works in which some operator inequalities are squared.
Moreover, it has been recently shown that the power function f (t) = tr preserves the order in some
matrix inequalities even if r ≥ 1. In this section, we take a look at these works.

A linear mapping Φ :Mn →Mp is called positive if Φ preserves the positivity, i.e., if A ≥ 0 inMn, then
Φ(A) ≥ 0 inMp and Φ is called unital if Φ(I) = I. Also Φ is said to be strictly positive if Φ(A) > 0 whenever
A > 0.

A continuous real function f : J→ R is said to be matrix convex if

f (λA + (1 − λ)B) ≤ λ f (A) + (1 − λ) f (B)

for all Hermitian matrices A,B with eigenvalues in J and all λ ∈ [0, 1]. Positive linear mappings have been
used to characterize matrix convex and matrix monotone functions. For example, it is well-known that a
continuous real function f : J → R is matrix convex if and only if the Choi–Davis–Jensen inequality [10]
f (Φ(A)) ≤ Φ( f (A)) holds true for every unital positive linear mapping Φ and every Hermitian matrix A
whose eigenvalues are in J. Two other special cases of this result are the Kadison inequality and the Choi
inequality, see [2, 10]:

Theorem 1.1. If Φ :Mn →Mp is a unital positive linear mapping, then

The Choi inequality Φ(A)−1
≤ Φ

(
A−1

)
(A > 0). (1)

The Kadison inequality Φ(A)2
≤ Φ

(
A2

)
.

In what follows, assume that m and M are positive real numbers such that 0 < m < M and A,B ∈ Mn
are matrices with 0 < m ≤ A,B ≤ M except where otherwise clearly indicated. Moreover, assume that
ξ =

(M+m)2

4Mm .
A counterpart to the choi inequality (1) has been presented by Marshal and Olkin [15] as follows:

Φ
(
A−1

)
≤ ξ Φ(A)−1. (2)

A similar result for the Kadison inequality (see [16]) holds true:

Φ
(
A2

)
≤ ξ Φ(A)2. (3)

The constant ξ is known as the Kantorovich constant. In addition, the inequalities of type (2) and (3), which
present reverse of some inequalities, are known as Kantorovich type inequalities. For a recent survey
concerning Kantorovich type inequalities the reader is referred to [17].

Regarding the possible squared version of (2), Lin [13] noticed that the inequality

Φ(A) + MmΦ
(
A−1

)
≤M + m (4)

holds for every unital positive linear mapping Φ. The inequality (4) turns out to be a tool for squaring
matrix inequalities. Using (4) Lin [13] showed that (2) can be squared:

Theorem 1.2. [13, Theorem 2.8] If Φ :Mn →Mp is a unital positive linear mapping, then

Φ
(
A−1

)2
≤ ξ2 Φ(A)−2. (5)

As pointed out by Fu and He [5], the inequality (5) and the matrix monotonicity of f (t) = ts (0 ≤ s ≤ 1)
imply that

Φ
(
A−1

)r
≤ ξr Φ(A)−r (6)

for every 0 ≤ r ≤ 2. In the case where r ≥ 2, it was shown in [5] that:
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Theorem 1.3. [5, Theorem 3] For every r ≥ 2

Φ
(
A−1

)r
≤

(
(M + m)2

4
2
r Mm

)r

Φ(A)−r. (7)

The matrix arithmetic–geometric mean inequality (the A-G mean inequality) (see for example [2, 10])
A]B ≤ A+B

2 implies that

Φ(A]B) ≤ Φ
(A + B

2

)
for every unital positive linear mapping Φ.

A converse of this inequality reads as follows (see [8])

Φ
(A + B

2

)
≤

√
ξ Φ(A]B) ≤ ξ Φ

(A−1 + B−1

2

)−1 . (8)

Lin [14] has tried to obtain an square version of (8) and proved that

Φ2
(A + B

2

)
≤ ξ2 Φ2(A]B) (9)

Φ2
(A + B

2

)
≤ ξ2 (Φ(A)]Φ(B))2.

In Section 2, we give an extension of (9) using positive multilinear mappings. As noticed in [5], utilizing
the Löwner-Heinz inequality, (9) can be extended as

Φr
(A + B

2

)
≤ ξr Φr(A]B) (10)

Φr
(A + B

2

)
≤ ξr (Φ(A)]Φ(B))r

for every 0 ≤ r ≤ 2. In the case where r ≥ 2, Fu and He [5] showed that

Theorem 1.4. [5, Theorem 4] If r ≥ 2, then

Φr
(A + B

2

)
≤

(
(M + m)2

4
2
r Mm

)r

Φr(A]B) (11)

Φr
(A + B

2

)
≤

(
(M + m)2

4
2
r Mm

)r

(Φ(A)]Φ(B))r.

It is well-known that the arithmetic mean is the biggest and the harmonic mean is the smallest among
symmetric means (see [11]). Fu and Hoa in [6] extended the inequalities (10) and (11) to arbitrary means
between harmonic and arithmetic means. If σ, τ be two arbitrary means between harmonic and arithmetic
means, then for every positive unital linear mapping Φ and 0 ≤ r ≤ 2 they proved that

Φr (AσB) ≤ ξr Φr(AτB) (12)
Φr (AσB) ≤ ξr (Φ(A)τΦ(B))r.

Also for r ≥ 2 they showed that

Φr (AσB) ≤
(

(M + m)2

4
2
r Mm

)r

Φr(AτB) (13)

Φr (AσB) ≤
(

(M + m)2

4
2
r Mm

)r

(Φ(A)τΦ(B))r.
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Similar results can be found in [18].
Let G(A1, · · · ,Ak) denote the Ando–Li–Mathias geometric mean of strictly positive Ai ∈ Mn (i = 1, . . . , k)

[1]. It is known that it satisfies in the arithmetic-geometric-Harmonic mean inequality:A−1
1 + · · · + A−1

k

k

−1

≤ G(A1, · · · ,Ak) ≤
A1 + · · · + Ak

k
. (14)

The converse of (14) is a Kantorovich type inequality (see [7]) which reads as

A1 + · · · + Ak

k
≤ ξ G(A1, · · · ,Ak) and G(A1, · · · ,Ak) ≤ ξ

(
A−1

1 + · · · + A−1
k

k

)−1

(15)

where Ai ∈ Mn with 0 < m ≤ Ai ≤M (i = 1, . . . k).
Lin [14, Theorem 3.2] proved that (15) can be squared:(A1 + · · · + Ak

k

)2

≤ ξ2 G(A1, · · · ,Ak)2. (16)

In almost all of the above results, the following two key lemmas have been utilized:

Lemma 1.5. [3] Let A,B ∈ Mn. If A,B ≥ 0, then

‖AB‖ ≤
1
4
‖A + B‖2

for every unitarily invariant norm ‖ · ‖ onMn.

Lemma 1.6. [2, Theorem 1.6.9] Let A,B ∈ Mn. If A,B ≥ 0 and 1 ≤ r < ∞, then

‖Ar + Br
‖ ≤ ‖(A + B)r

‖ (17)

for every unitarily invariant norm ‖ · ‖ onMn.

2. Positive Multilinear Mapping Inequalities

A mapping Φ :Mk
n :=Mn×· · ·×Mn →Mp is said to be multilinear if it is linear in each of its variable. A

multilinear mapping Φ :Mk
n →Mp is called positive if Ai ≥ 0 for i = 1, · · · , k implies that Φ(A1, · · · ,Ak) ≥ 0

and Φ is called unital if Φ(I, . . . , I) = I. [4].
Recently, an extension of the Choi inequality (1) has been presented in [4] for positive multilinear

mappings:

Lemma 2.1. If Φ :Mk
n →Mp is a unital positive multilinear mapping, then

Φ(A1, · · · ,Ak)−1
≤ Φ

(
A−1

1 , · · · ,A
−1
k

)
for all strictly positive matrices Ai ∈ Mn (i = 1, . . . k).

Moreover, a multilinear version of (2), which is a Kantorovich type inequality for positive multilinear
mappings, has also been presented in [4] as

Lemma 2.2. [4, Corollary 5.3] If Ai ∈ Mn (i = 1, . . . , k) are positive matrices with 0 < m ≤ Ai ≤ M for some
positive real numbers m < M and Φ :Mk

n →Mp is a unital positive multilinear mapping, then

Φ(A−1
1 , . . . ,A

−1
k ) ≤

(1 + v)2

4v
Φ(A1, . . . ,Ak)−1, (18)

where v = M
m is the condition number of each Ai.
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Unfortunately, there is an error in the above lemma. The Kantorovich constant (1+v)2

4v does not work in (18)
in general (see Remark 2.7). We give a correct form of (18) in the next lemma. The proof is quite similar to
that of [4, Corollary 5.3] and we omit the proof.

Lemma 2.3. Let Ai ∈ Mn (i = 1, · · · , k) with 0 < m ≤ Ai ≤ M for some positive real numbers m < M. If
Φ :Mk

n →Mp is a unital positive multilinear mapping, then

Φ(A−1
1 , · · · ,A

−1
k ) ≤

(1 + vk)2

4vk
Φ(A1, · · · ,Ak)−1, (19)

where v = M
m is the condition number of each Ai.

The following key lemma which is a direct conclusion of [16, Theorem 2.1] has an important role in obtaining
our main results.

Lemma 2.4. Let f be a positive strictly convex twice differentiable function on [m,M] with 0 < m < M and let
Ci ∈ Mn such that

∑k
i=1 C∗i Ci = I. If Ai ∈ Mn with 0 < m ≤ Ai ≤M (i = 1, · · · , k), then

k∑
i=1

C∗i f (Ai)Ci ≤ a f

k∑
i=1

C∗i AiCi + b f I ≤ α f

 k∑
i=1

C∗i AiCi

 , (20)

where a f =
f (M)− f (m)

M−m , b f =
M f (m)−m f (M)

M−m and α = maxm≤t≤M

{
a f t+b f

f (t)

}
.

Lemma 2.5. Let Ai ∈ Mn with 0 < m ≤ Ai ≤ M for some positive real numbers m < M (i = 1, · · · , k). If
Φ :Mk

n →Mp is a unital positive multilinear mapping, then

Φ(Ar
1, · · · ,A

r
k) ≤ arΦ(A1, · · · ,Ak) + brI (21)

for all r ≥ 1 and r ≤ 0 in which

ar =
Mkr
−mkr

Mk −mk
, br =

Mkmkr
−mkMkr

Mk −mk
.

Proof. Assume that Ai =
∑n

j=1 λi jPi j (i = 1, · · · , k) is the spectral decomposition of each Ai ∈ Mn for which∑n
j=1 Pi j = I. Put C( j1, · · · , jk) :=

(
Φ(P1 j1 , · · · ,Pkjk )

) 1
2 so that

∑n
j1=1

∑n
j2=1 · · ·

∑n
jk=1 C( j1, · · · , jk)∗C( j1, · · · , jk) = I.

It is well known that f (t) = tr is a positive strictly convex differentiable function on (0,∞). Then

Φ(Ar
1,A

r
2, · · · ,A

r
k) = Φ

 n∑
j=1

λr
1 jP1 j, · · · ,

n∑
j=1

λr
k jPkj


=

n∑
j1=1

n∑
j2=1

· · ·

n∑
jk=1

λr
1 j1
λr

2 j2
· · ·λr

k jk
Φ(P1 j1 , · · · ,Pkjk ) (by multilinearity of Φ)

=

n∑
j1=1

n∑
j2=1

· · ·

n∑
jk=1

C( j1, · · · , jk)
(
λ1 j1λ2 j2 · · ·λkjk

)r
C( j1, · · · , jk)

≤ ar

n∑
j1=1

n∑
j2=1

· · ·

n∑
jk=1

C( j1, · · · , jk)λ1 j1λ2 j2 · · ·λkjk C( j1, · · · , jk) + brI (by Lemma 2.4)

= ar

n∑
j1=1

n∑
j2=1

· · ·

n∑
jk=1

λ1 j1λ2 j2 · · ·λkjk Φ(P1 j1 , · · · ,Pkjk ) + brI

= arΦ(A1, · · · ,Ak) + brI.
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Now we give our first main result which is an square version of (19).

Theorem 2.6. Let Ai ∈ Mn with 0 < m ≤ Ai ≤ M for some positive real numbers m < M (i = 1, . . . , k). If
Φ :Mk

n →Mp is a unital positive multilinear mapping, then

Φ2
(
A−1

1 , · · · ,A
−1
k

)
≤

(
(1 + vk)2

4vk

)2

Φ−2(A1, · · · ,Ak) (22)

in which v = M
m is the condition number of each Ai.

Proof. Assume that the convex function f is defined on (0,∞) by f (t) = t−1. Applying Lemma 2.5 for r = −1
we get

ar =
−1

Mkmk
, br =

Mk + mk

Mkmk

and

Φ
(
A−1

1 , · · · ,A
−1
k

)
≤
−1

Mkmk
Φ(A1, · · · ,Ak) +

Mk + mk

Mkmk
I.

It follows that

Φ(A1, · · · ,Ak) + MkmkΦ
(
A−1

1 , · · · ,A
−1
k

)
≤Mk + mk. (23)

On the other hand Lemma 1.5 yields that

Mkmk
∥∥∥∥Φ(A1, · · · ,Ak)Φ

(
A−1

1 , · · · ,A
−1
k

)∥∥∥∥
≤

1
4

∥∥∥∥Φ(A1, · · · ,Ak) + MkmkΦ
(
A−1

1 , · · · ,A
−1
k

)∥∥∥∥2
. (24)

Combining (23) and (24) we obtain∥∥∥∥Φ(A1, · · · ,Ak)Φ
(
A−1

1 , · · · ,A
−1
k

)∥∥∥∥ ≤ (Mk + mk)2

4Mkmk
=

(1 + vk)2

4vk
.

Therefore

Φ2
(
A−1

1 , · · · ,A
−1
k

)
≤

(
(1 + vk)2

4vk

)2

Φ−2(A1, · · · ,Ak).

Remark 2.7. It should be remarked that the number k in the constant (1+vk)2

4vk is the best possible in (19) and so in
(22). To see this, consider the bilinear mapping Φ :M2

2 →Mp defined by Φ(A,B) = 〈x,diag(A)diag(B)x〉Ip, where
x = [1/

√
2, 1/

√
2]t
∈ C2. If A = B = diag(1, 2) so that v = 2, then

Φ
(
A−1,B−1

)
= 0.625Ip =

(1 + v2)2

4v2 Φ(A,B)−1.

Let Ai ∈ Mn with 0 < m ≤ Ai ≤ M for some real numbers m < M (i = 1, . . . , k). If Φ :Mk
n →Mp is a unital

positive multilinear mapping, then matrix monotonicity of f (t) = ts (0 ≤ s ≤ 1) and (22) imply that

Φr
(
A−1

1 , · · · ,A
−1
k

)
≤

(
(1 + vk)2

4vk

)r

Φ−r(A1, · · · ,Ak)

for every 0 ≤ r ≤ 2. By a similar technique used in the proof of Theorem 2.6 and Applying Lemma 1.6 one
can obtain the following result as a multilinear version of (7).



M. Kian, M. Dehghani / Filomat 31:20 (2017), 6473–6481 6479

Theorem 2.8. Let Ai ∈ Mn with 0 < m ≤ Ai ≤ M for some positive real numbers m < M (i = 1, . . . , k). If
Φ :Mk

n →Mp is a unital positive multilinear mapping and r > 2, then

Φr
(
A−1

1 , · · · ,A
−1
k

)
≤

(
(1 + vk)2

4
2
r vk

)r

Φ−r(A1, · · · ,Ak).

In [12] Lim and Pálfia established the notion of the matrix power means for k positive definite matrices
(k ≥ 3). First we recall some basic properties of matrix power means.

Assume that A = (A1, . . . ,Ak) is a k-tuple of strictly positive matrices in Mn and ω = (ω1, . . . , ωk) is a
k-tuple of positive scalars with

∑k
i=1 ωi = 1. The matrix power mean of A1, . . . ,Ak [12], denoted by Pt(ω;A),

is the unique positive invertible solution of the non-linear matrix equation

X =

k∑
i=1

ωi(X ]t Ai),

where t ∈ (0, 1] and X ]t A = X
1
2

(
X−

1
2 AX−

1
2

)t
X

1
2 is the t-weighted geometric mean of strictly positive

matrices X and A. If t ∈ [−1, 0), then put Pt(ω;A) := P−t(ω;A−1)−1, whereA−1 = (A−1
1 , . . . ,A

−1
k ). The matrix

power mean Pt(ω,A) interpolates between the weighted harmonic and arithmetic means. In particular, it
satisfies the inequality k∑

i=1

ωiA−1
i


−1

≤ Pt(ω,A) ≤
k∑

i=1

ωiAi (t ∈ [−1, 1] \ {0}). (25)

The Karcher mean of A1, . . . ,Ak, denoted by G(ω;A), is the unique positive invertible solution of the Karcher
equation

k∑
i=1

ωi log(X−1/2AiX−1/2) = 0.

It is known that the Karcher mean coincides with the limit of matrix power means as t → 0. For more
information on the matrix power mean the reader is referred to [12]. We are going to present an extension
of (9) for positive multilinear mappings.

Theorem 2.9. Let Φ :Mk
n →Mp be a unital positive multilinear mapping andA(i) = (A(i)

1 , . . . ,A
(i)
q ) (i = 1, . . . , k),

where 0 < m ≤ A(i)
j ≤ M for every i = 1, . . . , k and every j = 1, · · · , q and some positive real numbers m < M. Let

ω(i) =
(
ω(i)

1 , · · · , ω
(i)
q

)
be a weight vector of positive scalars with

∑q
j=1 ω

(i)
j = 1 for every i = 1, . . . , k. If t ∈ (0, 1], then

Φ2

 q∑
j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j


≤

(
(1 + vk)2

4vk

)2

Φ2
(
Pt

(
ω(1);A(1)

)
, . . . ,Pt

(
ω(k);A(k)

))
, (26)

where v = M
m is the condition number of each A(i)

j .

Proof. Utilizing Lemma 1.5 we have

Mkmk

∥∥∥∥∥∥∥Φ
 q∑

j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

Φ−1
(
Pt

(
ω(1);A(1)

)
, . . . ,Pt

(
ω(k);A(k)

))∥∥∥∥∥∥∥
≤

1
4

∥∥∥∥∥∥∥Φ
 q∑

j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

 + MkmkΦ−1
(
Pt

(
ω(1);A(1)

)
, . . . ,Pt

(
ω(k);A(k)

))∥∥∥∥∥∥∥
2

.
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Moreover,

Φ

 q∑
j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

 + MkmkΦ−1
(
Pt

(
ω(1);A(1)

)
, . . . ,Pt

(
ω(k);A(k)

))
≤ Φ

 q∑
j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

 + MkmkΦ
(
Pt

(
ω(1);A(1)

)−1
, . . . ,Pt

(
ω(k);A(k)

)−1
)

(by Lemma 2.1 )

≤ Φ

 q∑
j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

 + MkmkΦ

 q∑
j=1

ω(1)
j

(
A(1)

j

)−1
, · · · ,

q∑
j=1

ω(k)
j

(
A(k)

j

)−1


(by (25))

=

q∑
j1=1

· · ·

q∑
jk=1

ω(1)
j1
. . . ω(k)

jk

(
Φ

(
A(1)

j1
, · · · ,A(k)

jk

)
+ MkmkΦ

((
A(1)

j1

)−1
, · · · ,

(
A(k)

jk

)−1
))

≤

q∑
j1=1

· · ·

q∑
jk=1

ω(1)
j1
. . . ω(k)

jk
(Mk + mk) (by (23))

= Mk + mk.

Therefore∥∥∥∥∥∥∥Φ
 q∑

j=1

ω(1)
j A(1)

j , · · · ,

q∑
j=1

ω(k)
j A(k)

j

Φ−1
(
Pt

(
ω(1);A(1)

)
, . . . ,Pt

(
ω(k);A(k)

))∥∥∥∥∥∥∥
≤

(Mk + mk)2

4Mkmk
,

which is equivalent to (26).

Remark 2.10. Let Φ : Mn → Mp be a unital positive linear mapping and let A = (A1, · · · ,Aq) is a q-tuple of
matrices inMn with 0 < m ≤ Ai ≤M for some positive real numbers m < M. If ω = (ω1, · · · , ωq) is a weight vector
such that ωi ≥ 0 (i = 1, . . . , q) with

∑q
j=1 ωi = 1, then it follows from Theorem 2.9 that

Φ2

 q∑
j=1

ωiAi

 ≤
(

(1 + v)2

4v

)2

Φ2 (Pt (ω;A)) , (27)

where v = M
m . Tending t to zero, we get

Φ2

 q∑
j=1

ωiAi

 ≤
(

(1 + v)2

4v

)2

Φ2 (G (ω;A)) , (28)

where G (ω;A) is the Karcher mean of A1, · · · ,Aq. Inequality (28) is an extension of (9). Moreover, it follows from
(27) that the Kantorovich inequality

Φ

 q∑
j=1

ωiAi

 ≤ (M + m)2

4Mm
Φ (Pt (ω;A))

holds true.

Remark 2.11. Define a linear mapping Θ :Mn ⊕ · · · ⊕Mn →Mn ⊕ · · · ⊕Mn by

Θ




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Aq


 =

 q∑
j=1

ωiAi

 ⊗ Iq,
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where Iq is the identity matrix inMq. Then Θ is a unital positive linear mapping. Applying (5) to Θ concludes that

Θ2




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Aq


 ≤

(
(M + m)2

4Mm

)2

Θ−2




A−1
1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

q




That is q∑
j=1

ωiAi


2

≤

(
(M + m)2

4Mm

)2

 q∑

j=1

ωiA−1
i


−1

2

.

A special case of Theorem 2.9 gives an extension of (9) for multilinear mappings:

Corollary 2.12. Suppose that Ai,Bi ∈ Mn with 0 < m ≤ Ai,Bi ≤ M for some positive real numbers m < M
(i = 1, · · · , k). If Φ :Mk

n →Mp is a unital positive multilinear mapping, then

Φ2
(A1 + B1

2
, · · · ,

Ak + Bk

2

)
≤

(
(1 + vk)2

4vk

)2

Φ2 (
A1]B1, · · ·Ak]Bk

)
,

where v = M
m is the condition number of each Ai and Bi.
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[8] J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić
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