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Hassan Eltayeb Gadain®

?Mathematics Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract. In this work, combined double Laplace transform and Adomian decomposition method is
presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the
convergence proof of the double Laplace transform decomposition method applied to our problem. By
using one example, our proposed method is illustrated and the obtained results are confirmed.

1. Introduction

The one dimensional thermo-elasticity coupled system was one of the first domains in coupled field theory
that attracted the mathematicians. The thermo-elasticity problems occur in different fields of science and
engineering. linear and nonlinear problems, in physics, biology. Recently, many methods have been used
for solution of linear and nonlinear problem, for example, Adomian decomposition method (ADM) see:
[1-3, 7, 8]. In [9], the authors have solved a particular case of the given nonlinear problem by combining a
functional analysis and iteration method. The convergence of the decomposition method has been studied
by several authors see: [10-14]. The aim of this paper is to solve nonlinear singular one dimensional
thermo-elasticity coupled system by using the combine domain decomposition techniques and double
laplace transform methods and in addition, we will study the convergence analysis. Now, we recall the
following definitions which are given by [4-6]. The double Laplace transform is defined as:

LiL¢ [f(x,8)] = F(p,5) = fo e fo e~ f(x, dt dx, (1)

where x,t > 0 and p, s are complex values and further double Laplace transform of the first order partial
derivatives is given by

af(x,t)
X

L.L; [ >

]= PE(p,5) — F(0,9). @)
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Similarly, the double Laplace transform for second partial derivative with respect to x and ¢ is defined as
follows

Pf(x,t JF(0,
Lth[ ggc )] = PZF(P/S)—PF(O,S)—%,
P f(x, t dF(p,0
L ZE0| = er9 - srp0 - F82, ®

where L,L; double Laplace transform with respect to x, t. The following lemma is used in this paper.
Lemma 1.1. Double Laplace transform of the non constant coefficient first and second order partial derivative

ot” T ot” Torr’ T o’ T o’

and the function xf(x,t), x> f(x, t) and x" f (x, t) are given by

- Ve -Vl - w(%),
dd—;[svms)—vmm] = L (ng),

(-1)" j; [sV(p,s) - Vip,0)] = Lth(x"%), @
—%:SZU(PIS)_SU(prO)_8UgZ,0): = Lth(xgz—tZ),

(—1)2;—;:SZU(p,s)—sU(p,O)—aUgZ ’0): = Lth(ngz—t’;‘),

(1" ;Zn is2ll(p,s)—sll(p,0)—augz ’O)j = Lth(x”?;—tg) (5)

and

Ly (ef(x 1) = —dpéz 9),

LiL (2 h) = (17 dzl;:ﬁ’s),

LL@ e = 1yl ©

One can prove this lemma by using the definition of double Laplace transform in Eq.(1), Eq.(2) and Eq.(3).

2. Nonlinear Singular One Dimensional Thermo-Elasticity Coupled System

The main aim of this section is to discuss the use of modified double Laplace decomposition method for
solving singular one dimensional thermo-elasticity coupled system. We consider nonlinear singular one
dimensional thermo-elasticity coupled system with initial conditions in the form

Pu 1 8( 8u) dv
+

7o\ tre T fwh

dv 19 dv\, Pu
ot xox\"ox) " oxor

gx,t), t>0 (7)
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subject to
w0 = fie), 2OV,
[4 (x/ 0) = 91 (X) ’ (8)

where, the nonlinear term, (xugz) and - (xvgv) are called Bessel’s operators and f (x,t), g(x,t), fi (x),
f> (x) and g1 (x) are known functlon Multlplymg both sides of Eq.(7) by x we have

x@—i xuau 80 = (%, 1)
2 "o\ Max )t o = MY

dv 9 ( v\ ,du
xg—a(xva)+xm = xg(x,t). t>0 9)
Particular cases of equations belonging to the class of the model Eq.(9) can be found in [15, 16]. The method
consists of first applying the double Laplace transform (denoted by L. L;) to both sides of equation Eq.(9) and
single Laplace transform for Eq.(8) and by using the differentiation property of double Laplace transform
and lemmal, we obtain:

dUu(p,s)  dFi(p) dF2(p) dF(p,s) 1 o ( du 2 v
dp ) i s2dp i sqdp s_zLth ox\"Mox) T ax|’ 10
and
dV(p,s) _ dGi(p) dG(p,s) 1 d( dv (92
dp © sdp - sdp sl | o2 W05 &x&t ’ (1)
by applying the integral for both sides of Eq.(10) and Eq.(11) from 0 to p with respect p, we have
_ kP k@ 1 (7(dps) 1 [0 22 v
Up,s) = —t 2 + s—zj(; ap dp — 2 f L Lt P — (xNp) — dp, (12)
and
_ Gi(p) 1 (P(dG(p,s) 1 (7 P , u
V(pl S) - S + s L dP dp - E jo‘ LXL)‘ 5 ('XNZ) - & ot dpl (13)

where N; = u‘;—z and N, = o2 g5, the modified double Laplace decomposition methods (MDLDM) defines
the solution of the nonlinear singular one dimensional thermo-elasticity coupled as u (x, t) and v (x, t) by the
infinite series

u(x,t) = Z u, (x,t), v(xt)= Zvn (x,1). (14)
n=0 n=0

The nonlinear operators can be defined as follows

M:i@,m:i&, (15)
n=0 n=0

where A, and B, are denoted by:

1] d"
(d)\n NlZ(A un)l] Or BH:E[W

0o

NZ Z (An”n)

i=0

] . (16)
A=0
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Here some a few term of a domain’s polynomials A, and B, are given by:

Ay = uglipy

A1 = uglyy + Urlloyx

Az = Ugliyy + Uiy, + Usll, 17)
and

By = 0ovox

B = 0gu1x + U100«

Bs = gV + U101y + V200, (18)

by using double inverse Laplace transform for Eq.(12), Eq.(13) and use Eq.(14) and Eq.(15) we have

- P
L) = f1<x>+tf2(x)+L;1L;1[s%f0 (szsz/S))dp]
a7 [ 0
_LplleL_zj; Lfo{ﬁ[xﬁéA”] dp}

+L L L%LXLt [ fo ' [ﬁ% Y vn]de (19)

) P(d
Yeartnn =m0 |7 [T

n=0

and

ot [l s
+L; L [SLXLt NE axatZ”” dpl|. (20)

we define the following recursively formula:

P (d ’ 7
il + 20+ 1L [l f ( & S))dp

U = dp ’
1 (7(dG(p,s
w = g@+LUT S f ( ;Z ))dp]. 1)
0
and
a1 I 9
Up+1 (x,t) = —Lplle 5_2 Lth I:a x$ zAn dpl
L 0 n=0
Lol 9
o L [x25204dp:| (22)
L n=0
oalr I 9
R L | L"Lt[a["az's”ﬂdﬁl
L 0 n=0
Lol P
e Ll [xZWZun}dp‘. (23)
L n=0
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where L,L; double Laplace transform with respect to x, f and double inverse laplace transform denoted by
L, 111 with respect to p, s. Here we Provide double inverse laplace transform with respect to p and s exist
for each terms in the right hand side of Egs. (19) and (20). To confirm our method for solving the nonlinear

singular one dimensional thermo-elasticity coupled system, we consider the following example:

Example 2.1. Consider the following nonlinear singular one dimensional thermo-elasticity coupled system:

2
*u 1( &u) do 62,

— - |xu—| +x=—
oz «x ox ox

dv 1( v *u 5 04 5

E—;(xva)x+x% = 2x°t—8x°t* +2x7,
subject to

u(x,0)=0, a”((;;’ 0_ x%, v(x,0)=0.

By multiplying Eq.(24) by x and using Eq. (10), Eq. (11),Eq. (12)and Eq. (13) we obtain
2 241 (7 u , v
U(p,s) @ - ﬁ - 5_2 L‘ LyL; [(xua)x - (X a)] dp,
4 le4 4 1 (7 Jdv » %u
R e S
On using double inverse Laplace transform, we have

_ 2_124_ 17 -1 1fp du _ 2,9V
u(x,t) = x°t th Lp L, 2 | L.L; xu—gx i x = dp|,
and

_ 22 895 2, 1-1 11fp @ _ 2 O
v(x,t) = x°t 5xt + 2x°t Lp L; 5o L.L; xv(;xJC x_8x3t dp].

By using equation Eq.(19) and Eq.(20), we obtain

and

o)

) ! N A Y B
L, Uy (x, 1) x“t 2xt Lp L; 2, L.L; Ep xax A,
1 (7 0 w
-17-1 2'
+LP1L5 [S_Zfo‘ L,L; |:x2a Un}dp]
8 1 (7 o[ 9 v
2,2 9 2.5 2, r-17-1|2 91.9
P = 2 + 20 - L [sfoLth[&x(xaxz Bn”dp]

(e8]

171 lfp 2 9
+L; L [S L || 3x3f,;;u" dp|,

and

i v, (x, 1)

n=0

(24)

(25)

(26)

27)

(28)

(29)

(30)

(31)

where A, and B,, are A domain polynomials given by equations Eq.(16). By using equations Eq.(21),Eq.(22) and

Eq.(23) we have

1

2 2.4

x°t— —x°t
2

Up

8
vy = X - 5x2t5 + 2x°t.

(32)
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The other components are given by

1 o[ 9 ¢
1
Upy1 = —L,°L [ZL Lth[g(x$nX=‘aAn] dp
1 (7 PR
~17-1| L 20
+L; L [52 fo L.L, [x ax;vnldp (33)
and
1 (7 o o )]
_ 71712 21,2
v = -Ly'L; [S fo Lth{ax [xax;Bn] dp]
1 (7 ’
1711 2
+L;L; (S j; L.L: l[x _axatéu”ﬂ dp]. (34)
By applying Eq. Eq.(17), Eq.(18) , we obtain
ol 45y 1 500 205
u, = 2xt 35xi,‘+45xt‘ 3xt
v = gx2t5 - 15—6x2t8 +9x%tt — %xzﬂ + %xzt3 + %xzt‘11 —2x%t, (35)
and
4 57 2 540, 10628 ;45 43 56 262 59 16 55 2 53
= 2 0 2 a0 T2 2 4 S
T T T VT T
and
oy = 1625 20450 248 5, 70883 5 688 ny 3072 5
5 275 7 1575 9 385
59392 53248 1024 65536
0244 2,8 2,9 3 2,5 2,17
9x°t +—1925x 15 x2t2 = 20x%¢ +—15 X —23375xt

It is obvious that the self-cancelling some terms appear between various components and connected by coming terms,
we have

ulx,t) =ug+uy +...+u, andov(x,t) = vy + 01 + ... + v,.
Therefore, the exact solution is given by
u(x,t) =x%, v(xt) =x*

By extending Eq.(7) as follows

Pu 19, du v

W‘—a—( ax)“‘a = S,

dv 19 dv u

5 xzax( ax)”m = 90, (36)

subject to Eq.(8) and where f (1), g (v) are nonlinear functions. By using our method, we have

0 = L[ [ [ [ 2
+S_2f0fOLth[f(u)]dpders—szfOLth|8 (x ug—)]dpdp
S s ”
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%ffpdel(p)dd += ffLLt [9(0)] dpdp
YT
2T Puefezo .

by taking double inverse Laplace transform for Eq.(37) and Eq.(38) we get

and

v(p,s)

i = (L[ [ i1 [ [
i ([ [ Luisonam)
+L, 'L (S%fo fo L Lt[;x (x ug—)]dpdp)
_L;ngl(Slz fo ’ fo pLth [(x?’%)]dpdp) (39)
and
v(y,t) = L,'L;" ( f fp LSl (p) )+L;1L5‘1(§ fopfopL,th[g(v)]dpdp)

ot [ [l
sl [ Lzl -

then the solution of Eq.(36) is given by

P 42 P (P 42
o e [ [ [
+L;1Lg1(—2f f Lth[f(u)]dpdp)

Uppr (x, 1) = ( ffLLt{ [x_ZAn dpdp]
n=0
_441f T2
L,'L; {32 |« 8an=:;v" dpdp |, (41)
and
B I lfp fp d2G1 (P) e lfp fﬁ

vy (x, 1) = L, L (s ) —dp2 dpdp|+L, L, 5o Jo LyL;[g(v)] dpdp
On+1 (x/t) =

—1—11fpfp IARTA

L (S 5 xax;Bn dpdp
_—1—11fpfp Sy

L)L [S ] x&&tz_‘un dpdp|. (42)
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3. Convergence Analysis of the Method for the Nonlinear Singular One Dimensional Thermo-Elasticity
Coupled System

The aim of this section is to discuss our method for the nonlinear singular one dimensional thermo-
elasticity coupled system. We consider the general form of nonlinear singular one dimensional thermo-
elasticity coupled system with initial conditions is given by

2
-1 E () + = fw)
10 0 J
%1% (wR)+ 5 =90 43)
u(x,0)=0,29 - 0, 5(x,0)=0
u(x,T)=v(x,T)=0

The operators T, M, N, P, W and K which are continuous and self-adjoin satisfies:

(=Tu,u)
(—=Pu,v)

0, (-Mu,u) >0, (-No,u) >0

>
> 0, (-Fv,v) >0, (-Wov,v) >0,
and

(=Tu,u) = 0, (-Mu,u)=0, (-Nov,v)=0
(=Pu,v) = 0, (-Fo,v)=0, (Wou,0)=0, (44)

if and only if u,v = 0, There exists a numbers 0, , f and 7 such that:

(1o , 1 ot ,
(_TM/ M) - (_Exlu)ﬂ > 0(”1/[” /(_Mu/u) (__x a 2 U ) > 611||u|| ’
1 9v? ) *u
(_‘IIU/U) - (_EEIU)U = T]”U” s (PM, U) - (xm/U)Lz = (Sﬁﬂ”u” ”U”/
1 0% )
(=Fv,v) = (_EXW,U)LZ > ap vl
No,u) = (x22,u) > nalollul (45)
’ B ox"" )~ L ’

for all u,v € H. We define H as H = Lfl((a, b)x [0, T]), where a < 0 and

(u,v) : (a,b)x[0,T] > Rx R, with ||u||%1 = fxu2 (x, £) dxdt

Q
(u,0) = f xu (x, £) v (x, £) dxdt
Q
where Q = (a,b) x [0, T] and
H= (1,0) : (a,b) x [0, T), with
= { L;lLs—l [SLZ fop LyL; [u (JC, t)] (p, S) dp] (x, t) < 00 }

Now we rewrite Eq.(43) as follows

Pu 1?1 Pu? dv

SE “2ox 2 aw TYax T MW
dv 1dv* 1 82 2 u
xat 2 dx 2 o2 ”m xg (0). (46)
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For L and R are hemicontinuous operator, consider the following hypothesis:
1. (H1)
(L(u,0)-Luww),u-w) > kiu-wl;
(R(u,v) —R(v,w),v—w) > klv- wl?; k>0,Yu,o,weH
2. (H2) whatever may be m > 0, there exist a constant C (1) > 0 such that for u, w € H with [u]| < m, ||[w|| < m
we have:
(L (ul U) -L (ul ZU) s Z)
(R (u/ 'U) -R ('U, w) s Z)

C (m) llu — wll|lz]],

INIA

C(m)[lo = wll ||zl
foreveryz € H

Theorem 3.1. (Sufficient condition of convergence )
Modified double Laplace decomposition methods for the nonlinear singular one dimensional thermo-elasticity coupled
system as follows.

%u 10u®? 1 J*u? v

YO T oar tatom Y W
v 1002 1 0%0? u
T 2ax T2 0 Yo T (47)

with homogenous initial condition, converges towards a particular solution.

Proof. For the equation Eq.(47) Let

u 1 du? 1 %u? dv
S(M,U) Xﬁ,—T(M)——Eﬁ,—M(M)——EXﬁ,N(U)—Xa
dv 1 9v? 1 82 2 %u
D(urv) - xﬁ/_\p(v)__zgl_l:‘(v) 2 a 2/P( ) xa at
we have
10u?2 1 *u®2 v
Lo = =350 T3%%e Py W
1902 1 %2 82u
Rwo) = =55y =252 Vo WO

We will start to verify the convergence hypotheses (H1), we use the definition of our operator L and R, and
the conditions in Eq.(45) we have the following form

2
L(wu,v)-LWuw) = —1(i(u2—w2)) ;;xZ(u —wz)+x(i(v—w))—x(f(u)—f(w))

R(u,v)—R(v,w) = -=

|
—_
—_——
|Q)
~~~
N
|
N
N—
SN —
|
=
|Q,»
N
S|
N

-0 4x( 50 (- -2 - gw) )
then we get
(L(u,v)—Lu,w),u—w) = (—%%(u2—wz),u—w)+(—%x%<u2—w2),u—w)

+(x(§ <v—w)),u —w) +(=x(F ) = f@)) 1 - ) (49)
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and
(R(u,v) - R(v,w),v—w) = (_%(%(02_w2))lv_w)+(_%x5—;(02—w2),0—w)
2
+(x(%(u—w)),v—w)+(—x(g(v)—{7(w))zv_w) (50)
(_%;—x@z—wz),u—w) > alu-w|?,
1 82 2 2 2
(—Exﬁ(u —w),u—w) > dallu—wl| (61)
and
(x(%(v—w)),u—w)Znallv—wHHM—wH (52)

where 0 > 0 as f is Lipschitzian function, we have:

(x(fw) = f@),u-—w) < |px(f@) - f @) llu-wl

A

< el | f () = £ @)||llu = wll
< aollu-wlf? e (53)
(—x(f(w) - fw),u—w) > —aollu- wl?

substituting Eq.(51), Eq.(52) and Eq.(53) into equation Eq.(49) gives

(L(u,v)-Lu,w),u—w) > (a+ad—ao)lu- wII2 +an|lv —w|||lu — wl|
> (a+abd—ao)|u—wl?
kllu — wl?

where k = a + a6 — a0 > 0 = ¢ > %2 In the same manner we get

(e st = oot
2
( ;x;? (vz—wz),v—w) > apllv—wll2 (54)
and
22 )
(x(m(u—W)),v—W) > opalu —wll |lv — wl| (55)

where 01 > 0 as g is Lipschitzian function, we have:

(x (7 @) - gw),v-w) < |x(g@) —g@)|lo-wl

< dl]|(g @) = g @))|| Il = wl|

< adyflo - wl? & (56)
(—x(9(0) - gw)),0—w) > —adyllo—w|]
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substituting Eq.(54), Eq.(55) and Eq.(56) into equation Eq.(50) gives

Rw,v)-R@w),v-—w) = (n+ap—ad)llv- wl| + opallu — wl||lv — wl|

(n+ap —ady) |lo - wl
kllo — w|?,

[\

n+ap

wherek = (n+ap —ad1) > 0= > 01. Now we verify the convergence hypotheses (H2) for the operator
L(u,v), for every m > 0, there exist a constant C (1) > 0 such that for u,v € H

(L(u,v) = L(u,w),z) < CM)|lu—wl|l |zl

for every w € H. We now verify hypothesis H2 for the operator L(u,v) and R (u,v). Using the Schwartz
inequality and the fact that # and v are bounded, we obtain the following;:

(L(u,v)—Lu,w),z) = (% (% (;—xuz—wz)) z)—(x(%—&a—zj),z)+(x(f(u)—f(w)),z) (57)

(=)o) = o —))

+

Izl

2

1 0
u —w §x8x2(u —w)

Izl

|25

o Lafe-w+ ol -

< el il + o)l
+3a8  = @) e+ )l el
< (ma+mad) l|(u = w)ll|12]
and
M(%-5) ) < anto-nte,
dx  Ox

(e (f () = f(w)), u—w) [l (f ) = £ @))|| 1zl

ao |lu — wl|{|z]|

IA A

Again, by the Schwartz inequality we get

(L(w,v)-Lu,w),z) < (ma+mad+ao)l|lu—w||z||-anlo-wl|l:zl
< (ma+mad + ao) |lu — w||||zl|
= CM) lu - wil|lzll

where
C (M) = ma + mad + ac

in the same manner we have

(R(u,v) — R(v,w), z) (n+ap +ady) llo — wlllzll = 6palv — w]| |||l
(mn + map + ad1) |lv — w|| ||zl

C(M) |l — wll ||zl

IANIA
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where
C (M) = mn + map + ad

This completes the proof. [J

Conclusion 3.2. In this work firstly the double Laplace transform which is based on the Adomian decomposition
method is used for solving the nonlinear singular one dimensional thermo-elasticity coupled system. The results
show that the new modification of double Laplace decomposition method is a powerful mathematical tool for solving
nonlinear singular one dimensional thermo-elasticity coupled system. finally, we presented a convergence proof of the
(MDLDM) applied to the nonlinear singular one dimensional pesudo thermo-elasticity coupled system.

Acknowledgement: The author also thank the referee for very constructive comments and suggestions.
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