
Filomat 31:20 (2017), 6293–6305
https://doi.org/10.2298/FIL1720293P

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. By using the residual implication on a frame L, we develop a theory of separation axioms in
the category of stratified L-generalized convergence spaces in the spirit of Lowen, i.e., we define for each
space some degrees of fulfilling T0, T1, T2 and regularity axioms from a logical aspect. These degrees of
separation axioms generalize the theory of separation axioms in the sense of Jäger.

1. Introduction

Separation is certainly one of the most important properties of topological spaces. Usually, separation
axioms are defined by separating different points with open sets, or separating point and open set with open
sets. As we all know, axiomatic filter convergence spaces (convergence spaces, in short) have more general
sense than topological spaces. Convergence spaces not only possess desirable categorical properties, such
as Cartesian-closedness, but also have close relations with topological spaces from a categorical aspect [26].
Moreover, separation axioms in topological spaces can also be characterized by its induced convergence
structures. Actually, for convergence spaces, where axiom schemes based on convergence of filters are used,
we can use the nice characterization of separation axioms by filter convergence as definitions of separation
axioms.

With the development of lattice-valued topology, many researchers extended convergence structures
to the lattice-valued case and studied its categorical properties and topological properties, such as Jäger
[8–10], Fang [2, 3, 28], Yao [29, 30], Li [14, 15], Pang [20–25]. In the situation of stratified L-topology, Min
[19] proposed the concept of fuzzy convergence structures (called fuzzy limit structures in [19]) by using
fuzzy prefilters and proved that the resulting category is Cartesian closed and can contain the category of
stratified I-topological spaces as a reflective subcategory. Later, Lowen et al. [17, 18] introduced the concept
of fuzzy convergence structures by means of fuzzy prime filters. Afterwards, Lee [11–13] defined a kind of
fuzzy convergence structures by relaxing the axiomatic conditions of fuzzy convergence structures in the
sense of Min and investigated the separation axioms in the resulting fuzzy convergence spaces. In 1997,
Jäger gave a new definition of fuzzy convergence structures [6] and discussed separation axioms in the
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corresponding fuzzy convergence spaces [7]. Based on stratified L-filters, Jäger [8] proposed a new kind of
fuzzy convergence structures, which is called stratified L-generalized convergence structures (also called
lattice-valued convergence structures in [9]). Later, in [10], Jäger introduced T1, T2 and regularity axioms in
stratified L-generalized convergence spaces and showed T1 and T2 axioms in this case are compatible with
those in stratified L-topological spaces [5].

This paper goes in a more general direction and is in the spirit of Lowen [16], i.e., we do not only ask if
a stratified L-generalized convergence space satisfies T1, T2 and regularity axioms or not, but we measure
the degree to which it fulfils these properties by using the residual implication on the lattice background.
These separation degrees for stratified L-generalized convergence space cover as special case the separation
axioms in the sense of Jäger [10] from a logical aspect.

2. Preliminaries

We consider in this paper complete lattice L where finite meets distributive over arbitrary joins, i.e.,
a∧

∨
j∈J b j =

∨
j∈J(a∧b j) holds for all a, b j ( j ∈ J). These lattices are called frames (or complete Heyting algebras).

The smallest element and the largest element in L are denoted by⊥ and>, respectively. We can then define
a residual implication by

a→ b =
∨
{c ∈ L : a ∧ c 6 b}.

We will often use, without explicitly mentioning, the following properties of the residual implication.

Lemma 2.1. ([5]) Let L be a complete Heyting algebra. The following statements hold:
(H1) > → a = a.
(H2) a 6 b i f and only i f a→ b = >.
(H3) (a→ b)→ b > a.
(H4) (a ∧ b)→ (a ∧ c) > b→ c.
(H5) (a→ b)→ (a→ c) > b→ c.
(H6) a→

∧
j∈J a j =

∧
j∈J(a→ a j), hence a→ b 6 a→ c whenever b 6 c.

(H7)
∨

j∈J a j → b =
∧

j∈J(a j → b), hence a→ c > b→ c whenever a 6 b.

For a nonempty set X, LX denotes the set of all L-subsets on X. The smallest element and the largest
element in LX are denoted by ⊥ and >, respectively. For each a ∈ L, a denotes the constant map X −→ L,
x 7−→ a.

Definition 2.2. ([1, 2])The map S(−,−) : LX
× LX

−→ L defined by

∀C, D ∈ LX, S(C,D) =
∧
x∈X

(
C(x)→ D(x)

)
is called the fuzzy inclusion order of L-subsets.

Definition 2.3. ([4])A map F : LX
−→ L is called a stratified L-filter on X if it satisfies

(F1) F (⊥) = ⊥,F (>) = >;
(F2) A 6 B =⇒ F (A) 6 F (B);
(F3) F (A ∧ B) > F (A) ∧ F (B);
(Fs) a ∧ F (A) 6 F (a ∧ A).

The family of all stratified L-filters on X will be denoted byF s
L (X). For every x ∈ X, [x] ∈ F s

L (X) is defined
by [x](A) = A(x) for all A ∈ LX.

Let f : X −→ Y be a map and F be a stratified L-filter on X. Define f→ : LX
−→ LY and f← : LY

−→ LX

(see [27]) by f→(A)(y) =
∨

f (x)=y A(x) for A ∈ LX and y ∈ Y, and f←(B) = B ◦ f for B ∈ LY, respectively. Then
the map f⇒(F ) : LY

−→ L defined by f⇒(F )(A) = F ( f←(A)) for A ∈ LY, is a stratified L-filter on Y, which is
called the image of F under f (see [5]).
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On the set F s
L (X) of all stratified L-filters on X, an order 6 defined by F 6 G if and only if F (A) 6 G(A)

for all A ∈ LX, was introduced in [5]. For a nonempty family {Fλ}λ∈Λ of stratified L-filters, the infimum∧
λ∈Λ Fλ is given by (

∧
λ∈Λ Fλ)(A) =

∧
λ∈Λ Fλ(A) for all A ∈ LX. In order to guarantee the least upper bound

for a family {Fλ}λ∈Λ, Höhle and Šostak presented the following lemma.

Lemma 2.4. ([5]) For a family {Fλ}λ∈Λ of stratified L-filters on X, there exists a stratified L-filterF such thatFλ 6 F
(∀λ ∈ Λ), if and only if

Fλ1 (A1) ∧ · · · ∧ Fλn (An) = ⊥ whenever A1 ∧ · · · ∧ An = ⊥,

for n ∈ N, A1, · · · ,An ∈ LX, {λ1, · · · , λn} ⊆ Λ. In the case of existence, the supremum
∨
λ∈Λ Fλ of a family {Fλ}λ∈Λ

of stratified L-filters is given by∨
λ∈Λ

Fλ

 (A) =
∨
n∈N

∨
{Fλ1 (A1) ∧ · · · ∧ Fλn (An) | A1 ∧ · · · ∧ An 6 A}

for all A ∈ LX.

In [8], Jäger also proved that given a map f : X −→ Y and a stratified L-filter F on Y, the map
f⇐(F ) : LX

−→ L defined by
∀A ∈ LX, f⇐(F )(A) =

∨
f←(B)6A

F (B)

is a stratified L-filter if and only if F (B) = ⊥whenever f←(B) = ⊥ for all B ∈ LY. In the case f⇐(F ) ∈ F s
L (X),

it is called the inverse image of F under f .
In [8], Jäger proposed that the product

∏
λ∈Λ Fλ of a family of stratified L-filters {Fλ}λ∈Λ, where for each

λ ∈ Λ, Xλ is a nonempty set and Fλ ∈ F s
L (Xλ), is defined as follows:

∏
λ∈Λ

Fλ :=
∨
λ∈Λ

p⇐λ (Fλ) ∈ F s
L

∏
λ∈Λ

Xλ

 ,
where for each λ ∈ Λ, pλ :

∏
µ∈Λ Xµ −→ Xλ is the projection map.

Lemma 2.5. ([8]) Let {Xλ}λ∈Λ be a family of nonempty sets, pµ :
∏

λ∈Λ Xλ −→ Xµ the projection map, Fλ ∈ F s
L (Xλ)

(∀λ ∈ Λ) and F ∈ F s
L (

∏
λ∈Λ Xλ). Then the following statements hold:

(1)
∏

λ∈Λ p⇒λ (F ) 6 F .
(2) p⇒µ (

∏
λ∈Λ Fλ) > Fµ, ∀µ ∈ Λ.

(3) p⇒µ
(∏

λ∈Λ p⇒λ (F )
)

= p⇒µ (F ), ∀µ ∈ Λ.

Definition 2.6. ([8])A map lim : F s
L (X) −→ LX is called a stratified L-generalized convergence structure on

X if it satisfies:
(LGC1) ∀x ∈ X, lim[x](x) = >;
(LGC2) ∀F ,G ∈ F s

L (X), F 6 G implies limF 6 limG.
The pair (X, lim) is called a stratified L-generalized convergence space.

A map f : (X, limX) −→ (Y, limY) between stratified L-generalized convergence spaces is called continuous
provided that for all F ∈ F s

L (X), x ∈ X, limXF (x) 6 limY f⇒(F )( f (x)).

Definition 2.7. ([8]) Let ( fλ : X −→ (Xλ, limλ))λ∈Λ be a source. Then

Init(limλ)F =
∧
λ∈Λ

f←λ (limλf⇒λ (F )) (F ∈ F s
L (X))
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is the initial stratified L-generalized convergence structure on X. Especially, if X =
∏

λ∈Λ Xλ and pµ : X −→
Xµ are the projections onto Xµ, then we denote π-(limλ), defined by

∀F ∈ F
s

L (X),∀(xλ) ∈ X, π-(limλ)F ((xλ)) =
∧
λ∈Λ

limλp⇒λ (F )(xλ),

the product structure and call (X, π-(limλ)) the product space. In the case (ιA : A −→ (X, lim)) we call the
initial construction (A, lim |A) a subspace of (X, lim), where A ⊆ X and ιA : A −→ X is the inclusion map.

3. Degrees of T0 and T1

In this section, we define the degrees of T0 and T1. Then we study their relations and properties.

Definition 3.1. For a stratified L-generalized convergence space (X, lim), define the degree T0(X, lim) to
which (X, lim) is T0 as follows:

T0(X, lim) =
∧
x,y

(lim[y](x)→ ⊥) ∨ (lim[x](y)→ ⊥).

Definition 3.2. For a stratified L-generalized convergence space (X, lim), define the degree T1(X, lim) to
which (X, lim) is T1 as follows:

T1(X, lim) =
∧
x,y

(lim[y](x)→ ⊥) ∧ (lim[x](y)→ ⊥).

Remark 3.3. For a stratified L-generalized convergence space (X, lim), Jäger [10] defined T1 separation
axiom as follows:

(T1) ∀x, y ∈ X : lim[y](x) = > implies x = y.
It is easy to see that the definition of T1 in the sense of Jäger is exactly the case that T1(X, lim) = > in
Definition 3.2.

Obviously, the following theorem holds.

Theorem 3.4. For a stratified L-generalized convergence space (X, lim), T1(X, lim) 6 T0(X, lim).

The degrees of T0 and T1 are productive and inherited by subspaces:

Theorem 3.5. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces and if the family of maps
( fλ : X −→ Xλ) separates points (i.e. for x , y there is λ ∈ Λ such that fλ(x) , fλ(y)), then

(1)
∧
λ∈Λ T0(Xλ, limλ) 6 T0(X, Init(limλ)).

(2)
∧
λ∈Λ T1(Xλ, limλ) 6 T1(X, Init(limλ)).

Proof. The verifications of (1) and (2) are similar. We only prove (1).
Let m =

∧
λ∈Λ T0(Xλ, limλ) and n = T0(X, Init(limλ)). By Definitions 2.7 and 3.1, we have

m =
∧
λ∈Λ

∧
xλ,yλ

(limλ[yλ](xλ)→ ⊥) ∨ (limλ[xλ](yλ)→ ⊥)

and

n =
∧
x,y


∧
λ∈Λ

limλ[ fλ(y)]( fλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ[ fλ(x)]( fλ(y))→ ⊥


 .

In order to show m 6 n, take any x , y. Then there exists λ0 ∈ Λ such that fλ0 (x) , fλ0 (y). Hence,

m 6
(
limλ0 [ fλ0 (y)]( fλ0 (x))→ ⊥

)
∨

(
limλ0 [ fλ0 (x)]( fλ0 (y))→ ⊥

)
6

∧
λ∈Λ

limλ[ fλ(y)]( fλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ[ fλ(x)]( fλ(y))→ ⊥


By the arbitrariness of x and y, we obtain m 6 n, as desired.
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Corollary 3.6. If (A, lim |A) is a subspace of (X, lim), then T0(X, lim) 6 T0(A, lim |A) and T1(X, lim) 6 T1(A, lim |A).

Theorem 3.7. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces, then
(1)

∧
λ∈Λ T0(Xλ, limλ) = T0(

∏
λ∈Λ Xλ, π-(limλ)).

(2)
∧
λ∈Λ T1(Xλ, limλ) = T1(

∏
λ∈Λ Xλ, π-(limλ)).

Proof. We only prove (1). The verification of (2) is similar.
By Theorem 3.5, it follows that

∧
λ∈Λ T0(Xλ, limλ) 6 T0(

∏
λ∈Λ Xλ, π-(limλ)).

In order to prove the inverse, put m =
∧
λ∈Λ T0(Xλ, limλ) and n = T0(

∏
λ∈Λ Xλ, π-(limλ)). Then we have

m =
∧
λ∈Λ

∧
xλ,yλ

(limλ[yλ](xλ)→ ⊥) ∨ (limλ[xλ](yλ)→ ⊥)

and

n =
∧
x,y


∧
λ∈Λ

limλ[pλ(y)](pλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ[pλ(x)](pλ(y))→ ⊥


 .

For each λ0 ∈ Λ and xλ0 , yλ0 ∈ Xλ0 with xλ0 , yλ0 , take x, y ∈
∏

λ∈Λ Xλ such that pλ0 (x) = xλ0 , pλ0 (y) = yλ0

and pλ(x) = pλ(y) (∀λ , λ0). Then for each λ , λ0, it follows that

limλ[pλ(y)](pλ(x)) = limλ[pλ(x)](pλ(y)) = limλ[pλ(x)](pλ(x)) = >.

This implies that

n 6

∧
λ∈Λ

limλ[pλ(y)](pλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ[pλ(x)](pλ(y))→ ⊥


=

(
limλ0 [pλ0 (y)](pλ0 (x))→ ⊥

)
∨

(
limλ0 [pλ0 (x)](pλ0 (y))→ ⊥

)
=

(
limλ0 [yλ0 ](xλ0 )→ ⊥

)
∨

(
limλ0 [xλ0 ](yλ0 )→ ⊥

)
.

By the arbitrariness of λ0 and xλ0 , yλ0 , we obtain n 6 m, as desired.

Definition 3.8. A map f : (X, limX) −→ (Y, limY) between stratified L-generalized convergence spaces is
called a homomorphism provided that f and f−1 are bijective and continuous.

Lemma 3.9. Let f : (X, limX) −→ (Y, limY) be a homomorphism. Then for each F ∈ F s
L (X) and x ∈ X, limXF (x) =

limY f⇒(F )( f (x)).

Proof. Since f : (X, limX) −→ (Y, limY) and f−1 : (Y, limY) −→ (X, limX) are both continuous, we have

limXF (x) 6 limY f⇒(F )( f (x))
6 limX( f−1)⇒( f⇒(F ))( f−1( f (x)))
= limX( f−1

◦ f )⇒(F )(x)
= limXF (x),

as desired.

Theorem 3.10. If f : (X, limX) −→ (Y, limY) is a homomorphism, then
(1) T0(X, limX) = T0(Y, limY).
(2) T1(X, limX) = T1(Y, limY).
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Proof. (1) By Lemma 3.9, we have

T0(X, limX) =
∧

x1,x2

(limX[x2](x1)→ ⊥) ∨ (limX[x1](x2)→ ⊥)

=
∧

f (x1), f (x2)

(limY[ f (x2)]( f (x1))→ ⊥) ∨ (limY[ f (x1)]( f (x2))→ ⊥)

=
∧

y1,y2

(limY[y2](y1)→ ⊥) ∨ (limY[y1](y2)→ ⊥)

= T0(Y, limY).

(2) The verification is similar and we omit it.

4. Degrees of T2

In this section, we generalize the T2 separation axiom in the sense of Jäger [10] to more general case and
then investigate its properties.

Definition 4.1. For a stratified L-generalized convergence space (X, lim), define the degree T2(X, lim) to
which (X, lim) is T2 as follows:

T2(X, lim) =
∧
x,y

∧
F ∈F s

L (X)

(limF (x)→ ⊥) ∧ (limF (y)→ ⊥).

Remark 4.2. For a stratified L-generalized convergence space (X, lim), Jäger [10] defined T2 separation
axiom in the following form:

(T2) ∀F ∈ F s
L (X),∀x, y ∈ X : limF (x) = limF (y) = > implies x = y.

Observe that if T2(X, lim) = >, where T2(X, lim) is defined as in Definition 4.1, then it is exactly the definition
of T2 in the sense of Jäger.

Theorem 4.3. For a stratified L-generalized convergence space (X, lim), T2(X, lim) 6 T1(X, lim).

Proof. By Definition 4.1, we have

T2(X, lim) =
∧
x,y

∧
F ∈F s

L (X)

(limF (x)→ ⊥) ∧ (limF (y)→ ⊥)

6
∧
x,y

((
(lim[y](x)→ ⊥) ∧ (lim[y](y)→ ⊥)

)
∧

(
(lim[x](x)→ ⊥) ∧ (lim[x](y)→ ⊥)

))
=

∧
x,y

(lim[y](x)→ ⊥) ∧ (lim[x](y)→ ⊥)

= T1(X, lim),

as desired.

Corollary 4.4. If (X, lim) is a stratified L-generalized convergence space, then

T2(X, lim) 6 T1(X, lim) 6 T0(X, lim).

The degree of T2 are productive and inherited by subspaces:
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Theorem 4.5. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces and if the family of maps
( fλ : X −→ Xλ) separates points (i.e. for x , y there is λ ∈ Λ such that fλ(x) , fλ(y)), then∧

λ∈Λ

T2(Xλ, limλ) 6 T2(X, Init(limλ)).

Proof. For convenience, put m =
∧
λ∈Λ T2(Xλ, limλ) and n = T2(X, Init(limλ)). Then

m =
∧
λ∈Λ

∧
xλ,yλ

∧
Fλ∈F

s
L (Xλ)

(limλFλ(xλ)→ ⊥) ∨ (limλFλ(yλ)→ ⊥)

and

n =
∧
x,y

∧
F ∈F s

L (X)


∧
λ∈Λ

limλ f⇒λ (F )( fλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ f⇒λ (F )( fλ(y))→ ⊥


 .

Take any x , y. Then there exists λ0 ∈ Λ such that fλ0 (x) , fλ0 (y). Hence

m 6
∧

Fλ0∈F
s

L (Xλ0 )

(limλ0Fλ0 ( fλ0 (x))→ ⊥) ∨ (limλ0Fλ0 ( fλ0 (y))→ ⊥)

6
∧

F ∈F s
L (X)

(
limλ0 f⇒λ0

(F )( fλ0 (x))→ ⊥
)
∨

(
limλ0 f⇒λ0

(F )( fλ0 (y))→ ⊥
)

6
∧

F ∈F s
L (X)


∧
λ∈Λ

limλ f⇒λ (F )( fλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλ f⇒λ (F )( fλ(y))→ ⊥


 .

By the arbitrariness of x and y, we obtain m 6 n, as desired.

Corollary 4.6. If (A, lim |A) is a subspace of (X, lim), then T2(X, lim) 6 T2(A, lim |A).

Theorem 4.7. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces, then

∧
λ∈Λ

T2(Xλ, limλ) = T2

∏
λ∈Λ

Xλ, π-(limλ)

 .
Proof. By Theorem 4.5, it follows that

∧
λ∈Λ

T2(Xλ, limλ) 6 T2

∏
λ∈Λ

Xλ, π-(limλ)

 .
Conversely, put m =

∧
λ∈Λ T2(Xλ, limλ) and n = T2 (

∏
λ∈Λ Xλ, π-(limλ)) . Then

m =
∧
λ∈Λ

∧
xλ,yλ

∧
Fλ∈F

s
L (Xλ)

(limλFλ(xλ)→ ⊥) ∨ (limλFλ(yλ)→ ⊥)

and

n =
∧
x,y

∧
F ∈F s

L (X)


∧
λ∈Λ

limλp⇒λ (F )(pλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλp⇒λ (F )(pλ(y))→ ⊥


 .

For each λ0 ∈ Λ, xλ0 , yλ0 ∈ Xλ0 and Fλ0 ∈ F
s

L (Xλ0 ), take x, y ∈
∏

λ∈Λ Xλ such that pλ0 (x) = xλ0 , pλ0 (y) = yλ0

and pλ(x) = pλ(y) for all λ , λ0. Also, let Fλ = Fλ0 for λ = λ0 and Fλ = [pλ(x)] = [pλ(y)] for λ , λ0. Define
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F
∗ =

∏
λ∈Λ Fλ. Then

n 6

∧
λ∈Λ

limλp⇒λ (F ∗)(pλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλp⇒λ (F ∗)(pλ(y))→ ⊥


6

∧
λ∈Λ

limλFλ(pλ(x))→ ⊥

 ∨
∧
λ∈Λ

limλp⇒λ (Fλ)(pλ(y))→ ⊥


=

(
limλ0Fλ0 (xλ0 )→ ⊥

)
∨

(
limλ0Fλ0 (yλ0 )→ ⊥

)
.

By the arbitrariness of λ0, xλ0 , yλ0 and Fλ0 , we obtain n 6 m, as desired.

Theorem 4.8. If f : (X, limX) −→ (Y, limY) between stratified L-generalized convergence spaces is a homomorphism,
then T2(X, limX) = T2(Y, limY).

Proof. By Lemma 3.9, it is obvious and we omit it.

5. Degrees of Regularity

In this section, we endow each stratified L-generalized convergence space with some degrees of fulfilling
regularity and then investigate its relations with T1 and T2.

Definition 5.1. ([10])Let J be a set, G ∈ F s
L (J) and for all j ∈ J, F j ∈ F

s
L (X), we define for A ∈ LX,

F(·)(A) :
{

J −→ L
j 7−→ F j(A).

i.e., F(·)(A) ∈ LJ. Then the map G(F(·)) defined by

G(F(·))(A) = G(F(·)(A)) (A ∈ LX)

is a stratified L-filter on X. It is called the stratified L-diagonal filter of (G, (F j) j∈J).

Definition 5.2. For a stratified L-generalized convergence space (X, lim), define the degree Reg(X, lim) to
which (X, lim) is regular as follows:

Reg(X, lim) =
∧

J

∧
ψ

∧
G∈F s

L (J)

∧
j∈J

∧
Fj∈F

s
L (X)

∧
j∈J

limFj(ψ(j))→ S(limG(F(·)), limψ⇒(G))

 ,
where J is any set and ψ : J −→ X is any map.

Remark 5.3. For a stratified L-generalized convergence space (X, lim), if Reg(X, lim) = >, then we can in-
terpret it as follows:

∀J, ∀ψ : J −→ X, ∀G ∈ F s
L (J), ∀F j ∈ F

s
L (X) ( j ∈ J),∧

j∈J

limF j(ψ( j)) 6 S(limG(F(·)), limψ⇒(G)) =
∧
x∈X

limG(F(·))(x)→ limψ⇒(G))(x),

i.e., ∀x ∈ X, ∧
j∈J

limF j(ψ( j)) ∧ limG(F(·))(x) 6 limψ⇒(G))(x).

It is exactly the definition of regularity in the sense of Jäger [10].
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Lemma 5.4. ([10]) Let J be a set, G ∈ F s
L (X) and f : X −→ Y be a map. Then

G( f⇒(F(·))) = f⇒(G(F(·))).

Theorem 5.5. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces, then∧
λ∈Λ

Reg(Xλ, limλ) 6 Reg(X, Init(limλ)).

Proof. For convenience, put m =
∧
λ∈Λ Reg(Xλ, limλ) and n = Reg(X, Init(limλ)). By Definition 5.2, we have

m =
∧
λ∈Λ

∧
Jλ

∧
ψλ

∧
G∈F s

L (Jλ)

∧
j∈Jλ

∧
F
λ
j ∈F

s
L (Xλ)

∧
j∈Jλ

limλF
λ
j (ψλ( j))→ S(limλGλ(F λ

(·)), limλψ
⇒

λ (Gλ))


and

n =
∧

J

∧
ψ

∧
G∈F s

L (J)

∧
j∈J

∧
F j∈F

s
L (X)

(∧
j∈J

Init(limλ)Fj(ψ(j))→ S(Init(limλ)G(F(·)), Init(limλ)ψ⇒(G))
)

Take each J, ψ : J −→ X, G ∈ F s
L (J), F j ∈ F

s
L (X) (∀ j ∈ J). For each λ ∈ Λ, put Jλ = J, ψλ = fλ ◦ ψ, Gλ = G,

F
λ
j = f⇒λ (F j). Then by Lemma 5.4, we have

m 6
∧
λ∈Λ

∧
j∈J

limλ f⇒λ (F j)( fλ(ψ( j)))→ S(limλG( f⇒λ (F(·))), limλ f⇒λ (ψ⇒(G))


6

∧
j∈J

∧
λ∈Λ

limλ f⇒λ (F j)( fλ(ψ( j)))→
∧
λ∈Λ

S(limλG( f⇒λ (F(·))), limλ f⇒λ (ψ⇒(G))

=
∧
j∈J

Init(limλ)Fj(ψ(j))→
∧
λ∈Λ

S(limλG(f⇒λ (F(·))), limλf⇒λ (ψ⇒(G))

6
∧
j∈J

Init(limλ)Fj(ψ(j))→ S

∧
λ∈Λ

limλG(f⇒λ (F(·))),
∧
λ∈Λ

limλf⇒λ (ψ⇒(G))


=

∧
j∈J

Init(limλ)Fj(ψ(j))→ S

∧
λ∈Λ

limλf⇒λ (G(F(·))), Init(limλ)(ψ⇒(G))


=

∧
j∈J

Init(limλ)Fj(ψ(j))→ S
(
Init(limλ)(G(F(·))), Init(limλ)(ψ⇒(G))

)
.

By the arbitrariness of J, ψ, G and F j, we obtain m 6 n, as desired.

Corollary 5.6. If (A, lim |A) is a subspace of (X, lim), then

Reg(X, lim) 6 Reg(A, lim |A).

Corollary 5.7. If all (Xλ, limλ) (λ ∈ Λ) are stratified L-generalized convergence spaces, then

∧
λ∈Λ

Reg(Xλ, limλ) 6 Reg

∏
λ∈Λ

Xλ, π-(limλ)

 .
In classical convergence theory, regularity can also be characterized by closures of filters. In the lattice-

valued context, Jäger [10] generalized this concept and obtained so called α-closures of stratified L-filters.
Moreover, he introduced the regularity axiom with this concept. However, the lattice must be required to
be a complete Boolean algebra. The reason that we need this requirement is the following result.
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Lemma 5.8. ([10]) Let L be a complete Boolean algebra. For F ∈ F s
L (X), α ∈ L and A ∈ LX, let

F
α
(A) =

∨
{F (B) : B ∈ LX such that f or all G ∈ F s

L (X)with limG(x) > α, we have G(B) 6 B(x)}.

Then F
α
∈ F

s
L (X).

In this case, we call F
α

he α-closure of F . In the sequel, we will require that L be a complete Boolean
algebra.

The next theorem shows that Reg(X, lim) can be characterized by F
α
.

Theorem 5.9. Let (X, lim) be a stratified L-generalized convergence space. Then

Reg(X, lim) =
∧
α,β∈L

∧
x∈X

∧
limF (x)>β

(
(α ∧ β)→ limF

α
(x)

)
.

Proof. For convenience, put n =
∧
α,β∈L

∧
x∈X

∧
limF (x)>β

(
(α ∧ β)→ limF

α
(x)

)
and m = Reg(X, lim).

Firstly, we show m 6 n. Take any α, β ∈ L, x ∈ X and F ∈ F s
L (X) such that limF (x) > β. Then we define

J = {(G, y) : G ∈ F s
L (X), limG(y) > α}.

For j = (G, y) ∈ J, we define F((G,y)) = G and ψ : J −→ X by ψ((G, y)) = y. Then limF((G,y))(ψ((G, y))) =
limG(y) > α. We define a stratified L-filter κ ∈ F s

L (J) by

κ(a) =
∨

G(A)6a((G,y)),∀(G,y)∈J

F (a) (a ∈ LJ).

ThenF 6 κ(F(·)) andψ⇒(κ) = F
α
, which can be found in Lemma 7.2 [10]. Hence, limκ(F(·))(x) > limF (x) >

β. Then it follows that

m 6
∧

(G,y)∈J

limG(y)→ S(limκ(F(·)), limψ⇒(κ))

6
∧

α6limG(y)

limG(y)→ (limκ(F(·))(x)→ limψ⇒(κ)(x))

6 α→ (β→ limF
α
(x))

= (α ∧ β)→ limF
α
(x).

By the arbitrariness of α, β, x and F , we obtain m 6 n.
Secondly, we show n 6 m. Take any set J, ψ : J −→ X, G ∈ F s

L (J), F j ∈ F
s

L (X) for all j ∈ J. Then let
α =

∧
j∈J limF j(ψ( j)) and βx = limG(F(·))(x) for each x ∈ X. We first show

G(F(·))
α
6 ψ⇒(G).

If now B ∈ LX such that for allH ∈ F s
L (X) with limH(y) > α, we haveH(B) 6 A(y), then for all F j ∈ F

s
L (X),

it follows from α 6 limF j(ψ( j)) that F j(B) 6 A(ψ( j)) 6 ψ←(A)( j). Therefore,

G(F(·))(B) = G(F(·)(B)) 6 G(ψ←(A)) = ψ⇒(G)(A).
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From this we conclude G(F(·))
α
(A) 6 ψ⇒(G)(A). Hence we have

n 6
∧
x∈X

(α ∧ βx)→ limG(F(·))
α
(x)

=
∧
x∈X

α→ (βx → limG(F(·))
α
(x))

6
∧
x∈X

α→ (βx → limψ⇒(G)(x))

= α→
∧
x∈X

(βx → limψ⇒(G)(x))

= α→
∧
x∈X

(limG(F(·))(x)→ limψ⇒(G)(x))

= α→ S(limG(F(·)), limψ⇒(G))

=
∧
j∈J

limF j(ψ( j))→ S(limG(F(·)), limψ⇒(G)).

By the arbitrariness of J, ψ, G and F j, we have n 6 m. As a consequence, we obtain m = n, as desired.

Theorem 5.10. Let (X, lim) be a stratified L-generalized convergence space. Then

Reg(X, lim) ∧ T1(X, lim) 6 T2(X, lim).

Proof. Take any α ∈ J(L) with α 
 T2(X, lim). Then there exist x , y andF ∈ F s
L (X) such that α 
 limF (x)→

⊥ and α 
 limF (y) → ⊥. Since L is a complete Boolean algebra, we have α 6 limF (x) and α 6 limF (y).
Put

J1 = {G ∈ F s
L (X) : α 6 limF (y)}.

We define F 1
G

= G, ψ1 : J1 −→ X : G 7−→ y. Then it follows from α 6 limF (y) that F ∈ J1. For the point
filter [F ] ∈ F s

L (J1), we have

ψ⇒1 ([F ])(A) = [F ](ψ←1 (A)) = ψ←1 (A)(F ) = A(ψ⇒1 (F )) = A(y) = [y](A)

for all A ∈ LX, i.e., ψ⇒1 ([F ]) = [y]. Further,

[F ](F 1
(·))(A) = [F ](F 1

(·)(A)) = FF (A) = F (A).

This shows [F ](F 1
(·)) = F .

Similarly, put
J2 = {H ∈ F s

L (X) : α 6 limH(x)}.

We define F 2
H

= H , ψ2 : J2 −→ X :H 7−→ x. Then we obtain [F ] ∈ F s
L (J2), ψ⇒2 ([F ]) = [x] and [F ](F 2

(·)) = F .
By the definition of Reg(X, lim), we have

Reg(X, lim)

6
∧
G∈J1

limF 1
G

(ψ1(G))→ S(lim[F ](F 1
(·)), limψ⇒1 ([F ]))

∧

∧
H∈J2

limF 2
H

(ψ2(H))→ S(lim[F ](F 2
(·)), limψ⇒2 ([F ]))

=
∧
G∈J1

limG(y)→ S(limF , lim[y]) ∧
∧
H∈J2

limH(x)→ S(limF , lim[x])

6 (α→ (limF (x)→ lim[y](x)) ∧ (α→ (limF (y)→ lim[x](y))
= (α ∧ limF (x))→ lim[y](x)) ∧ (α ∧ limF (y))→ lim[x](y)).
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With T1(X, lim) =
∧

z1,z2
(lim[z2](z1)→ ⊥) ∧ (lim[z1](z2)→ ⊥), we further obtain

Reg(X, lim) ∧ T1(X, lim)

6 Reg(X, lim) ∧
(
(lim[y](x)→ ⊥) ∧ (lim[x](y)→ ⊥)

)
= (Reg(X, lim) ∧ (lim[y](x)→ ⊥)) ∧ (Reg(X, lim) ∧ (lim[x](y)→ ⊥))
6 (α ∧ limF (x))→ lim[y](x)) ∧ (lim[y](x)→ ⊥) ∧ (α ∧ limF (y))→ lim[x](y) ∧ (lim[x](y)→ ⊥)
6 (α ∧ limF (x))→ ⊥) ∧ (α ∧ limF (y))→ ⊥)
= α→ ⊥.

Hence, α 6 (Reg(X, lim) ∧ T1(X, lim))→ ⊥. Since L is a complete Boolean algebra, it follows that

α 
 Reg(X, lim) ∧ T1(X, lim).

By the arbitrariness of α, we obtain Reg(X, lim) ∧ T1(X, lim) 6 T2(X, lim).

6. Conclusions

In this paper, we endowed each stratified L-generalized convergence space with some degrees of
fulfilling T1, T2 and regularity axioms. Based on the definitions by degrees, we presented the lattice-
valued forms of several important conclusions. This theory generalizes the separation theory in the sense
of Jäger [10]. However, in Theorems 5.9 and 5.10, we required that L should be a complete Boolean algebra.
In the future, we will consider whether it can be generalized to more general lattice.
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