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Abstract. In this paper, some random common fixed point and coincidence point results are proved with
PPF dependence for random operators in separable Banach spaces. Our results present stochastic versions
and extensions of recent results of Dhage [J. Nonlinear Sci. Appl. 5 (2012) and Differ. Equ. Appl. 2 (2012)],
Kaewcharoen [ J. Inequal. Appl. 2013:287 ] and many others. We also establish results concerning iterative
approximation of PPF dependent random common fixed points. Moreover, an application to random
differential equations is given here to illustrate usability of the obtained results.

1. Introduction

The topic of common fixed point for pair or families of contractive mappings in metric and abstract
spaces is of great interest and has already been studied in the literature (see [2]-[27] and references therein).
Recently, Bernfield et al. [4] proved some fixed point theorems for nonlinear operators in Banach spaces,
where the domain and range of the operators are not same. The fixed point theorems of this kind are called
fixed point theorems with the PPF (past, present and future) dependence.

The study of random fixed point theorems in abstract spaces was initiated by Spacek [28] and Hans
[11] to get stochastic generalizations of the classical fixed point theorems in separable Banach spaces. The
research along this line gained momentum after the results of Bharucha-Reid [5] and since then several
random fixed point theorems have been proved in the literature. A common assumption among all these
operators in question to map an abstract space into itself, i.e. the domain and the range of the operators
are the same. The classical or deterministic fixed point theorems for the operators with respect to different
domain and range spaces were studied by Bernfield et al. [4], Drici et al. [9, 10] and Dhage [6]. These
results are useful for proving the existence of solutions for certain functional differential equations which
may depend upon the past, present and future consideration.

In the present paper, some random common fixed point theorems with PPF dependence are proved
for pair of operators in Banach spaces satisfying generalized random contractive conditions of Ćirić type.
Our results are new and generalize some known results of Dhage [7, 8] and Bernfield et al. [4] under more
general random contractive conditions.
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2. Preliminaries

Suppose that E is a Banach space with the norm ‖.‖E and given a closed interval I = [a, b] in R, we
consider the Banach space E0 = C (I,E) of continuous E-valued functions defined on I, equipped with the
supremum norm ‖·‖E0

defined by

‖x‖E0
= supt∈I ‖x (t)‖E

for all x ∈ E0. For a fixed c ∈ I, the Razumikhin class of functions [4, 6] in E0 is defined as

<c =
{
φ ∈ E0 |

∥∥∥φ∥∥∥E0
=

∥∥∥φ (c)
∥∥∥

E

}
.

The class<c is algebraically closed with respect to difference if φ − ζ ∈ <c whenever φ, ζ ∈ <c; similarly,
<c is topologically closed if it is closed w.r.t. the topology on E0 generated by the norm ‖·‖E0

.
Let T : E0 → E. A point ζ∗ ∈ E0 is called a PPF fixed point of T if T (ζ∗) = ζ∗ (c) for some c ∈ I. It is known

that Razumikhin class of functions play a significant role in proving the existence of PPF fixed points with
different domain and range of the operators.

Definition 2.1. An operator T : E0 → E is called Banach type contraction if there is a real number 0 < α < 1 such
that ∥∥∥T (ζ) − T

(
η
)∥∥∥

E ≤ α
∥∥∥ζ − η∥∥∥E0

for all ζ, η ∈ E0.

The following definition is introduced in the literature on the lines of classical definition for contraction
mapping given by Kannan [22].

Definition 2.2. An operator T : E0 → E is called strong Kannan type contraction if∥∥∥T (ζ) − T
(
η
)∥∥∥

E ≤ α[‖ζ (c) − T (ζ)‖E +
∥∥∥η (c) − T

(
η
)∥∥∥

E]

for all ζ, η ∈ E0 and some c ∈ I, where 0 < α < 1/2.

Definition 2.3. Let S,T : E0 → E be two operators. A point ζ∗ ∈ E0 is called

(i) PPF dependent common fixed point of S and T if S (ζ∗) = T (ζ∗) = ζ∗ (c) for some c ∈ I.
(ii) PPF dependent coincidence point of S and T if S (ζ∗) = T (ζ∗ (c)) for some c ∈ I.

Definition 2.4. [7]. Two operators S,T : E0 → E are said to satisfy a condition of strong Cirić type generalized
contraction if there exists a real number 0 < λ < 1 satisfying∥∥∥S (ζ) − T

(
η
)∥∥∥

E ≤ λmax
{∥∥∥ζ (c) − η (c)

∥∥∥
E , ‖ζ (c) − S (ζ)‖E ,∥∥∥η (c) − T

(
η
)∥∥∥

E ,
1
2 [
∥∥∥ζ (c) − T

(
η
)∥∥∥

E +
∥∥∥η (c) − S (ζ)

∥∥∥
E]

}
for all ζ, η ∈ E0 and some c ∈ I.

Definition 2.5. [7]. The operators A : E0 → E and S : E0 → E0 are said to satisfy a condition of strong Cirić type
generalized contraction (C) if there exists a real number 0 < λ < 1 satisfying∥∥∥A (ζ) − A

(
η
)∥∥∥

E ≤ λmax{
∥∥∥S (ζ (c)) − S

(
η (c)

)∥∥∥
E , ‖S (ζ (c)) − A (ζ)‖E ,∥∥∥S

(
η (c)

)
− A

(
η
)∥∥∥

E ,
1
2 [
∥∥∥S (ζ (c)) − A

(
η
)∥∥∥

E +
∥∥∥S

(
η (c)

)
− A (ζ)

∥∥∥
E]}

for all ζ, η ∈ E0 and c ∈ I.
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Definition 2.6. [7] The operators A : E0 → E and S : E0 → E0 are said to satisfy a condition of Cirić type generalized
contraction (C) if there exists a real number 0 < λ < 1 satisfying∥∥∥A (ζ) − A

(
η
)∥∥∥

E ≤ λmax{
∥∥∥S (ζ) − S

(
η
)∥∥∥

E0
, ‖S (ζ (c)) − A (ζ)‖E ,∥∥∥S

(
η (c)

)
− A

(
η
)∥∥∥

E ,
1
2 [
∥∥∥S (ζ (c)) − A

(
η
)∥∥∥

E +
∥∥∥S

(
η (c)

)
− A (ζ)

∥∥∥
E]}

for all ζ, η ∈ E0 and c ∈ I.

Kaewcharoen [21] introduced the condition of Cirić type generalized ψ-contraction as follows.

Definition 2.7. Let S,T : E0 → E. We say that S and T satisfy the condition of Cirić type generalized ψ-contraction
if ∥∥∥Sφ − Tα

∥∥∥
E ≤ ψ(max{

∥∥∥φ − α∥∥∥E0
,
∥∥∥φ (c) − Sφ

∥∥∥
E , ‖α (c) − Tα‖E ,

1
2 [
∥∥∥φ (c) − Tα

∥∥∥
E +

∥∥∥α (c) − Sφ
∥∥∥

E]})

for all φ, α ∈ E0 and for some c ∈ I.

Theorem 2.8. [21] Suppose that S,T : E0 → E satisfy the condition of Cirić type generalizedψ-contraction. Assume
that<c is topologically closed with respect to norm topology and is algebraically closed with respect to the difference,
then S and T have a unique PPF dependent common fixed point in<c.

Definition 2.9. Let A : E0 → E and S : E0 → E0. We say that A and S satisfy the condition of Cirić type generalized
ψ-contraction (C) if∥∥∥Aφ − Aα

∥∥∥
E ≤ ψ(max{

∥∥∥Sφ − Sα
∥∥∥

E0
,
∥∥∥Sφ (c) − Aφ

∥∥∥
E , ‖Sα (c) − Aα‖E ,

1
2 [
∥∥∥Sφ (c) − Aα

∥∥∥
E +

∥∥∥Sα (c) − Aφ
∥∥∥

E]}).

Using the above definition Kaewcharoen proved some results under weaker condition than the condition
of Cirić type generalized contraction (C). We shall prove stochastic versions of recently established PPF
dependence fixed and common fixed point results with their application to iterative approximation and
stochastic differential equations.

3. Main Results

Let (Ω,X) be a measurable space and let E be a separable Banach space with norm ‖·‖E. We equip the
Banach space E with a σ-algebra , βE of Borel subsets of E so that

(
E, βE

)
becomes a measurable space. A

mapping T : Ω→ E is called measurable if

T−1 (B) = {ω ∈ Ω | T (ω) ∈ B} ∈ X

for all Borel sets B ∈ βE.
Given two Banach spaces E1 and E2, a mapping T : Ω×E1 → E2 is called a random operator if T (ω, x) is

measurable in ω for all x ∈ E1. We also denote a random operator T on E1 by T (ω) x = T (ω, x). A random
operator T (ω) is called continuous on E if T (ω, x) is continuous in x for each ω ∈ Ω. Similarly, T is called
compact on Ω× E1 if T (Ω × E1) is relatively compact subset of E2. We say T (ω) is compact on E1 if T (ω,E1)
is relatively compact subset of E2. Finally, T (ω) is called compact on E1 if T (ω,E1) is a relatively compact
subset of E2 for each ω ∈ Ω.

Let T : Ω× E0 → E be a random operator. A measurable function ζ∗ : Ω→ E0 is called a PPF dependent
random fixed point of the random operator T (ω) if

T (ω, ζ∗ (ω)) = ζ∗ (c, ω)

for some c ∈ I.
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Definition 3.1. A random operator S : Ω × E0 → E is called a random contraction if for each ω ∈ Ω,∥∥∥S (ω, ζ) − S
(
ω, η

)∥∥∥
E ≤ λ (ω)

∥∥∥ζ − η∥∥∥E0

for all ζ, η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 ≤ λ (ω) < 1 for all ω ∈ Ω.

Definition 3.2. Two random operators S,T : Ω × E0 → E are called a strong Ćirić type generalized random
contraction if for a given c ∈ I and for each ω ∈ Ω,∥∥∥S (ω, ζ) − T

(
ω, η

)∥∥∥
E

≤ λ (ω) max{
∥∥∥ζ (c, ω) − η (c, ω)

∥∥∥
E , ‖ζ (c, ω) − S (ω, ζ)‖E ,∥∥∥η (c, ω) − T

(
ω, η

)∥∥∥
E ,

1
2 [
∥∥∥ζ (c, ω) − T

(
ω, η

)∥∥∥
E +

∥∥∥η (c, ω) − S (ω, ζ)
∥∥∥

E]}
(1)

for all ζ, η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 < λ (ω) < 1 for all ω ∈ Ω.

Definition 3.3. Two random operators S,T : Ω × E0 → E are called a Ćirić type generalized random contraction if
for a given c ∈ I and for each ω ∈ Ω,∥∥∥S (ω, ζ) − T

(
ω, η

)∥∥∥
E

≤ λ (ω) max{
∥∥∥ζ − η∥∥∥E0

, ‖ζ (c, ω) − S (ω, ζ)‖E ,∥∥∥η (c, ω) − T
(
ω, η

)∥∥∥
E ,

1
2 [
∥∥∥ζ (c, ω) − T

(
ω, η

)∥∥∥
E +

∥∥∥η (c, ω) − S (ω, ζ)
∥∥∥

E]}
(2)

for all ζ, η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 < λ (ω) < 1 for all ω ∈ Ω.

It is easy to see that every strong Ćirić type generalized random contraction is Ćirić type generalized
random contraction. However, the converse is not necessarily true.

Theorem 3.4. Let (Ω,ℵ) be a measurable space and let E be a separable Banach space. If two random operators
S,T : Ω×E0 → E satisfy the condition of Ćirić type generalized contraction, then the following statements hold in E.

(a) If <c is algebraically closed with respect to difference, then for a given ζ0 ∈ E0 and c ∈ I, every
sequence {ζn (ω)} of measurable functions satisfying

S (ω, ζ2n (ω)) = ζ2n+1 (c, ω) ,T (ω, ζ2n+1 (ω)) = ζ2n+2 (c, ω) (3)

and

‖ζn (ω) − ζn+1 (ω)‖E0
= ‖ζn (c, ω) − ζn+1 (c, ω)‖E (4)

for n = 0, 1, 2, · · · converges to a PPF dependent random common fixed point of S and T.
(b) If ζ0, η0 ∈ E0 and {ζn (ω)} ,

{
ηn (ω)

}
are sequences defined by (3) and (4), then∥∥∥ζn (ω) − ηn (ω)

∥∥∥
E0
≤ [ 1

1−λ(ω) ] ‖ζ0 (ω) − ζ1 (ω)‖E0
+

∥∥∥η0 (ω) − η1 (ω)
∥∥∥

E0
+

∥∥∥ζ0 (ω) − η0 (ω)
∥∥∥

E0
.

If, in particular ζ0 = η0 and {ζn} ,
{
ηn

}
, then∥∥∥ζn (ω) − ηn (ω)

∥∥∥
E0
≤ [ 2

1−λ(ω) ] ‖ζ0 (ω) − ζ1 (ω)‖E0
.

(c) If <c is topologically closed, then for a given ζ0 ∈ E0, every sequence {ζn (ω)} of iterates of S and T
constructed as in (a), converges to a unique PPF dependent random fixed point ζ∗ (ω) of S and T.
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Proof. Let ζ0 ∈ E0 be arbitrary. By hypothesis, S (ω, ζ0) ∈ E. Suppose that S (ω, ζ0) = x1 (ω), where the
function x1 : Ω → E is measurable. Choose a measurable function ζ1 : Ω → E0 such that x1 (ω) = ζ1 (c, ω)
and that

‖ζ1 (c, ω) − ζ0 (c)‖E = ‖ζ1 (ω) − ζ0‖E0
.

Again, by hypothesis, T (ω, ζ1) ∈ E. Suppose that T (ω, ζ1) = x2 (ω). Choose ζ2 ∈ E0 such that x2 (ω) = ζ2 (c, ω)
and

‖ζ2 (c, ω) − ζ1 (c, ω)‖E = ‖ζ2 (ω) − ζ1 (ω)‖E0
.

Continuing in this way, by induction, we obtain

S (ω, ζ2n (ω)) = ζ2n+1 (c, ω) , T (ω, ζ2n+1 (ω)) = ζ2n+2 (c, ω)

and

‖ζn (ω) − ζn+1 (ω)‖E0
= ‖ζn (c, ω) − ζn+1 (c, ω)‖E

for all ω ∈ Ω and n = 0, 1, 2, · · · .
We claim that the sequence {ζn (ω)} of measurable functions is Cauchy in E0. For for n = 0, we have

‖ζ1 (ω) − ζ2 (ω)‖E0
= ‖ζ1 (c, ω) − ζ2 (c, ω)‖E = ‖S (ω, ζ0 (ω)) − T (ω, ζ1 (ω))‖

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ0 (c, ω) − S (ω, ζ0 (ω))‖E ,

‖ζ1 (c, ω) − T (ω, ζ1 (ω))‖E ,
1
2 [‖ζ0 (c, ω) − T (ω, ζ1 (ω))‖E + ‖ζ1 (c, ω) − S (ω, ζ0 (ω))‖E]}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ0 (c, ω) − ζ1 (c, ω)‖E ,

‖ζ1 (c, ω) − ζ2 (c, ω)‖E,
1
2 [‖ζ0 (c, ω) − ζ2 (c, ω)‖E + ‖ζ1 (c, ω) − ζ1 (c, ω)‖E]}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ0 (ω) − ζ1(ω)‖E0

, ‖ζ1 (ω) − ζ2 (ω)‖E0
, 1

2 [‖ζ0 (ω) − ζ2 (ω)‖E0
+ ‖ζ1 (ω) − ζ1(ω)‖E0

]}
≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0

, ‖ζ1 (ω) − ζ2(ω)‖E0
, 1

2 ‖ζ0 (ω) − ζ2 (ω)‖E0
}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, 1

2 [‖ζ0 (ω) − ζ1(ω)‖E0
+ ‖ζ1 (ω) − ζ2 (ω)‖E0

]}
≤ λ (ω) max ‖ζ0 (ω) − ζ1 (ω)‖E0

.

Similarly,

‖ζ2 (ω) − ζ3 (ω)‖E0
= ‖ζ2 (c, ω) − ζ3 (c, ω)‖E = ‖S (ω, ζ2 (ω)) − T (ω, ζ1 (ω))‖

≤ λ (ω) max{‖ζ2 (ω) − ζ1 (ω)‖E0
, ‖ζ2 (c, ω) − S (ω, ζ2 (ω))‖E ,

‖ζ1 (c, ω) − T (ω, ζ1 (ω))‖E ,
1
2 [‖ζ2 (c, ω) − T (ω, ζ1 (ω))‖E + ‖ζ1 (c, ω) − S (ω, ζ2 (ω))‖E]}

≤ λ (ω) max{‖ζ2 (ω) − ζ1 (ω)‖E0
, ‖ζ2 (c, ω) − ζ3(c, ω)‖E ,

‖ζ1 (c, ω) − ζ2 (c, ω)‖E ,
1
2 [‖ζ2 (c, ω) − ζ2 (c, ω)‖E + ‖ζ1 (c, ω) − ζ3(c, ω)‖E]}

≤ λ (ω) max{‖ζ2 (ω) − ζ1 (ω)‖E0
, ‖ζ2 (ω) − ζ3(ω)‖E0

, ‖ζ1 (ω) − ζ2 (ω)‖E0
, 1

2 [‖ζ2 (ω) − ζ2 (ω)‖E0
+ ‖ζ1 (ω) − ζ3(ω)‖E0

]}
≤ λ (ω) max{‖ζ1 (ω) − ζ2 (ω)‖E0

, ‖ζ2 (ω) − ζ3(ω)‖E0
, 1

2 ‖ζ1 (ω) − ζ3 (ω)‖E0
}

≤ λ (ω) max{‖ζ1 (ω) − ζ2 (ω)‖E0
, 1

2 [‖ζ1 (ω) − ζ2(ω)‖E0
+ ‖ζ2 (ω) − ζ3 (ω)‖E0

]}
≤ λ (ω) max ‖ζ1 (ω) − ζ2 (ω)‖E0

.

Proceeding in this way, by induction, we obtain

‖ζn (ω) − ζn+1 (ω)‖E0
≤ λ (ω) ‖ζn−1 (ω) − ζn (ω)‖E0

for all n = 1, 2, 3, · · · .
Hence, by repeated application of the above inequality, we have

‖ζn (ω) − ζn+1 (ω)‖E0
≤ λn (ω) ‖ζ0 (ω) − ζ1 (ω)‖E0

for all n = 1, 2, 3, · · · . If m > n, then by triangle inequality,

‖ζn (ω) − ζm (ω)‖E0

≤ ‖ζn (ω) − ζn+1 (ω)‖E0
+ ‖ζn+1 (ω) − ζn+2 (ω)‖E0

+ · · · + ‖ζm−1 (ω) − ζm (ω)‖E0
≤ [λn (ω) + λn+1 (ω) + · · · + λm−1 (ω)] ‖ζ0 (ω) − ζ1 (ω)‖E0

≤ [ λn(ω)
1−λ(ω) ] ‖ζ0 (ω) − ζ1 (ω)‖E0

→ 0 as n→∞.



N. Hussain et al. / Filomat 31:3 (2017), 759–779 764

Hence, ‖ζn (ω) − ζm (ω)‖E0
→ 0. This shows that {ζn (ω)} is a Cauchy sequence of measurable functions on Ω

into E0. Since E0 is complete and separable Banach space, there is a measurable function ζ∗ : Ω→ E0 such
that lim

n→∞
ζn (ω) = ζ∗ (ω) for all ω ∈ Ω. Now, We prove that ζ∗ is a random fixed point with PPF dependence

of the random operators S and T on E0. By inequality (2)

‖S (ω, ζ∗ (ω)) − ζ∗ (c, ω)‖E
≤ ‖S (ω, ζ∗ (ω)) − ζ2n+2 (c, ω)‖E + ‖ζ2n+2 (c, ω) − ζ∗ (c, ω)‖E
≤ ‖S (ω, ζ∗ (ω)) − T (ω, ζ2n+1 (ω))‖E + ‖ζ2n+2 (ω) − ζ∗ (ω)‖E0

≤ λ (ω) max{‖ζ∗ (ω) − ζ2n+1 (ω)‖E0
, ‖ζ∗ (c, ω) − S (ω, ζ∗ (ω))‖E , ‖ζ2n+1 (c, ω) − T (ω, ζ2n+1 (ω))‖E ,

1
2 [‖ζ∗ (c, ω) − T (ω, ζ2n+1 (ω))‖E + ‖ζ2n+1 (c, ω) − S (ω, ζ∗ (ω))‖E]} + ‖ζ2n+2 (ω) − ζ∗ (ω)‖E0

≤ λ (ω) max{‖ζ∗ (ω) − ζ2n+1 (ω)‖E0
, ‖ζ∗ (c, ω) − S (ω, ζ∗ (ω))‖E , ‖ζ2n+1 (c, ω) − ζ2n+2 (c, ω)‖E ,

1
2 [‖ζ∗ (c, ω) − ζ2n+2 (c, ω)‖E + ‖ζ2n+1 (c, ω) − S (ω, ζ∗ (ω))‖E]} + ‖ζ2n+2 (ω) − ζ∗ (ω)‖E0

.

Taking limit superior as n→∞ in the above inequality, yields,

‖S (ω, ζ∗ (ω)) − ζ∗ (c, ω)‖E ≤ λ (ω) ‖S (ω, ζ∗ (ω)) − ζ∗ (c, ω)‖E .

Hence, it follows that S (ω, ζ∗ (ω)) = ζ∗ (c, ω).Similarly, we can prove that T (ω, ζ∗ (ω)) = ζ∗ (c, ω).
(b) Let {ζn (ω)} and

{
ηn (ω)

}
be two sequences of measurable functions as constructed in (a). Then for

each ω ∈ Ω,∥∥∥ζn (ω) − ηn (ω)
∥∥∥

E0
≤ ‖ζn (ω) − ζn−1 (ω)‖E0

+
∥∥∥ζn−1 (ω) − ηn−1 (ω)

∥∥∥
E0

+
∥∥∥ζn−1 (ω) − ηn (ω)

∥∥∥
E0

≤ λn (ω) ‖ζ0 (ω) − ζ1 (ω)‖E0
+

∥∥∥ζn−1 (ω) − ηn−1 (ω)
∥∥∥

E0
+ λn (ω)

∥∥∥η0 (ω) − η1 (ω)
∥∥∥

E0

≤ λn (ω) [‖ζ0 (ω) − ζ1 (ω)‖E0
+

∥∥∥η0 (ω) − η1 (ω)
∥∥∥

E0
] +

∥∥∥ζn−1 (ω) − ηn−1 (ω)
∥∥∥

E0

≤ (λn (ω) + · · · + 1) [‖ζ0 (ω) − ζ1 (ω)‖E0
+

∥∥∥η0 (ω) − η1 (ω)
∥∥∥

E0
]

+
∥∥∥ζ0 (ω) − η0 (ω)

∥∥∥
E0

+
∥∥∥ζ0 (ω) − η0 (ω)

∥∥∥
E0

≤
1

1−λ(ω) [‖ζ0 (ω) − ζ1 (ω)‖E0
+

∥∥∥η0 (ω) − η1 (ω)
∥∥∥

E0
] +

∥∥∥ζ0 (ω) − η0 (ω)
∥∥∥

E0
.

(5)

In particular, if ζ0 (ω) = η0 (ω), then ζ0 (c, ω) = η0 (c, ω) so that S (ω, ζ0) = S
(
ω, η0

)
which implies that

ζ1 (c, ω) = η1 (c, ω). Hence, from inequality (4) it follows that∥∥∥ζn (ω) − ηn (ω)
∥∥∥

E0
≤

2
1−λ(ω) ‖ζ0 (ω) − ζ1 (ω)‖E0

.

(c) By part (a) above, the sequence {ζn (ω)} of measurable functions as constructed in (a) converges to a
random fixed point ζ∗ (ω) with PPF dependence. As<c is topologically closed, ζ∗ (ω) ∈ <c. Suppose that
η∗ (ω) , ζ∗ (ω), ω ∈ Ω, be another random fixed point of T. Then∥∥∥ζ∗ (ω) − η∗ (ω)

∥∥∥
E0

=
∥∥∥ζ∗ (c, ω) − η∗ (c, ω)

∥∥∥
E

≤

∥∥∥S (ω, ζ∗ (ω)) − T
(
ω, η∗ (ω)

)∥∥∥
E

≤ λ (ω) max{
∥∥∥ζ∗ (ω) − η∗ (ω)

∥∥∥
E0
, ‖ζ∗ (c, ω) − S (ω, ζ∗ (ω))‖E ,

∥∥∥η∗ (c, ω) − T
(
ω, η∗ (ω)

)∥∥∥
E ,

1
2 [
∥∥∥ζ∗ (c, ω) − T

(
ω, η∗ (ω)

)∥∥∥
E +

∥∥∥η∗ (c, ω) − S (ω, ζ∗ (ω))
∥∥∥

E]}
≤ λ (ω) max{

∥∥∥ζ∗ (ω) − η∗ (ω)
∥∥∥

E0
, 0, 0, 1

2 [
∥∥∥ζ∗ (c, ω) − η∗ (c, ω)

∥∥∥
E +

∥∥∥η∗ (c, ω) − ζ∗ (c, ω)
∥∥∥

E]}
≤ λ (ω) max{

∥∥∥ζ∗ (ω) − η∗ (ω)
∥∥∥

E0
, 0, 0,

∥∥∥ζ∗ (ω) − η∗ (ω)
∥∥∥

E0
}

yields that ζ∗ (ω) = η∗ (ω) , as 0 < λ (ω) < 1 for all ω ∈ Ω.

On taking S = T in (2), we obtain following corollary.

Corollary 3.5. Suppose that T : E0 → E is a generalized random contraction. Then the following statements hold in
E0.
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(a) If <c is algebraically closed with respect to difference, then for a given ζ0 ∈ E0 and c ∈ I, every sequence
{ζn (ω)} of measurable function satisfying

T (ω, ζn (ω)) = ζn+1 (c, ω) (6)

and

‖ζn (ω) − ζn+1 (ω)‖E0
= ‖ζn (c, ω) − ζn+1 (c, ω)‖E (7)

for n = 0, 1, 2, · · · converges to a PPF dependent random fixed point of T.
(b) If <c is algebraically and topologically closed, then for a given ζ0 ∈ E0, every sequence {ζn (ω)} of iterates

constructed as in (a), converges to a unique PPF dependent random fixed point ζ∗ (ω) of T.

Remark 3.6. We note that operators in Theorem 3.4 and Corollary 3.5 are not required to satisfy any continuity
condition on the domains of their definition.

Now, we prove the existence of PPF dependent random fixed point theorems for mapping satisfying
the contractive condition which is weaker than the condition of Ćirić type generalized contraction.

Let Ψ be the set of all functions ψ where ψ : [0,+∞)→ [0,+∞) is a continuous nondecreasing function
with ψ (t) < t for all t ∈ (0,+∞) and ψ (0) = 0. If ψ ∈ Ψ, then ψ is called a Ψ-map.

Definition 3.7. Let S,T : Ω × E0 → E be two random operators. We say that S and T satisfy the condition of Ćirić
type generalized random ψ-contraction if for a given c ∈ I and for each ω ∈ Ω,∥∥∥S (ω, ζ) − T

(
ω, η

)∥∥∥ ≤ ψ(max{
∥∥∥ζ − η∥∥∥E0

, ‖ζ (c, ω) − S (ω, ζ)‖E ,∥∥∥η (c, ω) − T
(
ω, η

)∥∥∥
E ,

1
2 [
∥∥∥ζ (c, ω) − T

(
ω, η

)∥∥∥
E +

∥∥∥η (c, ω) − S (ω, ζ)
∥∥∥

E]})
(8)

for all ζ, η ∈ E0.

Theorem 3.8. Let (Ω,X) be a measurable space and let E be a separable Banach space. If two random operators
S,T : Ω × E0 → E satisfy the condition of Ćirić type generalized random ψ-contarction and suppose that <c is
topologically closed with respect to norm topology and is algebraically closed with respect to the difference, then S and
T have a PPF dependent random fixed point in<c.

Proof. Let ζ0 ∈ E0 be arbitrary. Since S (ω, ζ0) ∈ E, there exists a measurable function x1 : Ω → E such that
S (ω, ζ0) = x1 (ω). Choose a measurable function ζ1 : Ω→ E0 such that

x1 (ω) = ζ1 (c, ω) and ‖ζ1 − ζ0‖E0
= ‖ζ1 (c, ω) − ζ0 (c, ω)‖E .

By assumption, T (ω, ζ1) ∈ E. This implies that there exists x2 : Ω→ E such that T (ω, ζ1) = x2 (ω). Therefore,
we can choose ζ2 ∈ E0 such that

x2 (ω) = ζ2 (c, ω) and ‖ζ2 − ζ1‖E0
= ‖ζ2 (c, ω) − ζ1 (c, ω)‖E .

Proceeding in this way, by induction, we have

S (ω, ζ2n (ω)) = ζ2n+1 (c, ω) , T (ω, ζ2n+1 (ω)) = ζ2n+2 (c, ω)
‖ζn (ω) − ζn+1 (ω)‖E0

= ‖ζn (c, ω) − ζn+1 (c, ω)‖E
(9)

for all ω ∈ Ω and n ∈N ∪ {0}.
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Now, we show that the sequence {ζn (ω)} is a Cauchy sequence in E0. Assume that ζN−1 = ζN for some
N ∈N. If N is even, then we have N = 2m for some m ∈N. Therefore from (8) and (9), we have

‖ζ2m (ω) − ζ2m+1 (ω)‖E0
= ‖ζ2m (c, ω) − ζ2m+1 (c, ω)‖E = ‖S (ω, ζ2m (ω)) − T (ω, ζ2m−1 (ω))‖E

≤ ψ(max{‖ζ2m (ω) − ζ2m−1 (ω)‖E0
, ‖ζ2m (c, ω) − S (ω, ζ2m (ω))‖E , ‖ζ2m−1 (c, ω) − T (ω, ζ2m−1 (ω))‖E ,

1
2 [‖ζ2m (c, ω) − T (ω, ζ2m−1 (ω))‖E + ‖ζ2m−1 (c, ω) − S (ω, ζ2m (ω))‖E]})
≤ ψ(max{‖ζ2m (ω) − ζ2m−1 (ω)‖E0

, ‖ζ2m (c, ω) − ζ2m+1 (c, ω)‖E , ‖ζ2m−1 (c, ω) − ζ2m (c, ω)‖E ,
1
2 [‖ζ2m (c, ω) − ζ2m (c, ω)‖E + ‖ζ2m−1 (c, ω) − ζ2m+1 (c, ω)‖E]})
≤ ψ(max{‖ζ2m (ω) − ζ2m−1 (ω)‖E0

, ‖ζ2m (ω) − ζ2m+1 (ω)‖E0
, 1

2 ‖ζ2m−1 (ω) − ζ2m+1 (ω)‖E0
})

≤ ψ(max{‖ζ2m (ω) − ζ2m−1 (ω)‖E0
, ‖ζ2m (ω) − ζ2m+1 (ω)‖E0

,
1
2 [‖ζ2m−1 (ω) − ζ2m (ω)‖E0

+ ‖ζ2m (ω) − ζ2m+1 (ω)‖E0
]})

≤ ψ(max{‖ζ2m (ω) − ζ2m−1 (ω)‖E0
, ‖ζ2m (ω) − ζ2m+1 (ω)‖E0

})
≤ ψ

(
max

(
‖ζ2m (ω) − ζ2m+1 (ω)‖E0

))
.

This implies that ‖ζ2m (ω) − ζ2m+1 (ω)‖E0
= 0 and so ζ2m (ω) = ζ2m+1 (ω). Similarly, we can prove that

ζ2m+1 (ω) = ζ2m+2 (ω). Therefore ζN (ω) = ζN+1 (ω). By mathematical induction, we can conclude that
ζN−1 (ω) = ζN+K (ω) for all k ≥ 0. If N is odd, then by the same argument we also obtain that ζN−1 (ω) =
ζN+K (ω) for all k ≥ 0. Therefore {ζn (ω)} is a constant sequence for all n ≥ N − 1. This implies that {ζn (ω)} is
a Cauchy sequence in E0. Now, suppose that ζn−1 (ω) , ζn (ω) for all n ∈N. For each n ∈N, we obtain that

‖ζ2n (ω) − ζ2n+1 (ω)‖E0
= ‖ζ2n (c, ω) − ζ2n+1 (c, ω)‖E = ‖S (ω, ζ2n (ω)) − T (ω, ζ2n−1 (ω))‖E

≤ ψ(max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0
, ‖ζ2n (c, ω) − S (ω, ζ2n (ω))‖E , ‖ζ2n−1 (c, ω) − T (ω, ζ2n−1 (ω))‖E ,

1
2 [‖ζ2n (c, ω) − T (ω, ζ2n−1 (ω))‖E + ‖ζ2n−1 (c, ω) − S (ω, ζ2n (ω))‖E]})
≤ ψ(max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0

, ‖ζ2n (c, ω) − ζ2n+1 (c, ω)‖E , ‖ζ2n−1 (c, ω) − ζ2n (c, ω)‖E ,
1
2 [‖ζ2n (c, ω) − ζ2n (c, ω)‖E + ‖ζ2n−1 (c, ω) − ζ2n+1 (c, ω)‖E]})
≤ ψ(max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0

, ‖ζ2n (ω) − ζ2n+1 (ω)‖E0
, 1

2 ‖ζ2n−1 (ω) − ζ2n+1 (ω)‖E0
})

≤ ψ(max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0
, ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

,
1
2 [‖ζ2n−1 (ω) − ζ2n (ω)‖E0

+ ‖ζ2n (ω) − ζ2n+1 (ω)‖E0
]})

≤ ψ(max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0
, ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

}).

If max{‖ζ2n (ω) − ζ2n−1 (ω)‖E0
, ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

} = ‖ζ2n (ω) − ζ2n+1 (ω)‖E0
, then

‖ζ2n (ω) − ζ2n+1 (ω)‖E0
≤ ψ

(
‖ζ2n (ω) − ζ2n+1 (ω)‖E0

)
< ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

a contrdiction, therefore

‖ζ2n (ω) − ζ2n+1 (ω)‖E0
≤ ψ

(
‖ζ2n (ω) − ζ2n−1 (ω)‖E0

)
< ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

.

Similarly, we can prove that

‖ζ2n+1 (ω) − ζ2n+2 (ω)‖E0
< ‖ζ2n (ω) − ζ2n+1 (ω)‖E0

.

It follows that ‖ζn (ω) − ζn+1 (ω)‖E0
≤ ‖ζn−1 (ω) − ζn (ω)‖E0

for allN. Since the sequence
{
‖ζn (ω) − ζn+1 (ω)‖E0

}
is a nonincreasing sequence of nonnegative real numbers, we obtain that it is a convergent sequence.
Suppose that

lim
n→∞
‖ζn (ω) − ζn+1 (ω)‖E0

= τ

for some real number τ. We will prove that τ = 0. Assume contrary that τ > 0. Since

‖ζ2n (ω) − ζ2n+1 (ω)‖E0
≤ ψ

(
‖ζ2n (ω) − ζ2n−1 (ω)‖E0

)
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for all n ∈N and the continuity of ψ, we have

τ ≤ ψ (τ) < τ,

which leads a contradiction. This implies that τ = 0. Now, we prove that the sequence {ζn (ω)} is a Cauchy
sequence. For this, we have to prove that the sequence {ζ2n (ω)} is a Cauchy sequence. Assume that {ζ2n (ω)}
is not a Cauchy sequence. It follows that there exist ε > 0 and two sequences of even positive integers {2mk}

and {2nk} satisfying 2mk > 2nk > k for each k ∈N and∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
≥ ε. (10)

Let {2mk} be the sequence of least positive integers exceeding {2nk}which satisfies (10) and∥∥∥ζ2mk−2 (ω) − ζ2nk (ω)
∥∥∥

E0
< ε. (11)

We will prove that lim
k→∞

∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
= ε.

Since
∥∥∥ζ2mk (ω) − ζ2nk (ω)

∥∥∥
E0
≥ ε for all k ∈N, we have

limk→∞

∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
≥ ε.

For each k ∈N, we obtain that∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
≤

∥∥∥ζ2mk (ω) − ζ2mk−1 (ω)
∥∥∥

E0

+
∥∥∥ζ2mk−1 (ω) − ζ2mk−2 (ω)

∥∥∥
E0

+
∥∥∥ζ2mk−2 (ω) − ζ2nk (ω)

∥∥∥
E0

≤

∥∥∥ζ2mk (ω) − ζ2mk−1 (ω)
∥∥∥

E0
+

∥∥∥ζ2mk−1 (ω) − ζ2mk−2 (ω)
∥∥∥

E0
+ ε.

This implies that lim
k→∞

∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
≤ ε. Therefore

lim
k→∞

∥∥∥ζ2mk (ω) − ζ2nk (ω)
∥∥∥

E0
= ε.

Similarly, we can prove that

lim
k→∞

∥∥∥ζ2mk+1 (ω) − ζ2nk (ω)
∥∥∥

E0
= ε,

lim
k→∞

∥∥∥ζ2mk (ω) − ζ2nk−1 (ω)
∥∥∥

E0
= ε

and

lim
k→∞

∥∥∥ζ2mk+1 (ω) − ζ2nk−1 (ω)
∥∥∥

E0
= ε.

For each k ∈N, we obtain that∥∥∥ζ2mk+1 (ω) − ζ2nk (ω)
∥∥∥

E0
=

∥∥∥ζ2mk+1 (c, ω) − ζ2nk (c, ω)
∥∥∥

E
≤

∥∥∥S
(
ω, ζ2mk (ω)

)
− T

(
ω, ζ2nk−1 (ω)

)∥∥∥
E

≤ ψ(max{
∥∥∥ζ2mk (ω) − ζ2nk−1 (ω)

∥∥∥
E0
,
∥∥∥ζ2mk (c, ω) − S

(
ω, ζ2mk (ω)

)∥∥∥
E ,

∥∥∥ζ2nk−1 (c, ω) − T
(
ω, ζ2nk−1 (ω)

)∥∥∥
E ,

1
2 [
∥∥∥ζ2mk (c, ω) − T

(
ω, ζ2nk−1 (ω)

)∥∥∥
E +

∥∥∥ζ2nk−1 (c, ω) − S
(
ω, ζ2nk (ω)

)∥∥∥
E]})

≤ ψ(max{
∥∥∥ζ2mk (ω) − ζ2nk−1 (ω)

∥∥∥
E0
,
∥∥∥ζ2mk (c, ω) − ζ2mk+1 (c, ω)

∥∥∥
E ,

∥∥∥ζ2nk−1 (c, ω) − ζ2nk (c, ω)
∥∥∥

E ,
1
2 [
∥∥∥ζ2mk (c, ω) − ζ2nk (c, ω)

∥∥∥
E +

∥∥∥ζ2nk−1 (c, ω) − ζ2nk+1 (c, ω)
∥∥∥

E]})
≤ ψ(max{

∥∥∥ζ2mk (ω) − ζ2nk−1 (ω)
∥∥∥

E0
,
∥∥∥ζ2mk (ω) − ζ2mk+1 (ω)

∥∥∥
E0
,
∥∥∥ζ2nk−1 (ω) − ζ2nk (ω)

∥∥∥
E0
,

1
2 [
∥∥∥ζ2mk (ω) − ζ2nk (ω)

∥∥∥
E0

+
∥∥∥ζ2nk−1 (ω) − ζ2nk+1 (ω)

∥∥∥
E0

]})
≤ ψ(max{

∥∥∥ζ2mk (ω) − ζ2nk−1 (ω)
∥∥∥

E0
,
∥∥∥ζ2mk (ω) − ζ2mk+1 (ω)

∥∥∥
E0
,
∥∥∥ζ2nk−1 (ω) − ζ2nk (ω)

∥∥∥
E0
,

1
2 [
∥∥∥ζ2mk (ω) − ζ2nk (ω)

∥∥∥
E0

+
∥∥∥ζ2nk−1 (ω) − ζ2nk (ω)

∥∥∥
E0

+
∥∥∥ζ2nk (ω) − ζ2nk+1 (ω)

∥∥∥
E0

]}).
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By taking limit of both sides, we have

ε ≤ ψ (ε) < ε,

which is a contradiction. It follows that the sequence {ζ2n (ω)} is a Cauchy sequence and so {ζn (ω)} is
a Cauchy sequence. Since E0 is complete, therefore {ζn (ω)} is a convergent sequence. Suppose that
lim
n→∞

ζn (ω) = ζ (ω) for some ζ (ω) ∈ E0. Since <c is algebraically closed with respect to the norm topology,

we have ζ (ω) ∈ <c. Moreover, we also obtain that

lim
n→∞

ζ2n+1 (ω) = ζ (ω) = lim
n→∞

ζ2n+2 (ω) .

Now, we will prove that ζ (ω) is a PPF dependent random fixed point of S. Using (8), we obtain that

‖S (ζ (ω)) − ζ (c, ω)‖E
≤ ‖S (ζ (ω)) − ζ2n+2 (c, ω)‖E + ‖ζ2n+2 (c, ω) + ζ (c, ω)‖E
≤ ‖S (ζ (ω)) − T (ζ2n+1 (ω))‖E + ‖ζ2n+2 (ω) + ζ (ω)‖E0

≤ ψ(max{‖ζ (ω) − ζ2n+1 (ω)‖E0
, ‖ζ (c, ω) − S (ζ (ω))‖E , ‖ζ2n+1 (c, ω) − T (ζ2n+1 (ω))‖E ,

1
2 [‖ζ (c, ω) − T (ζ2n+1 (ω))‖ + ‖ζ2n+1 (c, ω) − S (ζ (ω))‖E]}) + ‖ζ2n+2 (ω) + ζ (ω)‖E0

≤ ψ(max{‖ζ (ω) − ζ2n+1 (ω)‖E0
, ‖ζ (c, ω) − S (ζ (ω))‖E , ‖ζ2n+1 (c, ω) − ζ2n+2 (c, ω)‖E ,

1
2 [‖ζ (c, ω) − ζ2n+2 (c, ω)‖E + ‖ζ2n+1 (c, ω) − S (ζ (ω))‖E]}) + ‖ζ2n+2 (ω) + ζ (ω)‖E0

≤ ψ(max{‖ζ (ω) − ζ2n+1 (ω)‖E0
, ‖ζ (c, ω) − S (ζ (ω))‖E , ‖ζ2n+1 (ω) − ζ2n+2 (ω)‖E0

,
1
2 [‖ζ (ω) − ζ2n+2 (ω)‖E0

+ ‖ζ2n+1 (c, ω) − S (ζ (ω))‖E]}) + ‖ζ2n+2 (ω) + ζ (ω)‖E0
.

Letting n → ∞, we obtain that ‖S (ζ (ω)) − ζ (c, ω)‖E = 0. Therefore S (ζ (ω)) = ζ (c, ω). Similarly, we can
prove that T (ζ (ω)) = ζ (c, ω). This implies that ζ (ω) is a PPF dependent random fixed point of S and T.

Remark 3.9. Define a function ψ : [0,+∞) → [0,+∞) by ψ (t) = λt for all t ∈ [0,+∞) and 0 < λ < 1. Therefore
ψ is a continuous nondecreasing function and ψ (t) < t for all t ∈ [0,+∞) and ψ (0) = 0. Then, Theorem 3.4. is a
special case of Theorem 3.8.

4. Random Coincidence Points with PPF Dependence

Definition 4.1. Let A : Ω × E0 → E and S : Ω × E0 → E0 be two random operators. A point ζ∗ (ω) ∈ E0 is called
a PPF dependent random coincidence point of A and S if A (ω, ζ∗ (ω)) = S (ω, ζ∗ (c, ω)) for some c ∈ I and ω ∈ Ω.
Any statement that guarantees the existence of such a random coincidence point is called a random coincidence point
theorem with PPF dependence.

Definition 4.2. The random operators A : Ω×E0 → E and S : Ω×E0 → E0 are said to satisfy a condition of strong
Ćirić type generalized random contraction (C) if for a given c ∈ I and for each ω ∈ Ω,∥∥∥A (ω, ζ) − A

(
ω, η

)∥∥∥
E ≤ λ (ω) max{

∥∥∥S (ω, ζ (c, ω)) − S
(
ω, η (c, ω)

)∥∥∥
E , ‖S (ω, ζ (c, ω)) − A (ω, ζ (ω))‖E ,∥∥∥S

(
ω, η (c, ω)

)
− A

(
ω, η (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S (ω, ζ (c, ω)) − A

(
ω, η (ω)

)∥∥∥
E +

∥∥∥S
(
ω, η (c, ω)

)
− A (ω, ζ (ω))

∥∥∥
E]}

(12)

for all ζ, η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 < λ (ω) < 1 for all ω ∈ Ω.

Definition 4.3. The random operators A : Ω × E0 → E and S : Ω × E0 → E0 are said to satisfy a condition of Ćirić
type generalized random contraction (C) if for a given c ∈ I and for each ω ∈ Ω,∥∥∥A (ω, ζ) − A

(
ω, η

)∥∥∥
E ≤ λ (ω) max{

∥∥∥S (ω, ζ (ω)) − S
(
ω, η (ω)

)∥∥∥
E0
, ‖S (ω, ζ (c, ω)) − A (ω, ζ (ω))‖E ,∥∥∥S

(
ω, η (c, ω)

)
− A

(
ω, η (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S (ω, ζ (c, ω)) − A

(
ω, η (ω)

)∥∥∥
E +

∥∥∥S
(
ω, η (c, ω)

)
− A (ω, ζ (ω))

∥∥∥
E]}

(13)

for all ζ, η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 < λ (ω) < 1 for all ω ∈ Ω.
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Theorem 4.4. Let A : Ω×E0 → E and S : Ω×E0 → E0 be two random operators satisfying a Ćirić type generalized
random contraction (C). Further suppose that

(a) A (Ω × E0) ⊂ S (Ω × E0) (c)
(b) S (E0) is complete, and
(c) S (ω, ·) is continuous.
If<c is algebraically and topologically closed with respect to the difference, then A and S have a PPF dependent

random coincidence point in<c.

Proof. Let µ0 ∈ E0 be arbitrary. By hypothesis, A
(
ω, µ0

)
∈ E. Suppose that A

(
ω, µ0

)
= x1 (ω), where

the function x1 : Ω → E is measurable. Since A (Ω × E0) ⊂ S (Ω × E0) (c), choose a measurable function
µ1 : Ω→ E0 such that x1 (ω) = S

(
ω, µ1 (c, ω)

)
= ζ1 (c, ω) and

‖ζ1 (c, ω) − ζ0 (c)‖E = ‖ζ1 (ω) − ζ0‖E0
.

Again, by hypothesis, A
(
ω, µ1

)
∈ E. Suppose that A

(
ω, µ1

)
= x2 (ω). Again since A (Ω × E0) ⊂ S (Ω × E0) (c),

choose a measurable function µ2 ∈ E0 such that x2 (ω) = S
(
ω, µ2 (c, ω)

)
= ζ2 (c, ω) and

‖ζ2 (c, ω) − ζ1 (c)‖E = ‖ζ2 (ω) − ζ1 (ω)‖E0
.

Continuing in this way, by induction, we obtain

A
(
ω, µn (ω)

)
= S

(
ω, µn+1 (c, ω)

)
, S

(
ω, µn+1 (ω)

)
= ζn+1 (ω) (14)

and

‖ζn (c, ω) − ζn+1 (c)‖E = ‖ζn (ω) − ζn+1‖E0
. (15)

for all n = 0, 1, 2, · · · .
We claim that {ζn (ω)} is a Cauchy sequence in E0. Now for n = 0, we have

‖ζ1 (ω) − ζ2 (ω)‖E0
= ‖ζ1 (c, ω) − ζ2 (c)‖E =

∥∥∥A
(
ω, µ0 (ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E

≤ λ (ω) max{
∥∥∥S

(
ω, µ0 (ω)

)
− S

(
ω, µ1 (ω)

)∥∥∥
E0
,
∥∥∥S

(
ω, µ0 (c, ω)

)
− A

(
ω, µ0 (ω)

)∥∥∥
E ,∥∥∥S

(
ω, µ1 (c, ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, µ0 (c, ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E +

∥∥∥S
(
ω, µ1 (c, ω)

)
− A

(
ω, µ0 (ω)

)∥∥∥
E]}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ0 (c, ω) − ζ1 (c, ω)‖E ,

∥∥∥µ1 (c, ω) − µ2 (c, ω)
∥∥∥

E ,
1
2 [‖ζ0 (c, ω) − ζ2 (c, ω)‖E + ‖ζ1 (c, ω) − ζ1 (c, ω)‖]}
≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0

, ‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ1 (ω) − ζ2 (ω)‖E0

,
1
2 [‖ζ0 (ω) − ζ2 (ω)‖E0

+ ‖ζ1 (ω) − ζ1 (ω)‖E0
]}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, ‖ζ1 (ω) − ζ2 (ω)‖E0

, 1
2 ‖ζ0 (ω) − ζ2 (ω)‖E0

}

≤ λ (ω) max{‖ζ0 (ω) − ζ1 (ω)‖E0
, 1

2 [‖ζ0 (ω) − ζ1 (ω)‖E0
+ ‖ζ1 (ω) − ζ2 (ω)‖E0

]}
≤ λ (ω) ‖ζ0 (ω) − ζ1 (ω)‖E0

.

Similarly,

‖ζ2 (ω) − ζ3 (ω)‖E0
=

∥∥∥S
(
ω, µ2 (c, ω)

)
− S

(
ω, µ3 (c, ω)

)∥∥∥
E =

∥∥∥A
(
ω, µ2 (ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E

≤ λ (ω) max{
∥∥∥S

(
ω, µ2 (ω)

)
− S

(
ω, µ1 (ω)

)∥∥∥
E0
,
∥∥∥S

(
ω, µ2 (c, ω)

)
− A

(
ω, µ2 (ω)

)∥∥∥
E ,∥∥∥S

(
ω, µ1 (c, ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, µ2 (c, ω)

)
− A

(
ω, µ1 (ω)

)∥∥∥
E

+
∥∥∥S

(
ω, µ1 (c, ω)

)
− A

(
ω, µ2 (ω)

)∥∥∥
E]}

≤ λ (ω) max{‖ζ2 (ω) − ζ1 (ω)‖E0
, ‖ζ2 (c, ω) − ζ3 (c, ω)‖E , ‖ζ1 (c, ω) − ζ2 (c, ω)‖E ,

1
2 [‖ζ2 (c, ω) − ζ2 (c, ω)‖E + ‖ζ1 (c, ω) − ζ3 (c, ω)‖]}
≤ λ (ω) max{‖ζ2 (ω) − ζ1 (ω)‖E0

, ‖ζ2 (ω) − ζ3 (ω)‖E0
, ‖ζ1 (ω) − ζ2 (ω)‖E0

,
1
2 [‖ζ2 (ω) − ζ2 (ω)‖E0

+ ‖ζ1 (ω) − ζ3 (ω)‖E0
]}

≤ λ (ω) max{‖ζ1 (ω) − ζ2 (ω)‖E0
, ‖ζ2 (ω) − ζ3 (ω)‖E0

, 1
2 ‖ζ1 (ω) − ζ3 (ω)‖E0

}

≤ λ (ω) max{‖ζ1 (ω) − ζ2 (ω)‖E0
, 1

2 [‖ζ1 (ω) − ζ2 (ω)‖E0
+ ‖ζ2 (ω) − ζ3 (ω)‖E0

]}
≤ λ (ω) ‖ζ1 (ω) − ζ2 (ω)‖E0

.
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Proceeding in this way, by induction, we obtain

‖ζn (ω) − ζn+1 (ω)‖E0
≤ λ ‖ζn−1 (ω) − ζn (ω)‖E0

for all n = 1, 2, 3, · · · .
Hence, repeated application of the above inequality yields

‖ζn (ω) − ζn+1 (ω)‖E0
≤ λn

‖ζ0 (ω) − ζ1 (ω)‖E0

for all n = 1, 2, 3, · · · .If m > n, by triangle inequality, we obtain

‖ζn (ω) − ζm (ω)‖E0
≤ ‖ζn (ω) − ζn+1 (ω)‖E0

+ · · · + ‖ζm−1 (ω) − ζm (ω)‖E0

≤ λn
‖ζ0 (ω) − ζ1 (ω)‖E0

+ · · · + λm−1
‖ζ0 (ω) − ζ1 (ω)‖E0

≤ (λn + · · · + λm−1) ‖ζ0 (ω) − ζ1 (ω)‖E0

≤ [ λn

1−λ ] ‖ζ0 (ω) − ζ1 (ω)‖E0
.

Hence,

lim
m>n→∞

‖ζn (ω) − ζm (ω)‖E0
= 0.

This shows that {ζn (ω)} is a Cauchy sequence of measurable functions on Ω into E0.Since E0 is complete,
{ζn (ω)} and every subsequence of it converges to a limit point ζ∗ (ω) in E0, that is,

lim
n→∞

ζn (ω) = lim
n→∞

S
(
ω, µn (ω)

)
= ζ∗ (ω) ,

lim
n→∞

ζn (c, ω) = lim
n→∞

A
(
ω, µn (ω)

)
= ζ∗ (c, ω) .

From continuity of S it follows that

ζ∗ (ω) = lim
n→∞

ζn (ω) = lim
n→∞

S
(
ω, µn (ω)

)
= S

(
ω, lim

n→∞
µn (ω)

)
= S

(
ω, µ∗ (ω)

)
.

Now, we prove that µ∗ (ω) is a PPF dependent random coincidence point of A and S. Assume contrary that
µ∗ (ω) is not a random coincidence point of A and S. Then, by (13), we obtain∥∥∥A

(
ω, µ∗ (ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

=
∥∥∥A

(
ω, µ∗ (ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E +

∥∥∥A
(
ω, µn (ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

≤

∥∥∥A
(
ω, µ∗ (ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E +

∥∥∥S
(
ω, µn (c, ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

≤ λ (ω) max{
∥∥∥S

(
ω, µ∗ (ω)

)
− S

(
ω, µn (ω)

)∥∥∥
E0
,
∥∥∥S

(
ω, µ∗ (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E ,∥∥∥S

(
ω, µn (c, ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, µ∗ (c, ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E

+
∥∥∥S

(
ω, µn (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E]} +

∥∥∥S
(
ω, µn (c, ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

≤ λ (ω) max{‖ζ∗ (ω) − ζn (ω)‖E0
,
∥∥∥S

(
ω, µ∗ (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E ,

S
(
ω, µn (c, ω)

)
− A

(
ω, µ∗ (ω)

)
E ,

1
2 [
∥∥∥S

(
ω, µ∗ (c, ω)

)
− S

(
ω, µn (c, ω)

)∥∥∥
E

+
∥∥∥S

(
ω, µn (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E} +

∥∥∥S
(
ω, µn (c, ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

By taking limit as n→∞, we have∥∥∥A
(
ω, µ∗ (ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E

≤ λ (ω) max{0,
∥∥∥S

(
ω, µ∗ (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E , 0,

1
2 [0 +

∥∥∥S
(
ω, µ∗ (c, ω)

)
− A

(
ω, µ∗ (ω)

)∥∥∥
E]}

= λ (ω)
∥∥∥A

(
ω, µ∗ (ω)

)
− S

(
ω, µ∗ (c, ω)

)∥∥∥
E ,

which leads to a contradiction since 0 < λ (ω) < 1. Hence A
(
ω, µ∗ (ω)

)
= S

(
ω, µ∗ (c, ω)

)
. Thus µ∗ (ω) is a PPF

dependent random coincidence point of A and S.
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We now prove the existence of PPF dependent coincidence points for mapping satisfying a weaker
contractive condition than defined in (12) (without using topological closedness of the Razumikhin class.

Definition 4.5. The random operators A : Ω × E0 → E and S : Ω × E0 → E0 are said to satisfy a condition of Ćirić
type generalized random ψ-contraction (C) if for a given c ∈ I and for each ω ∈ Ω,∥∥∥A (ω, ζ) − A

(
ω, η

)∥∥∥
E

≤ ψ(max{
∥∥∥S (ω, ζ (ω)) − S

(
ω, η (ω)

)∥∥∥
E0
,

‖S (ω, ζ (c, ω)) − A (ω, ζ (ω))‖E ,
∥∥∥S

(
ω, η (c, ω)

)
− A

(
ω, η (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S (ω, ζ (c, ω)) − A

(
ω, η (ω)

)∥∥∥
E +

∥∥∥S
(
ω, η (c, ω)

)
− A (ω, ζ (ω))

∥∥∥
E]}.

(16)

Theorem 4.6. Let A : Ω×E0 → E and S : Ω×E0 → E0 be two random operators satisfying a Ćirić type generalized
random ψ-contraction (C). Further suppose that

(a) A (Ω × E0) ⊂ S (Ω × E0) (c)
(b) S (E0) is complete, and
(c) S (ω, ·) is continuous.
If<c is algebraically closed with respect to the difference, then A and S have a PPF dependent random

coincidence point in<c.

Proof. Let µ0 ∈ E0 be arbitrary. By hypothesis, A
(
ω, µ0

)
∈ E. Suppose that A

(
ω, µ0

)
= x1 (ω), where the func-

tion x1 : Ω→ E is measurable. Since A (Ω × E0) ⊂ S (Ω × E0) (c), choose a measurable function µ1 : Ω→ E0
such that x1 (ω) = S

(
ω, µ1 (c, ω)

)
= α1 (c, ω) and ‖α1 (w) − α0 (ω)‖E0

= ‖α1 (c,w) − α0 (c, ω)‖E. Since A
(
ω, µ1

)
∈

E0 and by assumption, we have A
(
ω, µ1

)
= x2 (ω) for some x2 (ω) ∈ E. Again since A (Ω × E0) ⊂ S (Ω × E0) (c),

choose µ2 ∈ E0 such that x2 (ω) = S
(
ω, µ2 (c, ω)

)
= α2 (c, ω) and ‖α2 (w) − α1 (ω)‖E0

= ‖α2 (c,w) − α1 (c, ω)‖E.
By continuing the process, we can construct the sequence {αn (ω)} such that

A
(
ω, µn (ω)

)
= S

(
ω, µn+1 (c, ω)

)
, S

(
ω, µn+1 (ω)

)
= αn+1 (ω) (17)

and

‖αn (w) − αn+1 (ω)‖E0
= ‖αn (c,w) − αn+1 (c, ω)‖E (18)

for all n ∈N∪ {0}. We will show that {αn (ω)} is a Cauchy sequence in E0.If αN = αN+1 for some N ∈N, then,
by (16), (17) and (18) we have

‖αN+1 (ω) − αN+2 (ω)‖E0
= ‖αN+1 (c, ω) − αN+2 (c, ω)‖E

=
∥∥∥A

(
ω, µN (ω)

)
− A

(
ω, µN+1 (ω)

)∥∥∥
E

≤ ψ(max{
∥∥∥S

(
ω, µN (ω)

)
− S

(
ω, µN+1 (ω)

)∥∥∥
E0
,
∥∥∥S

(
ω, µN (c, ω)

)
− A

(
ω, µN (ω)

)∥∥∥
E ,∥∥∥S

(
ω, µN+1 (c, ω)

)
− A

(
ω, µN+1 (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, µN (c, ω)

)
− A

(
ω, µN+1 (ω)

)∥∥∥
E

+
∥∥∥S

(
ω, µN+1 (c, ω)

)
− A

(
ω, µN (ω)

)∥∥∥
E]})

≤ ψ(max{‖αN (ω) − αN+1 (ω)‖E0
, ‖αN (c, ω) − αN+1 (c, ω)‖E ,

‖αN+1 (c, ω) − αN+2 (c, ω)‖E ,
1
2 [‖αN (c, ω) − αN+2 (c, ω)‖E

+ ‖αN+1 (c, ω) − αN+2 (c, ω)‖E]})
≤ ψ(max{‖αN (ω) − αN+1 (ω)‖E0

, ‖αN (ω) − αN+1 (ω)‖E0
, ‖αN+1 (ω) − αN+2 (ω)‖E0

,
1
2 ‖αN (ω) − αN+2 (ω)‖E0

})
≤ ψ(max{‖αN (ω) − αN+1 (ω)‖E0

, ‖αN+1 (ω) − αN+2 (ω)‖E0
,

1
2 ‖αN (ω) − αN+2 (ω)‖E0

})
≤ ψ(max{‖αN (ω) − αN+1 (ω)‖E0

, ‖αN+1 (ω) − αN+2 (ω)‖E0
,

1
2 [‖αN (ω) − αN+1 (ω)‖E0

+ ‖αN+1 (ω) − αN+2 (ω)‖E0
]})

≤ ψ(max{‖αN (ω) − αN+1 (ω)‖E0
, ‖αN+1 (ω) − αN+2 (ω)‖E0

})
≤ ψ(‖αN+1 (ω) − αN+2 (ω)‖E0

).



N. Hussain et al. / Filomat 31:3 (2017), 759–779 772

Therefore αN+1 (ω) = αN+2 (ω). By mathematical induction, we obtain that αN (ω) = αN+k (ω) for all k ∈ N.
This implies that {αn (ω)} is a constant sequence for n ≥ N. Thus {αn (ω)} is a Cauchy sequence in E0.
Suppose that αn (ω) , αn+1 (ω) for all n ∈N. Again, by (16), (17) and (18), we have for each n ∈N

‖αn+1 (ω) − αn+2 (ω)‖E0
= ‖αn+1 (c, ω) − αn+2 (c, ω)‖E

=
∥∥∥A

(
ω, µn (ω)

)
− A

(
ω, µn+1 (ω)

)∥∥∥
E

≤ ψ(max{
∥∥∥S

(
ω, µn (ω)

)
− S

(
ω, µn+1 (ω)

)∥∥∥
E0
,
∥∥∥S

(
ω, µn (c, ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E ,∥∥∥S

(
ω, µn+1 (c, ω)

)
− A

(
ω, µn+1 (ω)

)∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, µn (c, ω)

)
− A

(
ω, µn+1 (ω)

)∥∥∥
E

+
∥∥∥S

(
ω, µn+1 (c, ω)

)
− A

(
ω, µn (ω)

)∥∥∥
E]})

≤ ψ(max{‖αn (ω) − αn+1 (ω)‖E0
, ‖αn (c, ω) − αn+1 (c, ω)‖E ,

‖αn+1 (c, ω) − αn+2 (c, ω)‖E ,
1
2 [‖αn (c, ω) − αn+2 (c, ω)‖E

+ ‖αn+1 (c, ω) − αn+1 (c, ω)‖E]})
≤ ψ(max{‖αn (ω) − αn+1 (ω)‖E0

, ‖αn (ω) − αn+1 (ω)‖E0
, ‖αn+1 (ω) − αn+2 (ω)‖E0

,
1
2 ‖αn (ω) − αn+2 (ω)‖E0

})
≤ ψ(max{‖αn (ω) − αn+1 (ω)‖E0

, ‖αn+1 (ω) − αn+2 (ω)‖E0
,

1
2 ‖αn (ω) − αn+2 (ω)‖E0

})
≤ ψ(max{‖αn (ω) − αn+1 (ω)‖E0

, ‖αn+1 (ω) − αn+2 (ω)‖E0
,

1
2 [‖αn (ω) − αn+1 (ω)‖E0

+ ‖αn+1 (ω) − αn+2 (ω)‖E0
]})

≤ ψ(max{‖αn (ω) − αn+1 (ω)‖E0
, ‖αn+1 (ω) − αn+2 (ω)‖E0

});

if

max{‖αn (ω) − αn+1 (ω)‖E0
, ‖αn+1 (ω) − αn+2 (ω)‖E0

}

= ‖αn+1 (ω) − αn+2 (ω)‖E0
,

then

‖αn+1 (ω) − αn+2 (ω)‖E0
≤ ψ

(
‖αn+1 (ω) − αn+2 (ω)‖E0

)
< ‖αn+1 (ω) − αn+2 (ω)‖E0

.

This is a contradiction. Therefore

‖αn+1 (ω) − αn+2 (ω)‖E0
≤ ψ

(
‖αn (ω) − αn+1 (ω)‖E0

)
< ‖αn (ω) − αn+1 (ω)‖E0

.

It follows that ‖αn+1 (ω) − αn+2 (ω)‖E0
≤ ‖αn (ω) − αn+1 (ω)‖E0

for all n ∈N. Since the sequence
{
‖αn (ω) − αn+1 (ω)‖E0

}
is a nonincreasing sequence of real numbers, we obtain that it is a convergent sequence. Suppose that
lim
n→∞
‖αn (ω) − αn+1 (ω)‖E0

= α for some nonnegative real number α. Now, we have to show that α = 0.
Assume contrary that α > 0. Since

‖αn+1 (ω) − αn+2 (ω)‖E0
≤ ψ

(
‖αn (ω) − αn+1 (ω)‖E0

)
for all n ∈N and the continuity of ψ, we have

α ≤ ψ (α) < α,

which leads a contradiction. Thus α = 0. We will prove that {αn (ω)} is a Cauchy sequence in E0. It suffices
to prove that the sequence {α2n (ω)} is a Cauchy sequence in E0. Assume contrary that {α2n (ω)} is not a
Cauchy sequence. It follows that there exist ε > 0 and two sequences of even positive integers {2mk} and
{2nk} satisfying 2mk > 2nk > k for each k ∈N and∥∥∥α2mk (ω) − α2nk (ω)

∥∥∥
E0
≥ ε. (19)
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Let {2mk} be the sequence of least positive integers exceeding {2nk}which satisfies equation (19) and∥∥∥α2mk−2 (ω) − α2nk (ω)
∥∥∥

E0
< ε. (20)

Now, we will show that lim
k→∞

∥∥∥α2mk (ω) − α2nk (ω)
∥∥∥

E0
= ε. Since

∥∥∥α2mk (ω) − α2nk (ω)
∥∥∥

E0
≥ ε for all k ∈ N, we

have lim
k→∞

∥∥∥α2mk (ω) − α2nk (ω)
∥∥∥

E0
≥ ε. For each k ∈N, we obtain that∥∥∥α2mk (ω) − α2nk (ω)

∥∥∥
E0

≤

∥∥∥α2mk (ω) − α2mk−1 (ω)
∥∥∥

E0
+

∥∥∥α2mk−1 (ω) − α2mk−2 (ω)
∥∥∥

E0
+

∥∥∥α2mk−2 (ω) − α2nk(ω)

∥∥∥
E0

≤

∥∥∥α2mk (ω) − α2mk−1 (ω)
∥∥∥

E0
+

∥∥∥α2mk−1 (ω) − α2mk−2 (ω)
∥∥∥

E0
+ ε.

This implies that lim
k→∞

∥∥∥α2mk (ω) − α2nk (ω)
∥∥∥

E0
≤ ε. Therefore

lim
k→∞

∥∥∥α2mk (ω) − α2nk (ω)
∥∥∥

E0
= ε.

Similarly, we can prove that

lim
k→∞

∥∥∥α2mk+1 (ω) − α2nk (ω)
∥∥∥

E0
= ε, lim

k→∞

∥∥∥α2mk (ω) − α2nk−1 (ω)
∥∥∥

E0
= ε

and

lim
k→∞

∥∥∥α2mk+1 (ω) − α2nk−1 (ω)
∥∥∥

E0
= ε.

Now, ∥∥∥α2nk (ω) − α2mk+1 (ω)
∥∥∥

E0
=

∥∥∥α2nk (c, ω) − α2mk+1 (c, ω)
∥∥∥

E
=

∥∥∥A
(
ω, α2nk−1 (ω)

)
− A

(
ω, α2mk (ω)

)∥∥∥
≤ ψ(max{

∥∥∥S
(
ω, α2nk−1 (ω)

)
− S

((
ω, α2mk (ω)

))∥∥∥
E0
,∥∥∥S

(
ω, α2nk−1 (c, ω)

)
− A

((
ω, α2nk−1 (ω)

))∥∥∥
E ,∥∥∥S

((
ω, α2mk (c, ω)

))
− A

((
ω, α2mk (ω)

))∥∥∥
E ,

1
2 [
∥∥∥S

(
ω, α2nk−1 (c, ω)

)
− A

((
ω, α2mk (ω)

))∥∥∥
E

+
∥∥∥S

((
ω, α2mk (c, ω)

))
− A

((
ω, α2nk−1 (ω)

))∥∥∥
E]})

≤ ψ(max{
∥∥∥α2nk−1 (ω) − α2mk (ω)

∥∥∥
E0
,
∥∥∥α2nk−1 (c, ω) − α2nk (c, ω)

∥∥∥
E ,∥∥∥α2mk (c, ω) − α2mk+1 (c, ω)

∥∥∥
E ,

1
2 [
∥∥∥α2nk−1 (c, ω) − α2mk+1 (c, ω)

∥∥∥
E

+
∥∥∥α2mk (c, ω) − α2nk (c, ω)

∥∥∥
E]})

≤ ψ(max{
∥∥∥α2nk−1 (ω) − α2mk (ω)

∥∥∥
E0
,
∥∥∥α2nk−1 (ω) − α2nk (ω)

∥∥∥
E0
,∥∥∥α2mk (ω) − α2mk+1 (ω)

∥∥∥
E0
, 1

2 [
∥∥∥α2nk−1 (ω) − α2mk+1 (ω)

∥∥∥
E0

+
∥∥∥α2mk (ω) − α2nk (ω)

∥∥∥
E0

]}),

gives by taking limit on both sides,

ε ≤ ψ (ε) < ε,

a contradiction. It follows that the sequence {α2n (ω)} is a Cauchy sequence and so for {αn (ω)} is a Cauchy
sequence in E0. Therefore, {S (ω, αn (ω))} is a Cauchy sequence in S (<c). By the completeness of S (<c), we
have {S (ω, αn (ω))} is a convergent sequence. Suppose that lim

n→∞
S (ω, αn (ω)) =

∗

α (ω) for some
∗

α in S (<c).

Therefore
∗

α (ω) = S (ω, α (ω)) for some α ∈ <c. Moreover, we have

lim
n→∞

A (ω, αn (ω)) = lim
n→∞

S (ω, αn+1 (ω)) = S (ω, α (c, ω))
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Now, we shall prove that α (ω) is a PPF dependent random coincidence fixed point of A and S. By using
(16), we obtain that

‖A (ω, α (ω)) − S (ω, α (c, ω))‖E = ‖A (ω, α (ω)) − A (ω, αn (ω))‖E
+ ‖A (ω, αn (ω)) − S (ω, α (c, ω))‖E
≤ ‖A (ω, α (ω)) − A (ω, αn (ω))‖E + ‖S (ω, αn+1 (ω)) − S (ω, α (c, ω))‖E
≤ ψ(max{‖S (ω, α (ω)) − S (ω, αn (ω))‖E0

, ‖S (ω, α (c, ω)) − A (ω, α (ω))‖E ,
‖S (ω, αn (ω)) − A (ω, αn (ω))‖E ,

1
2 [‖S (ω, α (c, ω)) − A (ω, αn (ω))‖E

+ ‖S (ω, αn (ω)) − A (ω, α (ω))‖E]}) + ‖S (ω, αn+1 (ω)) − S (ω, α (c, ω))‖E .

By taking lim
n→∞

, we have A (ω, α (ω)) = S (ω, α (c, ω)). Hence α (ω) is a PPF dependent random coincidence
point of A and S.

Remark 4.7. Define a function ψ : [0,+∞) → [0,+∞) by ψ (t) = λt for all t ∈ [0,+∞) and 0 < λ < 1. Therefore
ψ is a continuous nondecreasing function and ψ (t) < t for all t ∈ [0,+∞) and ψ (0) = 0. Then, Theorem 4.4. is a
special case of Theorem 4.6.

5. Iterative Approximation of PPF Dependent Random Common Fixed Points

Let two random operators S,T : Ω × E0 → E, let CF (ω, (S,T)) denote the class of all PPF dependent
random common fixed points of S and T in E0, that is,

CF (ω, (S,T)) = {ζ ∈ E0 : S (ω, ζ∗ (ω)) = ζ∗ (c, ω) = T (ω, ζ∗ (ω))}.

Definition 5.1. Two random operators S,T : Ω × E0 → E are generalized nonexpansive if∥∥∥S (ω, ζ (ω)) − T
(
ω, η (ω)

)∥∥∥
≤ max{

∥∥∥ζ (ω) − η (ω)
∥∥∥

E0
, 1

2 [‖ζ (c, ω) − S (ω, ζ (ω))‖E
+

∥∥∥η (c, ω) − T
(
ω, η (ω)

)∥∥∥
E], 1

2 [
∥∥∥ζ (c, ω) − T

(
ω, η (ω)

)∥∥∥
E

+
∥∥∥η (c, ω) − S (ω, ζ (ω))

∥∥∥
E]}

(21)

for all ζ, η ∈ E0.

Theorem 5.2. Suppose that S,T : Ω × E0 → E are generalized nonexpansive and that CF (ω, (S,T)) , ∅. Suppose
that<c is topologically and algebraically closed with respect to the difference and {ζn (ω)} is a sequence of iterates of
S and T defined as in Theorem 3.4 satisfying for some c ∈ I,

‖ζn (ω) − ζ (ω)‖E0
= ‖ζn (c, ω) − ζ (c, ω)‖E (22)

for all ζ (ω) ∈ CF (ω, (S,T)). Then {ζn (ω)} converges to a PPF dependent random common fixed point of S and T if
and only if

lim
n→∞

dE0 (ζn (ω) ,CF (ω, (S,T))) = 0. (23)

Proof. First consider that lim
n→∞

dE0 (ζn (ω) ,CF (ω, (S,T))) = 0. Then

lim
n→∞

dE0 (ζn (ω) ,CF (ω, (S,T))) = 0 and lim
n→∞

dE0 (ζ2n+2 (ω) ,CF (ω, (S,T))) = 0. (24)

Similarly, for ζ∗ (ω) ∈ CF (ω, (S,T)),

‖S (ω, ζ (ω)) − ζ∗ (c, ω)‖E ≤ ‖ζ (ω) − ζ∗ (c, ω)‖E ,
‖T (ω, ζ (ω)) − ζ∗ (c, ω)‖E ≤ ‖ζ (ω) − ζ∗ (c, ω)‖E

(25)
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for all ζ ∈ E0. Suppose that ζn (ω)→ ζ∗ (ω) for some ζ∗ (ω) ∈ CF (ω, (S,T)). Then,

lim
n→∞

dE0 (ζn (ω) ,CF (ω, (S,T))) = lim
n→∞

[infζ(ω)∈CF(ω,(S,T)) ‖ζn (ω) − ζ (ω)‖E0
]

≤ lim
n→∞
‖ζn (ω) − ζ∗ (ω)‖E0

= 0.

Now assume that lim
n→∞

dE0 (ζn (ω) ,CF (ω, (S,T))) = 0. Then for ε > 0, there exists an n0 ∈N such that

dE0 (ζn (ω) ,CF (ω, (S,T))) < ε
2 (26)

for all n ≥ n0. We claim that {ζn (ω)} is a Cauchy sequence in E0.Now, for any m > n ≥ n0 one has

‖ζm (ω) − ζn (ω)‖E0
≤ ‖ζm (ω) − ζ (ω)‖E0

+ ‖ζ (ω) − ζn (ω)‖E0 (27)

for all ζ (ω) ∈ CF (ω, (S,T)). Now, consider

‖ζ2m+1 (ω) − ζ (ω)‖E0
= ‖ζ2m+1 (c, ω) − ζ (c, ω)‖E

= ‖S (ω, ζ2m (ω)) − ζ (c, ω)‖E
≤ ‖ζ2m (c, ω) − ζ (c, ω)‖E
= ‖T (ω, ζ2m−1 (ω)) − ζ (c, ω)‖E
≤ ‖ζ2m−1 (ω) − ζ (ω)‖E0
...
≤

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0
.

Again,

‖ζ2m+2 (ω) − ζ (ω)‖E0
≤

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0
.

Since m is arbitrary, one has

‖ζm (ω) − ζ (ω)‖E0
≤

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0
. (28)

Similarly,

‖ζn (ω) − ζ (ω)‖E0
≤

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0
(29)

for all ζ (ω) ∈ CF (ω, (S,T)). Hence, from (27), (28) and (29) it follows that

‖ζm (ω) − ζn (ω)‖E0
≤ 2

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0

for all ζ (ω) ∈ CF (ω, (S,T)). Taking infimum over CF (ω, (S,T)), we obtain

‖ζm (ω) − ζn (ω)‖E0
≤ 2 infζ(ω)∈CF(ω,(S,T))

∥∥∥ζn0 (ω) − ζ (ω)
∥∥∥

E0

= 2dE0

(
ζn0 (ω) ,CF (ω, (S,T))

)
< ε.

Hence, {ζn (ω)} is a Cauchy sequence in E0. Since E0 is complete, {ζn (ω)} and every subsequence of it
converges to a unique limit point, say ζ∗ (ω) ∈ E0. Now it can be prove as in Theorem 3.4 that S (ω, ζ∗ (ω)) =
ζ∗ (c, ω) = T (ω, ζ∗ (ω)). Thus ζ∗ (ω) ∈ CF (ω, (S,T)).

6. Application to Random Differential and Integral Equations

Fixed point theorems for monotone operators in ordered metric spaces are widely investigated and
have found various applications in differential and integral equations (see [1, 12, 13, 25] and references
therein). In this section, we prove the existence of PPF dependent random solutions under some Lipschitz
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and compactness type conditions. Given the closed and bounded intervals I0 = [−r, 0] and I = [0,T] in R,
for some reals r > 0,T > 0, let % denote the space of continuous real-valued functions defined on I0. We
equip the space % with the supremum norm ‖·‖% defined by

‖ξ‖% = supϑ∈I0
|ξϑ| .

It is clear that % is a Banach space with this norm called the history space of the problem under considera-
tion.For each t ∈ I = [0,T], define a function t→ xt ∈ % by

xt (ϑ) = x (t + ϑ) , ϑ ∈ I0,

where the argument ϑ represents the delay in the argument of solutions.
Let (Ω,X) be a measurable space. Define a mapping x : Ω → C (J,R), we denote a function x (t, ω),

which is continuous in the variable t for each ω → Ω. In this case, we also write x (t, ω) = x (ω) (t). Given
the measurable functions ϕ : Ω → % and x : Ω → C (I,R), consider an initial value problem of functional
random differential equations of delay type (in short FRDE),

x/ (t, ω) = f (t, xt (ω) , ω)
x0 (ω) = ϕ (ω) (30)

for all t ∈ I andω ∈ Ω, where f : I×%×Ω→ R. By a random solution x of FRDE (30) we mean a measurable
function x : Ω → C (J,R) that satisfies the equations in (30) on J, where C (J,R) is the space of continuous
real-valued functions defined on J = I0 ∪ I.

In this section, we will prove the existence of random solutions with PPF dependence for the FRDE (30)
defined on J with the condition of Theorem 3.4. We consider the following hypothesis in what follows.

(H1) The functionω 7−→ f (t, x, ω) is measurable for each t ∈ I and x ∈ % and the function (t, x) 7−→ f (t, x, ω)
is jointly continuous for each ω ∈ Ω.

(H2) There exists a real number M f > 0 such that for each ω ∈ Ω,∣∣∣ f (t, x, ω)
∣∣∣ ≤M f

for all t ∈ I and x ∈ %.
(H3) There exists real number L > 0 such that for each ω ∈ Ω,∣∣∣ f (t, x, ω) − f

(
t, y, ω

)∣∣∣ ≤ L
∥∥∥x − y

∥∥∥
%

for all t ∈ I and x, y ∈ %.

Theorem 6.1. Suppose that the hypotheses (H1)–(H3) hold. If LT < 1, then the FRDE (30) has a unique PPF
dependent random solution defined on J.

Proof. Consider E = C (J,R) which is a separable Banach space. Given a function x ∈ C (J,R), define a
mapping x̂ : I → % by x̂ (t) = xt ∈ % so that x̂ (t) (0) = xt (0) = x (t), t ∈ I and x̂ (0) = x0. Define a set Ê of
functions by

Ê =
{
x̂ = (xt)t∈I : xt ∈ %, x ∈ C (J,R) and x0 = ϕ

}
. (31)

We define a norm on Ê by

‖x̂‖Ê = supt∈I ‖xt‖% . (32)

Clearly, x̂ ∈ C (I0,R) = %. Now, we show that Ê is a Banach space. Let {x̂n} be a Cauchy sequence in Ê and
x̂n (t) = xn

t , then
{(

xn
t

)
t∈I

}
is a Cauchy sequence in % for each t ∈ I. This further implies that

{
xm

t (s)
}

is a Cauchy

sequence in R for each s ∈ [−r, 0]. Then
{
xm

t (s)
}

converges to xt (s) for each t ∈ I0. Since
{
xn

t

}
is a sequence of
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uniformly continuous functions for a fixed t ∈ I, xt (s) is also continuous in s ∈ [−r, 0]. Hence the sequence
{x̂n} converges to x̂ ∈ Ê. Since Ê is complete, moreover, Ê is a separable Banach space. The FRDE (30) is
equivalent to the nonlinear random integral equation

x(t, ω) =


ϕ (0, ω) +

∫ t

0 f (s, xs (ω) , ω) ds, if t ∈ I

ϕ (t, ω) , if t ∈ I0.

Given a measurable function x̂ : Ω→ Ê, the operators S,T : Ω × Ê→ R defined by

S (ω, x̂ (t, ω)) = S (ω, xt (ω))

=
ϕ(0, ω) +

∫ t

0 f (s, xs(ω), ω)ds if t ∈ I
ϕ (t, ω) if t ∈ I0

(33)

and

T
(
ω, ŷ (t, ω)

)
= T

(
ω, yt (ω)

)
=

ϕ (0, ω) +
∫ t

0 1
(
s, ys (ω) , ω

)
ds if t ∈ I

ϕ (t, ω) if t ∈ I0

(34)

satisfy the Ćirić type generalized random contraction. Then (31) is equivalent to the random operator
equations,

S (ω, x̂ (ω)) = x̂ (0, ω) = x̂ (ω) (0)
T
(
ω, ŷ (ω)

)
= ŷ (0, ω) = ŷ (ω) (0) . (35)

Define a sequence {x̂n (ω)} of measurable functions by

S (ω, x̂2n (ω)) = x̂2n+1 (ω) (0) ,T (ω, x̂2n+1 (ω)) = x̂n+2 (ω) (0)
‖x̂n (ω) − x̂n+1 (ω)‖E0

= ‖x̂n (ω) (0) − x̂n+1 (ω) (0)‖E ,
(36)

for n = 1, 2 · · · . Now, we shall show that the operators S and T satisfy the condition (a) of Theorem 3.4
on Ω × Ê. First, we show that the operators S and T are random operators on Ω × Ê. Since hypothesis
(H1) holds, by Caratheodory theorem, the function ω → f (t, x, ω) is measurable for all t ∈ I and x ∈ %. As
integral is the limit of the finite sum of measurable functions, the map

ω 7−→
∫ t

0 f (s, xs (ω) , ω) ds

is measurable. Hence, the operators S (ω, x̂) and T (ω, x̂) are measurable in ω for each x̂ ∈ Ê. Thus, we have
the operators S and T are random operators on Ê into E. Secondly, we show that the random operators S
and T are continuous on Ê. Let ω ∈ Ω be fixed. We show that the continuity of the random operators S and
T in the following two cases.

Case 1: Let t ∈ [0,T] and let {x̂n (ω)} be a sequence of points in Ê such that x̂n (ω) → x̂ (ω) as n → ∞.
Then, by dominated convergence theorem, we have

lim
n→∞

S (ω, x̂n (t, ω)) = lim
n→∞

(ϕ (0, ω) +
∫ t

0 f
(
s, xn

s (ω) , ω
)

ds)

= ϕ (0, ω) + lim
n→∞

(
∫ t

0 f
(
s, xn

s (ω) , ω
)

ds)

= ϕ (0, ω) + (
∫ t

0 lim
n→∞

f
(
s, xn

s (ω) , ω
)

ds)

= ϕ (0, ω) +
∫ t

0 f (s, xs (ω) , ω) ds
= S (ω, x̂ (t, ω))

for all t ∈ [0,T] and for each fixed ω ∈ Ω.
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Case II: Suppose that t ∈ [−r, 0]. Then we have

|S (ω, x̂n (ω)) − S (ω, x̂ (ω))| =
∣∣∣ϕ (t, ω) − ϕ (t, ω)

∣∣∣ = 0

for each fixed ω ∈ Ω. Hence,

lim
n→∞

S(ω), x̂n (t, ω) = S (ω) x̂ (t, ω)

for all t ∈ [−r, 0] and ω ∈ Ω. From case I and case II, we conclude that S (ω) is a pointwise continuous
random operator on Ê into itself. Similarly, we can prove that T (ω) is pointwise continuous on Ê.

Now, we show that the families of functions {S (ω, x̂n (ω))} and {T (ω, x̂n (ω))} are uniformly continuous
sets in E for a fixed ω ∈ Ω. We consider the following three cases.

Case I: Let ε > 0 and t1, t2 ∈ [0,T] be arbitrary. Then, we have∣∣∣∣S (
ω, xn

t1
(ω)

)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣ ≤ ∣∣∣∣∫ t1

0 f
(
s, xn

s (ω) , ω
)

ds −
∫ t2

0 f
(
s, xn

s (ω) , ω
)

ds
∣∣∣∣

≤

∣∣∣∣∫ t1

t2

∣∣∣ f (
s, xn

s (ω) , ω
)

ds
∣∣∣∣∣∣∣

≤M |t1 − t2| .

Choose τ1 = ε
2(M f +1) > 0. Then, if |t1 − t2| < τ1 implies∣∣∣∣S (

ω, xn
t1

(ω)
)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣ < M f ε

2(M f +1)

uniformly for xn
t = x̂n ∈ E0.

Case II: Let t1, t2 ∈ [−r, 0] be arbitrary. Since t 7−→ ϕ (ω, t), is continuous on a compact interval [−r, 0], it
is uniformly continuous there. Hence, for above ε > 0 there exists a τ2 > 0 such that |t1 − t2| < τ1 implies∣∣∣∣S (

ω, xn
t1

(ω)
)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣ =
∣∣∣ϕ (t1, ω) − ϕ (t2, ω)

∣∣∣
≤

ε
2(M f +1)

uniformly for x̂n ∈ E0.
Case III: Let t1 ∈ [−r, 0] and t2 ∈ [0,T] be arbitrary. Choose τ = min {τ1, τ2}. Then, |t1 − t2| < τ implies∣∣∣∣S (

ω, xn
t1

(ω)
)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣
≤

∣∣∣∣S (
ω, xn

t1
(ω)

)
− S

(
ω, xn

0 (ω)
)∣∣∣∣ +

∣∣∣∣S (
ω, xn

0 (ω)
)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣
<

M f ε

2(M f +1) + ε
2(M f +1) = ε

uniformly for x̂n ∈ E0. Thus, in all three cases, |t1 − t2| < τ implies∣∣∣∣S (
ω, xn

t1
(ω)

)
− S

(
ω, xn

t2
(ω)

)∣∣∣∣ < ε
uniformly for all t1, t2 ∈ J and x̂n ∈ E0. This shows that {S (ω, x̂n (ω))} is a sequence of uniformly continuous
functions on J. Hence, it converges uniformly on J. Hence, S (ω, x̂) is a continuous random operator on Ê
for a fixed ω ∈ Ω. Similarly, we can prove that T(ω, x̂) is a continuous random operator on Ê for a fixed
ω ∈ Ω. Now, we show that S and T are random contractions on Ê. Let ω ∈ Ω be fixed. Then, we have∥∥∥S (ω, x̂ (ω)) − S

(
ω, ŷ (ω)

)∥∥∥
E =

∥∥∥S (ω, xt (ω)) − S
(
ω, yt (ω)

)∥∥∥
E

= supt∈I

∣∣∣∣∫ t

0 f (s, xs (ω) , ω) ds −
∫ t

0 f
(
s, ys (ω) , ω

)
ds

∣∣∣∣
≤

∫ T

0 L
∥∥∥xs (ω) − ys (ω)

∥∥∥
%

ds

≤

∫ T

0 L
∥∥∥x̂ (ω) − ŷ (ω)

∥∥∥
Ê ds

≤ LT
∥∥∥x̂ (ω) − ŷ (ω)

∥∥∥
Ê
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for all x̂ (ω) , ŷ (ω) ∈ Ê. Hence, S is a random contraction on Ê with contraction constant α = LT < 1.
Similarly, we can prove that T is a random contraction. Thus, the condition (a) of Theorem 3.4 is satisfied.
Hence, an application of Theorem 3.4 (a) yields that the functional random integral equation (35) has a
random solution with PPF dependence defined on J which implies that the FRDE (30) has a PPF dependent
random solution ζ∗ defined on J and the sequence {ζn (ω)} of measurable functions constructed as in (36)
converges to ζ∗. Moreover, here the Razumikhin class <0, 0 ∈ [−r,T] is C([0,T],R) which is topologically
and algebraically closed with respect to difference, so by Theorem 3.4 (c), ζ∗ is unique random solution with
PPF dependence for the FRDE (30) defined on J.
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