
Filomat 31:3 (2017), 799–808
DOI 10.2298/FIL1703799B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Parallel Implementation of Augmented Lagrangian Method within
L-Shaped Method for Stochastic Linear Programs

Malihe Behboodi-Kahooa, Saeed Ketabchia

a Department of Applied Mathematics, Faculty of Mathematical Sciences,University of Guilan, P. O. Box 416351914, Rasht, Iran

Abstract. In this paper, we study two-stage stochastic linear programming (SLP) problems with fixed
recourse. The problem is often large scale as the objective function involves an expectation over a discrete
set of scenarios. This paper presents a parallel implementation of the augmented Lagrangian method
for solving SLPs. Our parallel method is based on a modified version of the L-shaped method and
reducing linear master and recourse programs to unconstrained maximization of concave differentiable
piecewise quadratic functions. The maximization problem is solved using the generalized Newton method.
The parallel method is implemented in Matlab. Large scale SLP with several millions of variables and
several hundreds of thousands of constraints are solved. The results of uniprocessor and multiprocessor
computations are presented which show that the parallel algorithm is effective.

1. Introduction

Before presenting the mathematical formula of the two-stage stochastic linear program (SLP) model,
we introduce some notation. Let (Ω;ϑ; P) be a discrete probability space and consider ω ∈ Ω which
Ω = {1, 2, . . . ,N} is the set of scenarios with associated probabilities {p(ω1), p(ω2), . . . , p(ωN)} such that∑N

i=1 p(ωi) = 1.
In this paper, consider the following two-stage stochastic linear program (SLP) with fixed recourse and a
finite number of scenarios

min
x∈X

f (x) = cTx + φ(x), X = {x ∈ Rn : Ax = b, x ≥ 0}, (1)

where

φ(x) = E(Q(x, ω)) =

N∑
i=1

Q(x, ωi)p(ωi),

and

Q(x, ω) = min
y∈Rn2
{q(ω)T y |Wy = h(ω) − T(ω)x , y ≥ 0}. (2)

2010 Mathematics Subject Classification. Primary 90C15; Secondary 90C05, 90C20
Keywords. Two-stage stochastic linear programming, Recourse problem, L-Shaped method, Augmented Lagrangian method,

Parallel computing
Received: 07 January 2015; Accepted: 09 January 2015
Communicated by Predrag Stanimirović
This author’s work was supported by Faculty of Mathematical Science Grant in the date 10 July 2011 in University of Guilan.
Email addresses: behboodi.m@webmail.guilan.ac.ir (Malihe Behboodi-Kahoo), sketabchi@guilan.ac.ir (Saeed Ketabchi)

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 800

Here E represents the expectation with respect to ω ∈ Ω. In the second stage q(.) ∈ Rn2 , h(.) ∈ Rm2 and
matrix T(.) ∈ Rm2×n for each realizationω and W ∈ Rm2×n2 is the recourse matrix which we are taking here as
fixed. Also, in the first stage, A ∈ Rm1×n1 , c ∈ Rn1 and b ∈ Rm1 . In this paper, matrices A and W are assumed
to have full row rank and m1 << n1 and m2 << n2.
Assuming that the uncertainties are represented by a finite scenario set, the stochastic program (1)-(2) can
be reformulated [13] as the following deterministic equivalent program

min cTx +

N∑
i=1

q̂iyi

s.t. Ax = b,
Tix + Wyi = hi, i = 1, . . . ,N,
x ≥ 0, yi ≥ 0, i = 1, . . . ,N, (3)

where Ti := T(ωi), hi := h(ωi), yi := y(ωi), qi := q(ωi) and q̂i := ρ(ωi)qi for each realization ωi of the random
variable ω. This problem consists of n1 + N.n2 variables and m1 + N.m2 equality constraints. Usually N is a
very large number. Hence, the stochastic linear programs (1)-(2) or (3) can become huge and very difficult
to solve. The challenge of solving such problems has led to many interesting computational and theoretical
developments and has provided a motivation for more study.

The most common algorithm used for solving this type of problem is the L-shaped method of Van
Slyke and Wets [23], a variant of Benders’ decomposition that decomposes the problem into first-stage
(master) variables and second-stage (subproblem) variables. The L-shaped method generates optimality
and feasibility cuts. In the L-shaped method, master and subproblems are linear. Thus, this can be a
disadvantage associate with the L-shaped method in the cases that master and subproblems are large scale.
Here, we propose a modified version of L-shaped method to reduce master and subproblems into quadratic
unconstrained problems and by parallel implementation of algorithm accelerate the speed.
In fact, the main difficulty in solving SLP is the size. The evaluation of the objective function f in (1) is very
expensive and the L-shaped method involves at least N optimization problems. To eliminate practically
this drawback of the method, we suggest i) augmented Lagrangian method, which reduces master and
subproblems to unconstrained quadratic problems and paves the way for using quasi-Newton algorithm
and finding exact solutions of problems; ii) generalized Newton method, to minimize the number of
iterations in solving unconstrained master and subproblems; iii) parallel processing techniques, to solved
subproblems at each iteration of the algorithm in parallel environment. Then, results of some computational
tests are described, which show that the method is capable of solving SLP of considerable size.

The remaining part of this paper is organized as follows. In Section 2, the L-shaped method is summa-
rized. In Section 3 and 4, the new methods for feasibility and optimality cuts are discussed respectively.
The modified L-shaped method is presented in Section 5. In Section 6, we discuss a parallel implementation
of our method and give the numerical results. Also, concluding remarks are given in Section 7.

We now describe our notation. Let a = [ai] be a vector in Rn. By a+ we mean a vector in Rn whose
ith entry is 0 if ai < 0 and equals ai if ai ≥ 0. By AT we mean the transpose of matrix A, and ∇ f (x0) is the
gradient of f at x0. For x ∈ Rn, ‖x‖ and ‖x‖∞ denote 2−norm and infinity norm respectively. Also, ~1 is a
vector of ones and I is the identity matrix.

2. L-Shaped Decomposition

We can see L-shaped decomposition method in most of references such as [5, 13].
This method consists of three main steps: generating feasibility cuts, optimality cuts and solving the master
problem. In this paper, we introduce a new method for solving two-stage stochastic linear programs with
fixed recourse. Using quadratic program and an augmented Lagrangian method for generating feasibility
and optimality cuts respectively, we can reduce the number of iterations and the time of solving two-stage
stochastic linear program with fixed recourse in comparison traditional methods. In this algorithm, two
types of constraints are sequentially appended: feasibility cuts and optimality cuts.
In the next section, the method for feasibility cuts is presented.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 801

3. Feasibility Cut

In this section, we discuss the method for computing feasibility cut. This type of cuts is generated
in L-shaped method in which some linear subproblems are solved. This cut tests whether the recourse
problem is feasible for the current vector xν for all i = 1, . . . ,N or not. If not, this means that for some i,
there is a hyperplane separating hi − Tixν and set {t | t = Wy, y ≥ 0}. If we name the hyperplane {x | σx = 0},
this hyperplane must satisfy σTt ≤ 0 for all t ∈ {t | t = Wy, y ≥ 0} and σT(hi − Tixν) > 0. In [23], Van Slyke
and Wets introduced a method for computing the separating hyperplane and it was used. This hyperplane
is obtained by taking σ for the value of the dual multipliers of a linear problem [13, 23].

In this paper, instead of the Slyke and Wets method, we introduce the following constrained quadratic
program to obtain the separating hyperplane

min
y∈Rn2

+

η′ =
1
2
‖Wy − (hi − Tixν)‖2. (4)

Problem (4) is a convex quadratic program. Thus, it always has an optimal solution with η′ ≥ 0. The current
vector satisfies the feasibility criterion if and only if the optimal value η′ = 0 for all i = 1, . . . ,N. If for some
i, the optimal value η′ > 0, then there exists a vector y ∈ Rn2 such that{

WT(Wy − (hi − Tixν)) ≥ 0, y ≥ 0,
yTWT(Wy − (hi − Tixν)) = 0. (5)

Let σ = (hi − Tixν) −Wy. Therefore, from the above relation, we have

WTσ ≤ 0, (6)

and

0 < η′ =
1
2
‖Wy − (hi − Tixν)‖2

=
1
2

(
yTWT(Wy − (hi − Tixν)) − (hi − Tixν)T(Wy − (hi − Tixν))

)
= −

1
2

(hi − Tixν)T(Wy − (hi − Tixν)) =
1
2

(hi − Tixν)Tσ.

Thus σ has the desired properties. For normality, we use σ =
(hi−Tixν)−Wy
‖(hi−Tixν)−Wy‖ .

To solve the problem (4), one can apply the Hager-Zhang active set algorithm (HZ-ASA) [10] or penalty
method.

4. Optimality Cut

In this section, we present the augmented Lagrangian method for solving the recourse subproblem
and generating an optimality cut. In the augmented Lagrangian method, an unconstrained maximization
problem is solved which gives the projection of a point on the solution set of the following subproblem

min η = q̂iy
s.t. Wy = hi − Tixν,

y ≥ 0. (7)

Assume that ŷ ∈ Rn2 is an arbitrary vector. Consider the problem of finding the least 2-norm projection ŷ∗
of ŷ on the solution set Y∗ of the subproblem (7)

1
2
‖ŷ∗ − ŷ‖2 = min

y∈Y∗

1
2
‖y − ŷ‖2, (8)

Y∗ = {y ∈ Rn2 |Wy = hi − Tixν, q̂i
T y = η, y ≥ 0}.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 802

Considering that the objective function of the problem (8) is strictly convex, its solution is unique. The
Lagrange function of problem (8) is as follows

L(y, p, β, ŷ) =
1
2
‖y − ŷ‖2 + pT(hi − Tixν −Wy) + β(q̂i

T y − η),

where p ∈ Rm2 and β ∈ R are Lagrange multipliers and ŷ is a constant vector. The dual problem of (8) has
the form

max
β∈R

max
p∈Rm2

min
y∈Rn2

+

L(y, p, β, ŷ). (9)

We note that the solution of the inner minimization problem in (9) is (see [14, 19])

y = (ŷ + WTp − βq̂i)+. (10)

By substituting (10) into L(y, p, β, ŷ), we have

L̂(p, β, ŷ) := min
y∈Rn2

+

L(y, p, β, ŷ)

= (hi − Tixν)Tp −
1
2
‖(ŷ + WTp − βq̂i)+‖

2
− βη +

1
2
‖ŷ‖2.

Therefore, the dual problem of (8) is given by the following formula

max
β∈R

max
p∈Rm2

L̂(p, β, ŷ). (11)

We can show that if β is sufficiently large, solving the inner maximization problem in (11) gives the unique
solution of the problem (8). In this way, we solve the following maximization problem to obtain the
solutions of (8) and the dual of (7) for sufficiently large β [8, 16–18]

max
p∈Rm2

S(p, β, ŷ) (12)

in which β, ŷ are constant and function S(p, β, ŷ) is introduced as follows

S(p, β, ŷ) = (hi − Tixν)Tp −
1
2
‖(ŷ + WTp − βq̂i)+‖

2. (13)

According to this fact, augmented Lagrangian method presents the following iteration process for solving
(8):

pk+1 ∈ arg max
p∈Rm2

{(hi − Tixν)Tp −
1
2
‖(yk + WTp − βq̂i)+‖

2
}, (14)

yk+1 = (yk + WTpk+1 − βq̂i)+,

where y0 is an arbitrary vector.
For arbitrary y0 and β > 0 , this process converges to a solution y∗ ∈ Y∗ in a finite number of steps M. Also,
pM+1

β gives an exact solution of the dual problem of (7) (see [16–18] for detailed analysis and numerical result).

5. Quadratic L-Shaped Algorithm

In this section, we present the modified version of the L-shaped method by employing seperating
and augmented Lagrangian methods for feasibility and optimality cuts respectively. Also, we rewrite the
standard form of the master problem and apply an augmented Lagrangian method to solve it. Therefore,
the modified version is as follows:

Step 1 Set k = l = ν = 0.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 803

Step 2 Set ν = ν + 1. Solve the following quadratic unconstrained problem:

max
z∈Rm+k+l

rTz −
1
2
‖(v̂ + RTz − βt)+‖

2. (15)

In which

R =


A 0 0 0 0
D 0 0 −I 0
E ~1 −~1 0 −I

 , r =

 b
d
e

 , t =


c
1
−1
0
0

 , v =


x
θ+

θ−
s1
s2

 ,

and

D =


D1
D2
...

Dk

 , d =


d1
d2
...

dk

 ,E =


E1
E2
...

El

 , e =


e1
e2
...
el

 .
In addition, v̂ ∈ Rn+2+k+l is an arbitrary vector.

Let zν be the unique optimal solution, then set vν = (xν, θν+, θν−, sν1, s
ν
2) = (v̂+RTzν−βt)+ and θν = θν+−θ

ν
−

.
If l is zero, solve the problem

max
z∈Rm+k

rTz −
1
2
‖(v̂ + RTz − βt)+‖

2. (16)

where

R =

(
A 0
D −I

)
, r =

(
b
d

)
, t =

(
c
0

)
, v =

(
x
s1

)
,

and

D =


D1
D2
...

Dk

 , d =


d1
d2
...

dk

 ,
and v̂ ∈ Rn+k is an arbitrary vector. Let zν be the optimal solution and set vν =

(
xν

sν1

)
= (v̂+RTzν−βt)+.

In this case, θν is considered equal to −∞.

Step 3 For i = 1, . . . ,N, solve the following quadratic subproblems:

min
y∈Rn2

+

η′ =
1
2
‖Wy − (hi − Tixν)‖2.

until, for some i, the optimal value η′ > 0. In this case, let y be the optimal solution. Then, set
σν =

(hi−Tixν)−Wy
‖(hi−Tixν)−Wy‖ and define

Dk+1 := (σν)TTi, dk+1 := (σν)Thi

and append to the matrix D and vector d respectively. Set k := k + 1 and return to Step 2. If for all
scenario i, η′ = 0, go to Step 4.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 804

Step 4 For all i = 1, 2, . . . ,N, solve the unconstrained quadratic program

max
p∈Rm2

S(p, β, ŷ) = (hi − Tixν)Tp −
1
2
‖(ŷ + WTp − βq̂i)+‖

2, (17)

where ŷ ∈ Rn2 is an arbitrary vector and β ∈ R is large enough. Let p(β) be the optimal solution of
Problem i of type (17) and set πνi =

p(β)
β . Define

El+1 :=
N∑

i=1

(πνi)TTi, el+1 :=
N∑

i=1

(πνi)Thi.

Let ην = el+1 − El+1xν. If θν ≥ ην, stop; xν is an optimal solution. Otherwise, set l := l + 1, append El+1
and el+1 to the matrix E and vector e respectively and return to Step 2.1)

From a computational point of view the above iterative framework is efficient because this algorithm is
suitable for a parallel environment. Each subproblem may be solved independently of others, possibly in
a seperate processing node.

6. Numerical Results

In this paper, we consider SLP problem with a rectangular matrix of coefficients in which the number
of constraints noticeably more than the number of variables. Since most of such problems are complete
recourse; hence here, we focus on SLP problem with complete recourse. It is obvious that for such problems,
it is not needed the feasibilty cut. Therefore, in the quadratic L-shaped method, we have just optimality
cut.

In each iteration of the quadratic L-shaped algorithm, master problem (15) or (16) and subproblems
(4) are solved. Although, if the current point is feasible, N concave, piecewise quadratic, unconstrained
maximization problems (17) have to be solved as well. It is obvious that the objective functions of the
problems (15), (16) and (17) are only once-differentiable. Hence, the concept of generalized Hessian is used
for them. In this section, we discuss the generalized Newton method for the problem (17). Note that the
conditions of these problems are similar. Therefore, in this section, we propose the generalized Newton
method for the problem (17) and duplicate it for master problems (15) and (16).
The gradient and the generalized Hessian of the objective function of (17) are

∇pS(p, β, ŷ) = (hi − Tixν) −W(ŷ + WTpk+1 − βq̂i)+,

∂2
pS(p, β, ŷ) = −WD(κ)WT,

where D(κ) denotes a diagonal matrix where the ith-diagonal elements κ j equals to 1, if (ŷ+WTpk+1−βq̂i) j > 0
and equals to 0, if (ŷ + WTpk+1 − βq̂i) j ≤ 0 for j = 1, . . . ,n2.
In the algorithm, the generalized Hessian may be singular, thus we use a modified Newton. In each iteration
for solving (17), we need to find the direction and new point by

(∂2
pS(p, β, ŷ) − δI)ds = −∇pS(p, β, ŷ), (18)

ps+1 = ps + λsds,

where δ is a small positive number and λs is the suitable step length that is determined by Armijo rule
[2, 19].

1)The Matlab code of this paper is available from the authors upon request.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 805

6.1. Parallel Computation
In [18], we have shown that quadratic L-shaped method is more efficient and faster than L-shaped

method. If we can implement a parallel program of quadratic L-shaped method, then, we can accelerate
the speed of this method. Based on the results of our experiments, it seems that the quadratic L-shaped
method (which use augmentedl Lagrangian algorithm within L-shaped method) is substantially better.
This method can become more efficient to use. Here, we develop a parallel implementation of the proposed
method in order to increase the size of problems and decrease the time of solving problem.

Generating optimality cut involves solving N quadratic programming problems (17). N is the number
of scenarios which in the real problems can be very large. In fact, it is impractical or impossible to solve
the real SLP problem on a single computer, especially given limited computer memory. This provides a
strong motivation for using parallel computation. Also, in the quadratic L-shaped algorithm, the primary
computation cost is in the solving N quadratic unconstraint problems (17). This can be done in parallel
with minimal cost so that N problems (17) is broken into the number of processors.

For solving N subproblems (17), it is used generalized Newton method. Hence, we have single algorithm
and different data correspond to each subproblems. Therefore, for solving them, we can use spmd loop
in Matlab. Also, for this aim, we can use parfor loop. In spmd, workers meet at synchronization points.
Since, here the SLP problem is fixed recourse; thus, the size of recourse problems are the same. In the other
words, there is not considerable waiting time.

At each iteration of quadratic L-shaped method, one row is appended to matrix R in (17). If the size of A
and the number of iterations be large, maybe the construction of generalized Hessian matrix or solving the
linear system (18) in the computation of the generalized Newton direction be hard or imposible. In this case,
we can use data decomposition and distribute matrix R into processors. To distribute matrix R, there are
three schemes: column scheme, cellular scheme and row scheme. In each scheme, it is formed the Hessian
matrix and solved the linear system (18) using explicit formulas. The details of these computation is given
in [9]. Here, the problem solved dose not require data decomposition. For solving (17) in parallelism, we
can use parfor and spmd loops. Since the size of recourse problems are the same, thus the implementing
parallelism in both of loops are nearly simultaneous. In Table 1, the result is obtained by using parfor loop.

The results are presented in Tables 1-2 . In these tables, T and S denote the computation time in seconds
and the parallel speedup in solving SLP problems respectively. Furthermore, the number of processors is
shown by np. Table 3 presents the characteristics of the problems are solved in Table 1. In this table, m1 and
n1 are the dimensions of matrix A in first-stage problem and d1 is the density of this matrix. Also, m2 and
n2 are the dimensions of the recourse matrix W in the second-stage and d2 is the density of this matrix. The
abvious accuracy criteria for (3) are a test for feasibility and optimality such

f (x) = cTx +
∑N

i=1 q̂iyi = f ∗

Ax = b,
Tix + Wyi = hi, i = 1, . . . ,N,
x ≥ 0, yi ≥ 0, i = 1, . . . ,N,

where f ∗ is the optimal value of (3). These criteria are satifised for each number of processors. Here, Table
2 presents the criteria for 14 processors.

In this part, the test problems are randomly generated in the form of (3) and the data in Tables 1-2 was
generated using 16 processors, dual-core computers, each with 12 GB of memory. When using 8 workers,
they were all on a single computer. We used 2 computers for 16 workers.

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 806

Table 1: Time and Speedup

np
1 2 4 8 12 14

p1
T 53.97 62.524 74.771 44.331 31.990 30.275
S 1 0.863 0.722 1.218 1.687 1.783

p2
T 120.415 185.749 181.605 100.153 71.795 61.976
S 1 0.648 0.663 1.202 1.677 1.943

p3
T 73.973 21.853 29.915 21.538 18.497 19.581
S 1 3.385 2.475 3.435 3.999 3.778

p4
T 148.148 81.007 50.291 32.158 26.942 26.264
S 1 1.829 2.946 4.607 5.499 5.641

p5
T 228.299 88.854 109.140 59.671 48.76 43.766
S 1 2.569 2.092 3.826 4.682 5.216

p6
T 345.084 170.151 161.904 81.475 63.733 57.232
S 1 2.028 2.131 4.235 5.415 6.030

p7
T 513.511 248.264 219.738 109.382 79.289 71.622
S 1 1.806 2.337 4.695 6.476 7.170

p8
T 107.106 31.891 40.636 27.083 24.440 23.755
S 1 3.358 2.636 3.955 4.382 4.509

p9
T 150.920 63.652 50.887 33.345 28.075 27.092
S 1 2.37 2.966 4.526 5.376 5.571

p10
T 198.977 98.711 67.451 40.327 33.520 34.221
S 1 2.016 2.950 4.934 5.936 5.814

p11
T 225.253 138.655 107.028 59.351 48.241 42.524
S 1 1.697 2.198 3.964 4.877 5.532

p12
T 494.954 302.059 212.976 112.715 84.305 72.124
S 1 1.639 2.324 4.391 5.871 6.862

p13
T 582.212 88.312 142.883 122.903 67.971 62.330
S 1 6.615 4.089 4.753 8.598 9.373

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 807

Table 2: Optimality conditions for problems solved in Table 1 on 14 processors

Name of problem ‖Ax − b‖∞ max
1≤i≤N

‖Tix + Wyi − hi‖∞ |f(x) − f∗| time

p1 3.3751e-14 9.9476e-14 2.9104e-11 30.275
p2 4.2633e-14 1.6342e-13 1.4438e-11 61.976
p3 5.8265e-13 4.1211e-13 4.1910e-9 19.581
p4 2.3164e-12 2.737e-12 5.9605e-8 26.246
p5 1.8048e-12 6.1391e-12 1.8626e-8 43.766
p6 1.2665e-12 5.9401e-12 7.4506e-9 57.231
p7 1.5774e-12 7.1054e-13 2.2352e-8 71.622
p8 1.7906e-12 2.5011e-12 6.7055e-8 23.755
p9 2.8137e-12 3.1974e-12 2.3352e-8 27.092
p10 2.2951e-12 4.1425e-12 7.4506e-9 34.222
p11 2.10179e-12 5.2616e-12 1.4901e-8 42.524
p12 2.5651e-12 7.09126e-12 7.4506e-8 72.124
p13 9.6634e-13 2.8422e-12 9.3132e-9 62.330

Table 3: The size of problems solved in Table 1

N m1 × n1 × d1 m2 × n2 × d2

p1 150 100 × 2e3 × 0.01 100 × 5e4 × 0.001
p2 100 100 × 2e3 × 0.01 100 × 5e4 × 0.001
p3 150 100 × 5e4 × 0.01 100 × 1e4 × 0.001
p4 150 100 × 5e4 × 0.01 1000 × 1e4 × 0.001
p5 100 100 × 5e4 × 0.01 100 × 5e4 × 0.01
p6 150 100 × 5e4 × 0.01 100 × 5e4 × 0.01
p7 200 100 × 5e4 × 0.01 100 × 5e4 × 0.01
p8 112 100 × 6e4 × 0.01 100 × 1e4 × 0.01
p9 150 100 × 6e4 × 0.01 100 × 1e4 × 0.01
p10 200 100 × 6e4 × 0.01 100 × 1e4 × 0.01
p11 100 100 × 6e4 × 0.01 100 × 5e4 × 0.01
p12 200 100 × 6e4 × 0.01 100 × 5e4 × 0.01
p13 100 100 × 6e4 × 0.01 100 × 1e5 × 0.005

M. Behboodi-Kahoo, S. Ketabchi / Filomat 31:3 (2017), 799–808 808

From Table 1, it is reasonable to use a parallel implementation of the proposed method. By this technique,
we can solve large SLP problems. The problem p13 is solved with more than 20 millions of variables and
20 thousands of constraints. Also, note that all problems were solved very accurately for all processors, the
norms of the criteria do not exceed 7.4506e-8.
The results in the tables demonstrate the high efficiency of the proposed method. For instance, a SLP
problem with more than twenty million nonnegative variables and more than two thousand equality
constraints is solved to a good accuracy in about one minute (see the last row of the table). Therefore,
the parallel program implemented for 14 processors turned out to be considerably more efficient for larger
SLPs on more processors. Note that only Matlab’s facilities are exploited for the computer implementation
of our method.

7. Conclusion

In this paper, we have modified the basic version of the L-shaped method with the augmented La-
grangian algorithm and generalized Newton method. In our method, all problems are quadratic. Hence,
it is named quadratic L-shaped method. At each iteration of our algorithm, it is solved N optimization
problems. Therefore, we use parallel implementation of augmented Lagrangian method on several number
of processors. By this technique, we can solve large SLP problems in a few time. Here, We have illustrated
the high speedup and the high solution accuracy of algorithm by the problems with very large number of
nonnegative variables and moderate number of equality type constraints.

References

[1] J. Abaffy, E. Allevi, A Modified L-Shaped Method, J. Optimiz. Theory App. 123 (2004) 255–270.
[2] L. Armijoo, Minimazation of Functions Havinig Lipschitz-Continus First Partial Derivetives, Pacifice J. Math. 16 (1966) 1–3.
[3] J. F. Benders, Partitioning Procedures for Solving Mixed-Variables Programming Problems, Numer. Math. 4 (1962) 238–252.
[4] J. R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs, Oper. Res. 33 (1985) 989–1007.
[5] J. R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer Series in Operation Research Springer-Verlag, New

York, 1997.
[6] G. B. Dantzig, Linear Programming Under Uncertainty, Management Sci. 1 (1955) 197–206.
[7] G. B. Dantzig, P. Wolfe, Decomposition Principle for Linear Programs, Oper. Res. 8 (1960) 101–111.
[8] Yu. G. Evtushenko, A. I. Golikov, N. Mollaverdi, Augmented Lagrangian Method for Large-Scale Linear Programming Problem,

Comp. Math. Math. Phys. 49 (2009) 1303–1317.
[9] V. A. Garanzha, A. I. Golikov, Yu. G. Evtushenko, M. Kh. Nguen, Parallel Implementation of Newton’s Method for Solving

Large-Scale Linear Programs, Optim. Method. Softw. 20 (2005) 515–524.
[10] W. W. Hager, H. Zhang, A new active set algorithm for box constrained optimization, SIAM J. Optim. 17 (2006) 526–557.
[11] J. L. Higle, S. Sen, Stochastic decomposition: an algorithm for two stage linear programs with recourse, Math. Oper. Res. 16

(1991) 650–669.
[12] J. B. Hiriart-Urruty, J. J. Strodiot, V. H. Nguyen, Generalized Hessian Matrics and Second-Order Optimality Condisions for

Problems CL1 data, Appl. Math. Opt. 11 (1984) 43–56.
[13] P. Kall, S. W. Wallace, Stochastic Programming, John Wiley & Sons, 1994.
[14] S. Ketabchi, E. Ansari-Piri, On the Solution Set of Convex Problems and Its Numerical Application, J. Comput. Appl. Math. 206

(2007) 288–292.
[15] G. E. Karniadakis, R. M. Kirby, Parallel Scientific Computing in C++ and MPI: A seamless approach to parallel algorithms and

their implementation, Cambridge University Press, 2003.
[16] S. Ketabchi, M. Behboodi-Kahoo, Augmented Lagrangian method for recourse problem of two-stage stochastic linear program-

ming, Kybernetika 1 (2013) 188–198.
[17] S. Ketabchi, M. Behboodi-Kahoo, Smoothing techniques and augmented Lagrangian method for recourse problem of two-stage

stochastic linear programming, J. Appl. Math. 2013, Article ID 735916, 8 pages http://dx.doi.org/10.1155/2013/735916.
[18] S. Ketabchi, M. Behboodi-Kahoo, Augmented Lagrangian method within L-shaped method for stochastic linear programs,

Submitted in Appl. Math. Comput. (2013).
[19] O. L. Mangasarian, A Newton Method for Linear Programming, J. Optimiz. Theory App. 121 (2004) 1–18.
[20] S. S. Nielsen, S. A. Zenios, Scalable Parallel Benders Decomposition for Stochastic Linear Programming, Parallel Comput. 23

(1997) 1069–1088.
[21] A. Prekopa, Probabilistic programming. In: Stochastic Programming, (A. Ruszczynski and A. Shapiro,eds.), Handbook in

Operations Research and Management Science, Elsevier, Amsterdam, 10 (2003) 267–352.
[22] S. S. Nielsen, S. A. Zenios, Scalable Parallel Benders Decomposition for Stochastic Linear Programming, Parallel Comput. 23

(1997) 1069–1088.
[23] R. M. Van Slyke, R. Wets, L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming, SIAM

J. Appl. Math. 17 (1969) 638–663.

