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Abstract. In this paper, we introduce regularly generated sequences for double sequence of real numbers,

and obtain some Tauberian theorems for (C,1,1) summability method using the concept of regularly
generated sequence.

1. Introduction and Definitions

A double sequence u = (i) is called Pringsheim convergent (or P- convergent) [1] to ¢ if for a given

€ > 0 there exists a positive integer Ny such that |u,, — £| < ¢ for all nonnegative integers m,n > Ny. The
(C 1,1) means of (u,,,) are defined by

ey — Yy iy
O ) = G D+ D (n T 2 Lt

i=0 =0
for nonnegative integers m, n (see [2]). The sequence (1) is said to be (C, 1, 1) summable to a finite number
Cif limy, os00 0(11 (u) =¢.

Every convergent double sequence in Pringsheim’s sense need not be (C, 1, 1) summable. For example,
the sequence (uy,,) defined by

n, ifm=0n=0,1,2,..
0, otherwise,

umn -

is convergent to 0. But, the limit

lim n+n
B G+ D + 1) 1)(n +1) Z(; Z”z; B 3+ D(m + 1)

does not tend to a finite limit. Therefore, (i,,,) is not (C, 1, 1) summable.
The (C,1,0) and (C, 0, 1) means of (i,,,) are defined respectively by

10 01
irm)() m+1zum and O( ) n+1Zum]
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for nonnegative integers m, n. The sequence (i) is said to be (C, 1,0) summable to a finite number ¢ if
limy, 400 Omg)(u) ¢. In the light of above discussion, the (C, 0, 1) summability is defined analogously.

A double sequence (1) is said to be bounded if there exists a real number C > 0 such that |u;,,| < C
for all nonnegative integers m, n. Note that every P-convergent double sequence need not be bounded. For
example, the double sequence

1 4 9 16
2 00 O
Uw) =13 0 0 0
is P-convergent to 0, but it is not bounded.

A double sequence (1) is said to be one-sided bounded if there exists a real number C > 0 such that
Umn 2 —C for all nonnegative integers m, n.

Let N, B, and B~ denote the space of all double sequences which is P-converging to 0, bounded,
one-sided bounded, respectively.

For a double sequence (u,,,), we define Ayu,,, = Uy — Ump—1, Apld,, = Wpn — Um—1,, aNd Ayl =
ApDptiyn = Ny (Apttyn) = Ap(Apttyy) for all integers m, n > 1.

We define de la Vallée Poussin means of the double sequence (u,,,) as follows: If A > 1

1 [Am]  [An]

([Am] — m)([An] = n)

T;n (”) = Ujks

j=m+1k=n+1

andif0<A <1

1
(m = [Am])(n = [An]) |

T7<m1 (M) = Mjk,

=[Am]+1 k=[An]+1

for sufficiently large nonnegative integers m, n.
Now, give the concept of slow oscillation in different senses for a double sequence.

Definition 1.1. A double sequence (i) is said to be slowly oscillating in sense (1, 1) if

P

r=m+1s=n+1

/

lim limsup max
AT o mH1<j<[Am]
n+1<k<[An]

(t4yn) is said to be slowly oscillating in sense (1, 0) if

lim limsup max
A= oo m+1<]<[Am

/

Z Ay, =

(t4mn) is said to be slowly oscillating in sense (0, 1) if

Z Agttys| =

S11, S10, and Sp; denote the classes of all slowly oscillating sequences in sense (1,1), (1,0), and (0, 1),
respectively.

Notice that every P-convergent sequence is slowly oscillating in senses (1,1), (1,0), and (0, 1). However
the converse may not be true. The following example provides slowly oscillating sequences in senses (1, 1),
(1,0), and (0, 1), but they are not P-convergent.

lim limsup max
A—1t 1,1n—00 n+1<k<[)\n]
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Example 1.2.
(tyn) = (logmlogn) € Sy1.
Indeed, since

Arslogrlogs =logrlogs —log(r — 1) logs — log rlog(s — 1) + log(r — 1) log(s — 1),

we have s
Ayslogrlogs—logrlog( )—log(r— )log(m).
Therefore,
j k j k ]
Z Z Aslogrlogs = Z Z log( )log( ) log( )log( )
r=m+1 s=n+1 r=m+1 s=n+1

From this, we obtain

j

= log([ ])log([/\n]).

After taking lim sup of both sides as m,n — co, we obtain

max Z Z A, slogrlogs| =
m+1<j<[Am]
n+1<k<[An] r=m+1 s=n+1

j

Z Zk: Aslogrlogs

r=m+1s=n+1

limsup max = log2 A.
mun—oco M+1<j<[Am]

n+1<k<[An]

Finally, taking the limit of both sides as A — 1%, we get

i k
i Z Ay sty

r=m+1 s=n+1

lim limsup max
A=1r 0o ML < [Am]
n+1<k<[An]

_1; 29 _
_/\11_>rrl1+log A=0.

(@) (umn) = (logm) € So.
(111) (umn) = (log n) € Sor.

The (C, 1, 1) means of (mnAy, ,ity,) is defined by

m n
(11) —— ‘s
an (Am,nu) . (m n 1)(7‘[ n 1) Z 1]Ai,ju,-]-.
i=0 j=0
Moreover, the (C,1,0) means of (mA,u,) is defined by
V(lo)(A 1 Z inA; yUin,

and the (C,0,1) means of (1A, u;,,) is defined by
1 n
(01) ; .
Vi (D) := 1 ]E_O JAmUmj.

The Kronecker identity for single sequences takes the following form for double sequences (see [3]). For
all nonnegative integers m, n,

10 01 11 11)
— o) = 00D w) + G (1) = Vi (A ut). (1)

umn
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We write the following identities similar to the Kronecker identity for single sequences.

U — o (1) = VD (Ait), )
Uy — 0o (1) = VO (A1), (3)

The following lemma shows the relationships between Cesaro means om,l,)(u), oﬁg)(u), omn)(u) and

VO (A tt), VD (Aytt), V0 (Ayia), respectively.

Lemma 1.3. For a double sequence (u,,,) of real numbers,

M Ao (1) = VD (A pia), (4)
MARO o (1) = Vi (Awi), (5)
nA 0(01)(u) (01)(A u), (6)

for all nonnegative integers m, n.
Proof. First, we prove the identity (4). We have

11 11 11 11 11
Aol u) = ol () — MJMﬂiQW+¢§MW

m

- (m+1)n+1)§]z;a”” (m+l)nZZ i

3
AN
By

m(n +1) 4

I}
f==}
.

=0 i=0 j=0

n m n-1

1 m
= mn uii —mm +1) U
mn(m+ 1)(n + 1) [ IZ()‘ = Y paroier K

j
m—1 n—-1
m+1)ZZu,]+(m+l)(n+1) ulj]

i=0 j=0 i=0 j=0

From these lines we deduce that

1 m—1 n-1 m—1 n-1
mnAmnG(m( ) = m ngZuij+mn Upyj +mn Upj
i=0 j=0 i=0 =0
m—-1 n—1 n-1
+mnuy, —mn + 1) ujj —m(n +1) Upj
i=0 j=0 j=0
m-1 n—-1 m—1 m-1 n—-1
—(m+1)n ujj—(m+Ln ) uy+(m+1)n+1) ujj|.
i=0 j=0 i=0 i=0 j=0
We finally obtain
1 m-1 n—-1
11
AT (1) = mEDn <) Z Z(umn — Uiy — Upj + Ujj)
i=0 j=0

1 kol
- (m+1)(n+1)z ity

= VDA, ).
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Now, we prove the identity (5). We have

10) 10
MmOy () = 0l () =040 (W)
1 m 1 m—1
=0 =0
1 m m—1
= m U; m+1 u
m(m+1)( ;4 in = ( )1:0 '"]

From these lines we obtain

1 m—1 m—1
MARO (1) = — [m Wi +1M ) Uiy — Z um]

m
=0 i=0 i=0

1 1 m
/ ”in] = ] Zo(umn — Uin)

i=0

= ;mu -
T om+1 "

m
——= ) ity = Vi (D).
i=0

The identity (6) can be similarly showed. O

2. Regularly Generated Double Sequences

The idea of regularly generated sequence for single sequences has been introduced by Dik et al. [4].
Using the concept of regularly generated sequence, some Tauberian theorems for Abel summability methods
have been obtained by many authors (see [5-7]). In the light of this information, we introduce the concept
of regularly generated sequence for double sequences.

Let £ be any linear space of real double sequences and A, B, C be subclasses of L. If

émn +an+ZZ@_77mn/

i=1 j=1

for some (En), Vinn), () € A, we say that the double sequence (i) is regularly generated by the double
sequences (Emn), Vin), (Mmn) and the double sequences (£un), (Vinn), (Nmn) are called the generators of (i4).
The classes of all sequences regularly generated by & = (En), vV = (Vin), 1 = (M) are denoted by U1 (&, v, ).

If
Upn = En + Z %/
i=1

for some (&,m) € B, we say that the double sequence (u,,) is regularly generated by the double sequence
(&mn) and the double sequence (&) is called a generator of (u,,,). The classes of all sequences regularly
generated by & = (&) are denoted by Uy ().

If
Vm]
Umn = Vmn + Z

for some (viu,) € C, we say that the double sequence (u,,,) is regularly generated by the double sequence
(Vmn) and the double sequence (v,,,,) is called a generator of (u,,,). The classes of all sequences regularly
generated by v = (v,,,) are denoted by Us(v).
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Example 2.1.

(a) If 811 is the class of slowly oscillating sequences in sense (1,1), then U;(S11, S11, B) is the class of
sequence.

(b) If SB is the class of all bounded and slowly oscillating sequences in sense (1,0), then U,(S8B) is the
class of all slowly oscillating sequences in sense (1, 0).

V§}°>(Aiu)

Ax
For a double sequence (u,,;) of real numbers, o O (u) = Y Xia ﬁ, o) = Yt = and
VO
(01 a () = 2 ( Yy Gm ———— by Lemma 1.3.

Since (umn) can be expressed as

m n (11 ( 1] )
o = VIO (Ar) + VO (A1) + Z 2y, ),

=1 j=1 ij

the sequences (V(w)(Amu)) (V(Ol)(A u)), and (Vﬁ,},l,)(Amnu)) are generators of (i)
In addition, the sequence (u,,,) can also be represented as

m (10)(A 1)
ungVﬁg) Ay )+Z ’

or o
v, (A u)
Upn = V,(,?;)(A u) + Z

We can say that both (V,(;S)(Amu)) and (V,,??(Anu)) are generators of (u,).

Lemma 2.2. Let (ty,) € Land B,C C L.

(i) If () € Un(B), then (Vi) (Ay)) € B.
(i) If (i) € U3(C), then (VO (A,u)) € C.

Proof. (i) Since (t4y,) € Ua(B), then

Upn = Emn + Z %
i=1
for some (&,,,) € B. Hence, we have A ity = A& + ‘5;;” , and mA Uy, = MAREmy + Emn. Therefore, taking
(C, 1,0) means of both sides, we get Vﬁg)(Amu) V,gg)(Am &)+ 0(10)(5). It follows from the Kronecker identity

that V,%S)(Amu) = &un- This completes the proof.
(ii) The proof of (ii) is similar to that of (i). [

Lemma 2.3. [8] Let () be a double sequence of real numbers. For sufficiently large integers m, n:

D IfFA>1
([Am] + D)([An] + 1)
Umn — (11)( ) = ([Am] — m)([ATl] — Tl) ( (}\2] [An] ( ) - &2]/71(11) — G‘Erll,l[)/\n (M) + 0(11)(u))
[Am] +1 ] + 1
W( (ﬁ]n(u) i )) " [An]—n (02,1[1\11](”) (H)(u))
1 [Am]  [An]
(ufk - umn)r

([Am] — m)([An] = n)

j=m+1 k=n+1
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(i) if0<A <1

11
Umn — O fnn)( )

([Am] + 1)([An] + 1) ( (D — oD
(m — [Am])(n — [An]) O Amln

M( (11)( )0 (11) (u))+ M—+1( (11)( ) — (11) ](u))

JGEY an
() =0, o + 000 [/\n](u))

m— [Am] o) ] i
1 m n
. (Un — Ujg),
(m —[Am])(n — [/\”]) =[Am]+1 k=[An]+1

where [An] and [Am] denote the integer part of An and Am, respectively.

Remark 2.4. In analogy to Lemma 2.3, we have the following identities.
(i) For A > 1,

[Am]

[A
~ ) = T (o, 00 = 620) = Y Gt

j=m+1

(ii) For0 <A <1,

m

A 1 A 1
Uy — 0552)(“) = [[/\Z]]j ( (11)( u) — SSH n( )) + %{}Tm] | [AZ‘] 1(an = Ujp).
j=[Am]+

We can show the identities as in the proof of the corresponding lemma for single sequence in [9]. We do
not give details.

Moreover, we note that we can similarly represent the difference u,,, — amn)(u) in two different ways as
in Remark 2.4.

Lemma 2.5. (i) If (Umy) is (C,1,0) summable to £, and the condition mA,, i, > —C is satisfied for some C > 0
and large enough m, n, then () is P-convergent to €.

(ii) If (mn) 15 (C, 0, 1) summable to €, and the condition nAyu,,, > —C is satisfied for some C > 0 and large enough
m, n, then () is P-convergent to ¢.

Proof. The proof of lemma is done step by step using the identities in Remark 2.4 as in the proof of the
one-sidedly Tauberian theorem for single sequence. [

Lemma 2.6. (i) If () is (C,1,0) summable to €, and (u,) is slowly oscillating in sense (1,0), then () is
P-convergent to .

(ii) If (uyn) is (C,0,1) summable to €, and () is slowly oscillating in sense (0, 1), then () is P-convergent to
L.

Proof. The proof of lemma is done step by step using the identities in Remark 2.4 as in the proof of the
generalized littlewood theorem for single sequence. [
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3. Some Tauberian Theorems for Regularly Generated Double Sequences

If a double sequence is P-convergent to ¢, then it is (C,1,1) summable to £ provided that it is bounded
[10]. However the converse is not necessarily true. Namely, a double sequence which is bounded and
(C 1,1) summable may not be P-convergent.

We can recover P-convergence of a double sequence from its (C, 1, 1) summability under some suitable
conditions. Such a condition is called a Tauberian condition and the resulting theorem is called a Tauberian
theorem.

Now, let us give some classical type Tauberian theorems, which are called Landau’s theorem and
generalized Littlewood theorem for (C,1,1) summability method of a double sequence, respectively (see

(2]).
Theorem 3.1. If () is (C, 1, 1) summable to €, and

(mnApy ythyn) € B, (MAyyy,) € B, and (nAytiyy,) € B, (7)
then (Uyy) is P-convergent to ¢.
Note that Stadtmiiller [11] indicated that the condition (mnA,, ,um,) € B~ in the Theorem 3.1 is superfluous.
Theorem 3.2. If (uyy) is (C, 1, 1) summable to £, and

(Umn) € S11, (Umn) € S0, (Umn) € So1 8)
then (Uy,) is P-convergent to €.

Note that Stadtmdiller [11] indicated that the condition (¢,,4) € S11 in the Theorem 3.2 is superfluous.
Now, we should mention the main goal of the present paper. Certain conditions on the double sequence

(tmn) or the sequence (V%)(Am,,u)) in a class of sequence which is regularly generated sequences are
sufficient conditions for (C, 1,1) summable sequence to be P-convergent. Furthermore, we extended some
classical type Tauberian theorems for (C, 1, 1) summability method.

Theorem 3.3. If (upy) is (C, 1, 1) summable to £, and
(umn) € ul (N/ N/ N)/ (umn) € UZ(N)r and (umn) € U3(N), (9)
then () is P-convergent to €.

Proof. Since () € Ua(N), then

VIO (A1) € N, (10)

by Lemma 2.2 (i). On the other hand, since (i4,,,) € U3(N), then

VO (Au) e N, (11)

from Lemma 2.2 (ii). By the hypothesis (1) € Ut(N, N, N), it follows iy = S + Viun + Lilg Ly TZ—}] = N,
where (&) € N, (Vin) € N, and (1)y,) € N. From this, we get
n

mn
Am,numn = Am,némn + Am,nvmn + % - Am,nnmn/

and
MDAy Uy = MNAy , En + MDAy Vin + N — MDA g 1 -
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Therefore, taking (C, 1, 1) means of both sides of the last identity, we get
Vi Antt) = VD (M) + Vi (Amuv) + 0o () = Vi (M uy). (12)
Applying identities (1), (2), (3) to sequences (Eun), (Vinn), and (1), respectively, we obtain (V(H)(Am n€)) €
N, (Vﬁ;)(Am ) EN, (V,,l,i)(Amnn)) e N, and (0,1,1)(17)) € N. Therefore, we have
(Vi (Aigu10)) € N (13)
By the identity (1), the proof is completed. O

Remark 3.4. If the double sequence (u,,,) is in B, then the condition (u,,) € U1 (N, N, N) is omitted. Indeed,
it follows from the identity

VR (@) = G5 (VD () = VD (0,

and () € B that
(VoD (M) € N = (00 (VED (M) € N.

Therefore, we obtain (V(H)(Am au) €N.
Theorem 3.5. Let the double sequence () be bounded. If () is (C,1,1) summable to €, and
(Vi (A0)) € Un(S10), (Vi) (At € Us(Son), (14)
then (Upy) is P-convergent to ¢.

Proof. Since (VOD(Aqu)) € Up(S10) and (VO (A1) € Us(Sor), then

(VED (A, 1)) € Sio, (15)
(VED (A a11)) € Son, (16)
by Lemma 2.2.

On the other hand, since (u,,,) is bounded and (C, 1,1) summable to ¢, (0(11)( )) is P-convergent to ¢.
We know that the (C,1,1), (C,1,0) and (C,0,1) summability methods are regular, so (0(11)(11)) is (C,1,1)
summable to ¢, (0(10)(u)) is (C,1,1) summable to £ and (0(01)(u)) is (C,1,1) summable to £. It follows from

the identity (1) that (V(H)(Amnu)) is (C,1,1) summable to 0. If we replace (i) by (V(n)(A 1)) in Lemma
2.3 (i), we obtain

([Am] + 1)([An] + 1) ( an
([Am] — m)([An] — ) \1AmLiAn]

—00 D (VI Ay 10)) + 05 (VD (A, 1))

[/\m] +1 ( (11)
[/\m] _ [/\m] n
o (o (V8 i) = SV )

[Am]  [An]

- 1 (11) (11)
([Am] = m)([An] — n) ;1k;1(v A k) — Vi (D))

Vi A tt) = o) (VAD(A,, 10)) (VDA tt) = oy, (VDA 1))

[Am],n

(VOO Ay 1)) = 0O (VD (A1)
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for A > 1. From this, we get

([Am] + 1)([An] + 1) ( an
([Am] — m)([An] — n) O \m] [An]

=0 g (VI ) + 050 (VD A 0)

(VDA 1)) = oD (VAD(A,, 1))

Vi Att) = 0% (VI (A 1)) < o

m[/\n]
Aml+1  an ay 5D
[T (ol (VO @) = oV (Am,,,u)))’ .
|G (“’W‘“)(Amnu» oAV )

[Am] [An]

- [/\n]—n) Y 2 V@A) = VI B

j=m+1k=n+1

From the last term on the right-hand side of the inequality (17), we have

[Am]  [An]

Y ) (VD@0 = VD (M)

j=m+1 k=n+1

1 [Am]  [An]
= [Tl =m0 = ) [

1
~ ([(Am] = m)([An] - n)

j

Y AVED@ )|+

r=m+1

Z AV (A s)

s=n+1

|

j=m+1k=n+1
and then

[Am]  [An]

Y ) (VD@0 = VD (M)

j=m+1k=n+1

1
~ ([(Am] = m)([An] - n)

k
+  max Z ASVSSD(Am,su) .

n+1<k<[An] L

Z AV (A, )

r=m+1

< max
m+1<j<[Am]

Taking lim sup of both sides of the inequality (17) as m,n — oo, then we have

tim sup V(A0 = (VO )] < <AA21>2 i 1P Oy 1V ()
(ke AAl)l,mng“” VN )
(S =) s e

+limsup max
1M,1n—00 m+1<]< [Am]

Z AVED (A, x)

r=m+1

Z AVED (D).
=n+1

+limsup max
m,n—c0 n+1<k<[An]

Since the sequence (0(11)(V(11)(Am n1))) is P-convergent, then the terms on the right-hand side of the last
inequality vanish. Therefore, taking the limit of both sides as A — 1*, we obtain
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lim sup [V (Ayutt) — oo (VID(A,, )| < hm limsup max
1, —c0 mp—co M+1<j<[Am]

Z AVED (D).
=n+1

Z AV (A, ur)

+limsup max
mn—oco n+1<k<[An]

Since (Vﬁ,},ll)(Am,nu)) is slowly oscillating in senses (1,0), and (0, 1), we get

m sup [V (A att) = o) (VID(A, )] < O

m,n—00

by (15) and (16). Hence, we obtain
Vi Btt) = 0(1). (18)

On the other hand, since (u,;,) is (C, 1, 1) summable to ¢, then (a(m)(u)) is (C, 1,0) summable to £. Moreover,
(0(10)( u)) is (C,0,1) summable to £. Therefore, we get (agi)(V(OD(Anu))) is (C,1,0) summable to 0 by the
identity (2), and (o4 (VAO(A,,1))) is (c 0,1) summable to 0 by the identity (3).

P-convergence of the sequence (V,,m (A nu)) implies the slow oscillation in sense (1, 0) of (V(Ol)(A u)) by
Lemma 2.2. Therefore, we obtain

Vi (Agit) = 0(1), (19)

by Lemma 2.6 (i). Similarly, since the sequence (Vm,, (Amnu)) is P-convergent, then (V,%))(Amu)) is slowly
oscillating in sense (0, 1) by Lemma 2.2. Hence, we obtain

VD (Anu) = o(1) (20)

by Lemma 2.6(ii).
Taking (18), (19), and (20) into consideration completes the proof by identity (12). [

Theorem 3.6. Let the double sequence () be bounded. If () is (C,1,1) summable to €, and

(MAm”mn) € u2(8>)r and (nAn”mn) € U3(B>), (21)
(A VO (A1) € Un(B), and (A, VIO (Anu)) € Us(B), (22)

then (Upy) is P-convergent to ¢.

Proof. Since (1A, VOP (A1) € Un(B>) and (mA, VOD (Ayu)) € U3(87), then

A VD (A ) € B, (23)
(M AWV (Aatt) € 87, (24)
by Lemma 2.2.

Since () is bounded and (C, 1, 1) summable to ¢, then it can be satisfied exactly in the same way as in
Theorem 3.6 in order to prove the (C, 1, 1) summability of (V,%)(Am,nu)) to 0.
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For A > 1, if we replace (4,) by (Vf,};)(Am,nu)) in Lemma 2.3 (i), we have

([Am] + 1)([An] + 1) ( a
([Am] — m)([An] — n) O \m] [An]

=00 D (VD Aot) + 030 (VD (A,010)))

(VIO (A1) = oD (VAD(A,, 1))

Vi (Bt = 053 (VD (A1) .

m,[An]
+ %( ol (VOO (A1) = (VI (A 1))
[An] +1
+ W]_n( o (VIO (A10) = oV (A, 0))
1 v (11) (11)
T (Am] = m)([An] - n) Z Z(V (Ajxtt) = Vi (Amnth))-

j=m+1 k=n+1

Taking lim sup of both sides of the previous equation as m,n — oo, we get

I%iiP(V%)(Am,nu) dSDWVID (A, 0) < (/\)\21) hmsup( E;Z]’[An](v(ll)(Amnu))_ (ﬁ]n(v(ll)(Ammu))
= 0§ Dy (VI A u)) + 05 (VED (A 1))
T hmmnsup( O (VD Ay 1)) = 05 (VDA 1))
+ g imsup (00, (VA Q) = 0l (VA Qo)
. : 1 [Am]  [An]
" lﬁi‘ip[‘(mml =) et Lt

V(A ) - Vi,},?(Am,nu)))'

From this, we have

2
Hm sup(V (A att) = oo (VD (A1) < T llmsupa(m] o (VDA 1)
A2
) ((/\—1)2_/1)—\1)1%3?;0(11 SV (y00)
—Az A (11) (11)
- (e mint ol )

A2 2A ) 11)
A lim sup o, (V(ll)(Am,nu))
((A—l)z -1 mwp

[Am]  [An]

ﬁnfi‘,i‘iop[ Tl = m)( T A L

j=m+1k=n+1

j
[Z AVED (A ) + Z ASVLE)(Am,Su)]].

r=m+1 s=n+1

+

Since the sequence (of,i,?(V(“)(Am,nu))) is P-convergent, then the terms on the right-hand side of the last
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inequality vanish. Hence, we obtain by the conditions (23) and (24)

[Am]  [An]
. 11) (11) (11) .
tim sup(V (onatt) = 0 (VP i) < lﬁi‘iop[ T m)( = Y, ) x

j=m+1 k=n+1

(zzJ]

[Am]  [An]
hmsup[m ETGTErPY )~

mmn—eo j=m+1k=n+1

sl ()

hmsup(Cllog(M ]) Cylo ([?:z])),

m,n— 00

A

IN

IN

for some Cq, Cy > 0. Therefore, we get

IA

lim sup(V (A att) = %) (VAD(A,, 110))

m,n—o0

CslogA,
for some C3 > 0. Taking the limit of both sides as A — 1%, we have

lim sup(VOD (A ntt) — o2 (VID(A,, 1)) < 0. (25)

mmn— oo

For 0 < A <1, in a similar way using Lemma 2.3 (ii) we have
i nf(V 5, (A utt) = 0l (VD (A1) 2 0. (26)
m,n—oo

By the inequalities (25) and (26), we obtain

VD (Apyutt) = o(1). (27)

On the other hand, by hypothesis, since (mA, ) € U2(B”) and (nA,upy,) € Uz(57), then

(mA VIO (A1) € B7, (28)
AV (Agu)) € B, (29)
by Lemma 2.2.

Since (i) is (C,1,1) summable to £, then (o 01)(u)) is (C,1,0) summable to £. Moreover, (o ( ) is
(C,0,1) summable to £. As a result, we get (0(01)(V (A1) is (C,1,0) summable to 0 by the identity (3),
and a9, (V10(A,,u)) is (C,0, 1) integrable to 0 by the identity (2).

Using the identity (2), we have mA, VO (Ayu) — mAL o0 (VO (A1) = mA, VD (Ayntt). By (27) and
Lemma 1.3, it follows that

mA Vo (M) = —C, (30)

for some C > 0. Moreover, mA,0o (VO (A,u)) = —C, for some C > 0. Since the sequence (a0 (VOD(Au)))

is (G, 1,0) summable to 0, then we get (0(01)(V(01)(Au))) is P-convergent to 0 from Lemma 2.5(i). Therefore,
we obtain that (Vf,% (Au))) is (C,0, 1) summable to 0. By the condition (3) and Lemma 2.5(ii), we have

VOV (Auu)) = o(1). (31)
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Similarly, from (3), (27), and Lemma 1.3, we obtain

nA VI (Au) > -C, (32)
for some C > 0. Moreover, nA,040(VA9(A,,u)) > —C, for some C > 0. Since the sequence (a2 (VAO(A,,11)))

is (C, 1,0) summable to 0, then we have (05,12)(1/<10>(Amu))) is P-convergent to 0 by Lemma 2.5 (ii). Hence, we

deduce that (V,gg)(Amu)) is (C,1,0) summable to 0. By the condition (3) and Lemma 2.5 (i), we have
Vi (Att) = o(1). (33)

The proof is completed by using (27), (31), and (33) in the identity (1). O
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