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A Variety of Soliton Solutions for the Boussinesq-Burgers Equation
and the Higher-Order Boussinesq-Burgers Equation
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Abstract. In this work we examine the Boussinesq-Burgers equation and the higher-order Boussinesq-
Burgers equation. The simplified Hirota’s method is used to derive multiple soliton solutions for each
method. More soliton and periodic solutions are derived as well.

1. Introduction

Nonlinear evolution equations have been used as the models to describe a variety of science and engi-
neering phenomena, such as fluid dynamics, plasma waves, chemical reactions, optical fibers, mathematical
biology, and chemical kinetics and others [1–7, 10, 11]. The study of nonlinear evolution equations is a
significant and interesting topic in solitary waves theory. A vast variety of systematic approaches have been
established to obtain exact solutions of these equations, such as the inverse scattering method, truncated
Painlevé expansion, Bäcklund transformation, Darboux transformation, Lie symmetries method [8–10, 12],
and so on. The generalized symmetry method, Painlevé analysis, the inverse scattering method, the
Bäcklund transformation method, the conservation law method, and the Hirota bilinear method are mostly
used. The Hirota’s bilinear method, and then modified the simplified form [13–17]), are rather heuristic
and possesses significant features that make it ideal for the determination of multiple soliton solutions for
a wide class of nonlinear evolution equations.

In this work, we will examine the Boussinesq-Burgers equation [2, 5, 12] given in the form

ut −
1
2 vx + 2uux = 0,

vt −
1
2 uxxx + 2(uv)x = 0, 0 ≤ x ≤ 1,

(1)

which is a nonlinear long-wave equation, where x and t represent the normalized space and time, respec-
tively. The functions u(x, t) and v(x, t) represent the horizontal velocity field and the height of the water
surface above a horizontal level at the bottom. The Boussinesq–Burgers equation (1) arises in the study of
fluid flow and describe the propagation of shallow water waves. A good understanding of its solutions is
very helpful for coastal and civil engineers to apply the nonlinear water wave model to harbor and coastal
designs [5, 6, 12].
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The Boussinesq-Burgers equation [5–7, 12] has a Lax pair, the spectral parameter

φx = Uφ, U =

(
λ + u ux + v

1 −λ − u

)
(2)

and the auxiliary function

φt = Vφ, (3)

with

V =

(
λ2
−

1
2 ux − u2 λ(ux + v) + 1

2 uxx − uux − uv + 1
2 vx

λ − u −λ2 + 1
2 ux + u2

)
, (4)

where u(x, t) and v(x, t) are two potentials, and k is a constant spectral parameter [2–5].
The Boussinesq–Burgers equation was studied in the literature by using different methods and some-

times called the Kaup–Boussinesq equation. Darboux transformation was used by Chen and Li [2] to
obtain a variety of soliton solutions. The Lie symmetry method is utilized to obtain exact solutions of the
generalized Boussinesq-Burgers equations. Kaup [7] discussed the integrability for Eq.(1). Matveev et al.
[10] obtained the multi-phase periodic solutions for this equation. Kamchatnov et al [6] obtained numerical
solutions for by the use of the quasi–classical quantization method.

We point out that a higher-order Boussinesq–Burgers equation was introduced by Jin–Ming and Yao–
Ming [5] and given by

ut − 3σu2ux + 3
2σ(uv)x −

1
4σuxxx = 0,

vt + 3
2σvvx − 3σ(u2v)x + 3σuxuxx + 3

2σuuxxx −
1
4σvxxx = 0,

(5)

where σ is a non-zero arbitrary constant.
Jin–Ming and Yao–Ming [5] applied the simplified Hirota’s method to derive multiple kink solutions,

where they used this derivation to claim that this higher-order Boussinesq–Burgers equation is integrable
although other justifications, such as Lax pair, were not given to confirm this result.

Our aim from this work is two fold. The first goal is to employ the simplified Hirota’s method to derive
multiple soliton solutions and other solitonic and periodic solutions for the Boussinesq–Burgers equation
(1). We aim second to study the higher-order Boussinesq–Burgers equation (5) to obtain more solitonic and
periodic solutions in addition to the results obtained in [5]. This difference exhibits soliton solutions for
some equations and anti-soliton solutions for others. The new solutions are very helpful for coastal and
civil engineers to apply the nonlinear water wave model to harbor and coastal designs.

2. The Boussinesq–Burgers Equation

In this work, we will first study the Boussinesq-Burgers equation given in the form

ut −
1
2 vx + 2uux = 0,

vt −
1
2 uxxx + 2(uv)x = 0, 0 ≤ x ≤ 1,

(6)

which is a nonlinear long-wave equation.
To determine the dispersion relation, we use the first part of (6) to obtain

v(x, t) = ∂−1
x (2ut) + 2u2, (7)

where the operator ∂−1
x is the inverse operator of ∂x, ∂−1

x is a partial integration operator, where ∂x∂−1
x =

∂−1
x ∂x = 1. Consequently, the second part of (6) becomes(

∂−1
x (2ut) + 2u2

)
t
+ 2u

(
2ut + 2(u2)x

)
+ 2ux

(
∂−1

x (2ut) + 2u2
)
−

1
2

uxxx = 0. (8)
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To get rid of the inverse operator of ∂−1
x , we use the potential

u(x, t) = wx(x, t), (9)

that will carry out (8) to the single equation(
2wt + 2w2

x

)
t
+ 2wx

(
2wxt + 2(w2

x)x

)
+ 2wxx

(
2wt + 2w2

x

)
−

1
2

wxxxx = 0. (10)

Unlike the Boussinesq equation which is characterized by quadratic nonlinearity, the fourth-order Eq. (10)
contains cubic nonlinearity.

2.1. Multiple soliton solutions
To determine the dispersion relation for Eq. (10), we substitute

w(x, t) = ekix−cit, (11)

into the linear terms of (10) to find that the dispersion relation is given by

ci = −
1
2

k2
i . (12)

Consequently, we set the dispersion variable by

θi = kix +
1
2

k2
i t. (13)

Notice that we used Eq. (10) to determine the dispersion relation. However, to obtain the multiple soliton
solutions we prefer to use the Boussinesq–Burgers equation (6). We first use the transformation

u(x, t) = −
1
2

(ln f (x, t))x, (14)

where the auxiliary function f (x, t) for the single soliton solution is given by

f (x, t) = 1 + eθ1 = 1 + ek1x+ 1
2 k2

1t. (15)

Substituting (14) into (7) gives

v(x, t) = ux(x, t). (16)

Combining (14) and (16) gives

u(x, t) = −
1
2 (ln f (x, t))x,

v(x, t) = −
1
2 (ln f (x, t))xx.

(17)

Using (15) and (17) gives the single kink solution for the velocity averaged over depth u(x, t) by

u(x, t) = −
k1 ek1x+ 1

2 k2
1 t

2(1 + ek1x+ 1
2 k2

1 t)
, (18)

and the single soliton solution the height of the water surface above a horizontal bottom v(x, t) by

v(x, t) = −
k2

1 ek1x+ 1
2 k2

1 t

2(1 + ek1x+ 1
2 k2

1 t)2
. (19)
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For the two kink solutions and the two soliton solutions we use the auxiliary function

f (x, t) = 1 + eθ1 + eθ2 ,

= 1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t.
(20)

Substituting (20) into (17), the two kink solutions are given by

u(x, t) = −
k1 ek1x+ 1

2 k2
1 t + k2 ek2x+ 1

2 k2
2 t

2(1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t)
, (21)

and the two soliton solutions for the height of the water surface above a horizontal bottom v(x, t) by

v(x, t) = −
k2

1ek1x+ 1
2 k2

1 t + k2
2ek2x+ 1

2 k2
2 t

2(1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t)
+

(
k1ek1x+ 1

2 k2
1 t + k2ek2x+ 1

2 k2
2 t
)2

2(1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t)2
. (22)

For the three soliton solutions, we set

f (x, t) = 1 + eθ1 + eθ2 + eθ3 ,

= 1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t + ek3x+ 1
2 k2

2 t.
(23)

Proceeding as before, the three kink solutions are given by

u(x, t) = −
k1 ek1x+ 1

2 k2
1 t + k2 ek2x+ 1

2 k2
2 t + k3 ek3x+ 1

2 k2
3 t

2(1 + ek1x+ 1
2 k2

1 t + ek2x+ 1
2 k2

2 t + ek3x+ 1
2 k2

3 t)
, (24)

and the three soliton solutions

v(x, t) = −
k2

1ek1x− 1
2 k2

1 t
+k2

2ek2x− 1
2 k2

2 t
+k2

3ek3x− 1
2 k2

3 t

2
(
1+ek1x− 1

2 k2
1 t

+ek2x− 1
2 k2

2 t
+ek3x− 1

2 k2
3 t

)
+

(
k1ek1x+ 1

2 k2
1 t

+k2ek2x+ 1
2 k2

2 t
+k3ek3x+ 1

2 k2
3 t

)2

2
(
1+ek1x+ 1

2 k2
1 t

+ek2x+ 1
2 k2

2 t
+ek3x+ 1

2 k2
3 t

)2 .

(25)

2.2. The general solutions

From the analysis presented above, it is obvious that the generalized Boussinesq–Burgers equation gives
multiple kink and soliton solutions, a significant feature of integrable equations. The general dispersion
relations are given by

ci = −
1
2

k2
i . (26)

Moreover, the generalized soliton solutions are given by

u(x, t) = −

∑N
i=1 ki ekix+ 1

2 k2
i t

2(1 +
∑N

i=1 ekix+ 1
2 k2

i t)
, (27)

and

v(x, t) = −

∑N
i=1 k2

i ekix+ 1
2 k2

i t

2(1 +
∑N

i=1 ekix− 1
2 k2

i t)
+

(∑N
i=1 ki ekix− 1

2 k2
i t
)2

2
(
1 +

∑N
i=1 ekix− 1

2 k2
i t
)2 . (28)
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2.3. Hyperbolic solutions

To determine hyperbolic solutions for the Boussinesq–Burgers equation (6), we first assume that the
solutions take the form

u(x, t) = a0 + a1 tanh(kx − ct),
v(x, t) = b0 + b1 tanh2(kx − ct), (29)

Substituting (29) into (6) we find

(−2a2
1k + b1k) tanh3(kx − ct) + (a1c − 2a1ka0) tanh2(kx − ct)

+(2a2
1k − b1k) tanh(kx − ct) − a1c + 2a1ka0 = 0,

(−6a1kb1 + 3a1k3) tanh4(kx − ct) + (2b1c − 4b1ka0) tanh3(kx − ct)
+(−4a1k3 + 6a1kb1 − 2a1kb0) tanh2(kx − ct) + (−2b1c + 4b1ka0) tanh(kx − ct)
+a1k3 + 2a1kbb0 = 0.

(30)

Equating the coefficients of tanhi(kx− ct), 1 ≤ i ≤ 4 to zero, and solving the resulting equations we find two
sets of solutions given by

a0 = c
2k ,

a1 = −
k
2 ,

b0 = −
k2

2 ,
b1 = k2

2 ,

(31)

and

a0 = c
2k ,

a1 = k
2 ,

b0 = −
k2

2 ,
b1 = k2

2 ,

(32)

The first set gives the solitonic solutions

u(x, t) = c
2k −

k
2 tanh(kx − ct),

v(x, t) = −
k2

2 sech2(kx − ct),
(33)

where k and c are left as free parameters. However, the second set gives the solitonic

u(x, t) = c
2k + k

2 tanh(kx − ct),
v(x, t) = −

k2

2 sech2(kx − ct),
(34)

In a like manner, we may assume more hyperbolic solutions of the form

u(x, t) = a0 + a1 coth(kx − ct),
v(x, t) = b0 + b1 coth2(kx − ct), (35)

Proceeding as before gives the same two sets of coefficients, hence we find singular hyperbolic solutions
given by

u(x, t) = c
2k + k

2 coth(kx − ct),
v(x, t) = k2

2 csch2(kx − ct),
(36)

with k and c are left as free parameters.
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2.4. Periodic solutions

To determine periodic solutions for the Boussinesq–Burgers equation (6), we first assume that the
solutions take the form

u(x, t) = a0 + a1 tan(kx − ct),
v(x, t) = b0 + b1 tan2(kx − ct), (37)

Substituting (37) into (6) and proceeding as before we find two sets of solutions given by

a0 = c
2k ,

a1 = −
k
2 ,

b0 = k2

2 ,
b1 = k2

2 ,

(38)

and

a0 = c
2k ,

a1 = k
2 ,

b0 = k2

2 ,
b1 = k2

2 ,

(39)

The first set gives the periodic solutions

u(x, t) = c
2k −

k
2 tan(kx − ct),

v(x, t) = k2

2 sec2(kx − ct),
(40)

where k and c are left as free parameters. However, the second set gives the solitonic

u(x, t) = c
2k + k

2 tan(kx − ct),
v(x, t) = −

k2

2 sec2(kx − ct),
(41)

In a like manner, we may assume more singular solutions of the form

u(x, t) = a0 + a1 cot(kx − ct),
v(x, t) = b0 + b1 cot2(kx − ct), (42)

Proceeding as before gives the same two sets of coefficients, hence we find singular trigonometric solutions
given by

u(x, t) = c
2k −

k
2 cot(kx − ct),

v(x, t) = k2

2 csc2(kx − ct),
(43)

and

u(x, t) = c
2k + k

2 cot(kx − ct),
v(x, t) = k2

2 csc2(kx − ct),
(44)

with k and c are left as free parameters.
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3. The Higher-Order Boussinesq–Burgers Equation

A higher-order Boussinesq–Burgers equation was introduced by Jin–Ming and Yao–Ming (2011) in the
form

ut − 3σu2ux + 3
2σ(uv)x −

1
4σuxxx = 0,

vt + 3
2σvvx − 3σ(u2v)x + 3σuxuxx + 3

2σuuxxx −
1
4σvxxx = 0,

(45)

where σ is a non-zero arbitrary constant. As stated before, the simplified Hirota’s method was applied to
derive multiple kink solutions for this equation. Jin–Ming and Yao–Ming (2011) used the transformations

u(x, t) = ±
1
2 (ln( f ))x,

v(x, t) = −
1
2 (ln( f ))xx,

(46)

where the auxiliary function f (x, t) reads

f (x, t) = 1 + ek1x+
σk3

1
4 t, (47)

where the dispersion relation was derived as

ωi = −
σk3

i

4
, i = 1, 2, 3. (48)

Based on this and using the simplified Hirota’s method, multiple soliton solutions were obtained.
We aim in this work to develop new hyperbolic and periodic solutions to the higher-order Boussinesq–

Burgers equation (45). For simplicity we set σ = 1.

3.1. Hyperbolic solutions
To determine hyperbolic solutions for the Boussinesq–Burgers equation (45), we first assume that the

solutions take the form

u(x, t) = a0 + a1 tanh(kx − ct),
v(x, t) = b0 + b1 tanh2(kx − ct), (49)

Substituting (49) into (45) we find

(3a3
1k − 9

2 a1kb1 + 3
2 a1k3) tanh4(kx − ct) + (6a2

1ka0 − 3b1ka0) tanh3(kx − ct)
+(3a1ka2

0 + 9
2 a1kb1 − 3a3

1k − 2a1k3
−

3
2 a1kb0 + a1c) tanh2(kx − ct)

(−6a2
1ka0 + 3b1ka0) tanh(kx − ct) − a1c + 1

2 a1k3
− 3a1ka2

0 + 3
2 a1kb0 = 0,

(6b1k3
− 15a2

1k3 + 12a2
1kb1 − 3b2

1k) tanh5(kx − ct)
+(−9a0a1k3 + 18a1ka0b1) tanh4(kx − ct)
+(6b1ka2

0 − 12a2
1kb1 − 10b1k3 + 24a2

1 ∗ k3 + 6a2
1kb0 + 2b1c + 3b2

1k − 3b1kb0)
× tanh3(kx − ct)
+(6a1ka0b0 − 18a1ka0b1 + 12a0a1k3) tanh2(kx − ct)
+(−6a2

1kb0 + 4b1k3
− 9a2

1k3 + 3b1kb0 − 2b1c − 6b1ka2
0) tanh(kx − ct)

−6a1ka0b0 − 3a0a1k3.

(50)

Equating the coefficients of tanhi(kx− ct), 1 ≤ i ≤ 5 to zero, and solving the resulting equations we find two
sets of solutions given by

a0 = ±

√
−(4c+k3)

12k , (4c+k3)
k < 0

a1 = −
k
2 ,

b0 = −
k2

2 ,
b1 = k2

2 ,

(51)
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and

a0 = ±

√
−(4c+k3)

12k , (4c+k3)
k < 0,

a1 = k
2 ,

b0 = −
k2

2 ,
b1 = k2

2 ,

(52)

The first set gives the solitonic solutions

u(x, t) = ±

√
−(4c+k3)

12k , (4c+k3)
k < 0

−
k
2 tanh(kx − ct),

v(x, t) = −
k2

2 sech2(kx − ct),

(53)

where k and c are left as free parameters. However, the second set gives the solitonic

u(x, t) = ±

√
−(4c+k3)

12k , (4c+k3)
k < 0

+ k
2 tanh(kx − ct),

v(x, t) = −
k2

2 sech2(kx − ct),

(54)

In a like manner, we may assume more hyperbolic solutions of the form

u(x, t) = a0 + a1 coth(kx − ct),
v(x, t) = b0 + b1 coth2(kx − ct), (55)

Proceeding as before gives the same two sets of coefficients, hence we find singular hyperbolic solutions
given by

u(x, t) = ±

√
−(4c+k3)

12k + k
2 coth(kx − ct),

v(x, t) = k2

2 csch2(kx − ct),
(56)

with k and c are left as free parameters.

3.2. Periodic solutions
To determine periodic solutions for the Boussinesq–Burgers equation (45), we first assume that the

solutions take the form

u(x, t) = a0 + a1 tan(kx − ct),
v(x, t) = b0 + b1 tan2(kx − ct), (57)

Substituting (57) into (45) and proceeding as before we find two sets of solutions given by

a0 = ±

√
−(4c−k3)

12k , (4c−k3)
k < 0,

a1 = −
k
2 ,

b0 = k2

2 ,
b1 = k2

2 ,

(58)

and

a0 = c
2k ,

a1 = k
2 ,

b0 = k2

2 ,
b1 = k2

2 ,

(59)
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The first set gives the periodic solutions

u(x, t) = ±

√
−(4c−k3)

12k −
k
2 tan(kx − ct),

v(x, t) = k2

2 sec2(kx − ct),
(60)

where k and c are left as free parameters. However, the second set gives the solitonic

u(x, t) = ±

√
−(4c−k3)

12k + k
2 tan(kx − ct),

v(x, t) = −
k2

2 sec2(kx − ct),
(61)

In a like manner, we may assume more singular solutions of the form

u(x, t) = a0 + a1 cot(kx − ct),
v(x, t) = b0 + b1 cot2(kx − ct), (62)

Proceeding as before gives the same two sets of coefficients, hence we find singular trigonometric solutions
given by

u(x, t) = ±

√
−(4c−k3)

12k −
k
2 cot(kx − ct),

v(x, t) = k2

2 csc2(kx − ct),
(63)

and

u(x, t) = ±

√
−(4c−k3)

12k + k
2 cot(kx − ct),

v(x, t) = k2

2 csc2(kx − ct),
(64)

with k and c are left as free parameters.

4. Discussion

The Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation were investigated.
We used the simplified Hirota’s method and other hyperbolic and trigonometric ansatze to derive multiple
soliton solutions, solitons and periodic solutions. We also obtained solitons and periodic solutions for the
higher-order Boussinesq-Burgers equation. We showed that these equations, that represent phenomena for
coastal and harbor applications, possess a variety of solitonic and periodic solutions.
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