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Abstract. This paper improves and generalizes the Kantorovich and Wielandt inequalities for positive
linear maps on Hilbert space operators and presents more general and precise results compared to many
recent results.

1. Introduction

Throughout this paper, we reserve M, m for real numbers and I for the identity operator. Other capital
letters denote general elements of the C∗-algebraB(H) all bounded linear operators on a complex separable
Hilbert space (〈·, ·〉,H). ‖·‖ denotes the operator norm. An operator A is said to be positive (strictly positive)
if 〈Ax, x〉 ≥ 0 for all x ∈ H (〈Ax, x〉 > 0 for all x ∈ H\{0}) and write A ≥ 0 (A > 0). A ≥ B (A > B) means
A − B ≥ 0 (A − B > 0). The absolute value of A is denoted by |A|, that is, |A| = (A∗A)

1
2 .

A linear map Φ : B(H) → B(K ) is positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said to be unital if
Φ(I) = I. We say that a linear map Φ between C∗-algebras is 2-positive if whenever the 2× 2 operator matrix[

A B
B∗ C

]
≥ 0, then so is

[
Φ(A) Φ(B)
Φ(B∗) Φ(C)

]
≥ 0.

In 1948, Kantorovich [7] introduced the well-known Kantorovich inequality. In 1990, an operator
Kantorovich inequality was established by Marshall and Olkin [10]. Recently, Lin [9] proved that the
operator Kantorovich inequality is order preserving under squaring. This result was further generalized
by several authors (see [4, 11]), who obtained

Theorem 1.1. [4, 11] Let 0 < m ≤ A ≤M. Then for every positive unital linear map Φ,

Φp(A−1) ≤
(m + M)2p

16mpMp Φ(A)−p, p ≥ 2 (1)

and

Φp(A−1) ≤
(m2 + M2)p

16mpMp Φ(A)−p, p ≥ 4. (2)
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When p ≥ 4, the inequality (2) is tighter than (1). There exsits a vacancy unconsidered for 2 ≤ p ≤ 4.
Motivated by this, we intend to obtain some better results.

In view of positive linear map Φ, Lin [9] proved that

∣∣∣Φ(A−1)Φ(A) + Φ(A)Φ(A−1)
∣∣∣ ≤ (M + m)2

2Mm
(3)

and

Φ(A−1)Φ(A) + Φ(A)Φ(A−1) ≤
(M + m)2

2Mm
. (4)

Fu [5] generalized the inequalities (3) and (4) to p-th power. We consider an improvement of Fu’s result.
Finally, we study a conjecture on Wielandt type operator inequalities and obtain some refined results.

2. Kantorovich-Type Inequalities

Firstly, we are devoted to obtain a better bound than (1) and (2). To this end, we need two important
lemmas.

Lemma 2.1. [3, Lemma 2.1] Let A,B ≥ 0. Then the following inequality holds:

‖AB‖ ≤
1
4
‖A + B‖2. (5)

Lemma 2.2. [1, p. 28] Let A,B ≥ 0. Then for 1 ≤ r < +∞,

‖Ar + Br
‖ ≤ ‖(A + B)r

‖. (6)

We know that ‖A‖ ≤ 1 is equivalent to A∗A ≤ I. Using this fact we have the following result:

Theorem 2.3. Let 0 < m ≤ A ≤M. Then for every positive unital linear map Φ, 1 ≤ α ≤ 2 and p ≥ 2α,

Φp(A−1) ≤
(mα + Mα)

2p
α

16mpMp Φ(A)−p. (7)

Proof. The desired inequality is equivalent to∥∥∥∥Φ p
2 (A−1)Φ

p
2 (A)

∥∥∥∥ ≤ (mα + Mα)
p
α

4m
p
2 M

p
2

.

Compute∥∥∥∥m
p
2 M

p
2 Φ

p
2 (A−1)Φ

p
2 (A)

∥∥∥∥ ≤ 1
4

∥∥∥∥m
p
2 M

p
2 Φ

p
2 (A−1) + Φ

p
2 (A)

∥∥∥∥2
(by (5))

≤
1
4

∥∥∥∥∥(mαMαΦα(A−1) + Φα(A)
) p

2α

∥∥∥∥∥2

(by (6))

=
1
4

∥∥∥mαMαΦα(A−1) + Φα(A)
∥∥∥ p
α

≤
1
4

(mα + Mα)
p
α .

The last inequality above holds as follows: The condition 0 < m ≤ A ≤M implies that

MαmαA−α + Aα
≤Mα + mα, (8)
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and hence

MαmαΦ(A−α) + Φ(Aα) ≤Mα + mα, (9)

The well-known inequality (see [1, p. 53]) says

Φα(T) ≤ Φ(Tα)

for every positive unital linear map Φ and T > 0. Then it follows from (9) that

MαmαΦα(A−1) + Φα(A) ≤Mα + mα.

Therefore∥∥∥∥Φ p
2 (A−1)Φ

p
2 (A)

∥∥∥∥ ≤ (mα + Mα)
p
α

4m
p
2 M

p
2

. (10)

So the inequality (7) is obtained.

Remark 2.4. Inequalities (1) and (2) are two special cases of (7) by taking α = 1, 2.
Putting α = 2 and p = 4, the inequality (7) reduces to Lin’s result (see [8, Theorem 4.3]).

We next present the generalizations of (3) and (4). The following lemma is useful in our proof of Theorem
2.6.

Lemma 2.5. For any bounded operator X,

|X| ≤ tI⇔ ‖X‖ ≤ t⇔
[

tI X
X∗ tI

]
≥ 0 (t ≥ 0).

Theorem 2.6. Let A be a positive operator on a Hilbert space H with 0 < m ≤ A ≤ M and Φ be a positive linear
map on B(H). Then for 1 ≤ α ≤ 2 and p ≥ α,∣∣∣Φp(A−1)Φp(A) + Φp(A)Φp(A−1)

∣∣∣ ≤ (Mα + mα)
2p
α

2Mpmp (11)

and

Φp(A−1)Φp(A) + Φp(A)Φp(A−1) ≤
(Mα + mα)

2p
α

2Mpmp . (12)

Proof. By (10) and Lemma 2.5, we deduce (Mα+mα)
2p
α

4Mpmp I Φp(A)Φp(A−1)

Φp(A−1)Φp(A) (Mα+mα)
2p
α

4Mpmp I

 ≥ 0

and  (Mα+mα)
2p
α

4Mpmp I Φp(A−1)Φp(A)

Φp(A)Φp(A−1) (Mα+mα)
2p
α

4Mpmp I

 ≥ 0.

Summing up these two operator matrices, we have (Mα+mα)
2p
α

2Mpmp I Φp(A)Φp(A−1) + Φp(A−1)Φp(A)

Φp(A−1)Φp(A) + Φp(A)Φp(A−1) (Mα+mα)
2p
α

2Mpmp I

 ≥ 0.

By Lemma 2.5 again, we obtain (11).
As Φp(A)Φp(A−1) + Φp(A−1)Φp(A) is self-adjoint, (12) follows from the maximal characterization of geo-

metric mean.
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Remark 2.7. Taking α = 1 and p = 1, (11) and (12) collapse to (3) and (4), respectively.
Fu showed a special case of Theorem 2.6 for α = 1 in [5, Theorem 4].

When α = 2, Theorem 2.6 implies the following.

Corollary 2.8. Let A be a positive operator on a Hilbert space H with 0 < m ≤ A ≤ M and Φ be a positive linear
map on B(H). Then for p ≥ 2 ,

∣∣∣Φp(A−1)Φp(A) + Φp(A)Φp(A−1)
∣∣∣ ≤ (M2 + m2)p

2Mpmp , (13)

and

Φp(A−1)Φp(A) + Φp(A)Φp(A−1) ≤
(M2 + m2)p

2Mpmp . (14)

Remark 2.9. When p ≥ 2, the inequalities (13) and (14) is tighter than that of Fu [5, Theorem 4], respectively.

3. Wielandt-Type Inequalities

In 2000, Bhatia and Davis [2] proved an operator Wielandt inequality which states that if 0 < m ≤ A ≤M
and X, Y are two partial isometries on H whose final spaces are orthogonal to each other, then for every
2-positive linear map Φ on B(H),

Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX) ≤
(M −m

M + m

)2

Φ(X∗AX).

Lin [9, Conjecture 3.4] conjecture that the following assertion could be true:

∥∥∥Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)Φ(X∗AX)−1
∥∥∥ ≤ (M −m

M + m

)2

. (15)

Recently, Fu and He [4] attempt to solve the conjecture and get a step closer to the conjecture. But
Gumus [6] obtains a better upper bound to approximate the right side of (15) based on

∥∥∥Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)Φ(X∗AX)−1
∥∥∥ ≤ (M −m)2

2(M + m)
√

Mm
,

which is equivalent to

(
Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)

)2
≤

(M −m)4

4(M + m)2Mm
Φ2(X∗AX). (16)

Soon after, Zhang [11] proved two generalized inequalities∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
) p

2
Φ(X∗AX)−

p
2

∥∥∥∥∥ ≤ 1
4

((M −m
M + m

)2

M +
1
m

)p

, p ≥ 2 (17)

and ∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
) p

2
Φ(X∗AX)−

p
2

∥∥∥∥∥ ≤ (M −m
M + m

)p (M
m

) p
2

, p ≥ 1. (18)

Now, Let us give improvements of (17) and (18).
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Theorem 3.1. Let 0 < m ≤ A ≤M, X and Y be two isometries inH whose final spaces are orthogonal to each other
and Φ be a 2-positive linear map on B(H). Then for 1 ≤ α ≤ 2 and p ≥ 2α,∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)

) p
2

Φ(X∗AX)−
p
2

∥∥∥∥∥ ≤ (M −m)p(Mα + mα)
p
α

22+
p
2 M

3p
4 m

3p
4 (M + m)

p
2

. (19)

Proof. By using (16), we have(
Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)

)α
≤

(M −m)2α

2α(M + m)αM
α
2 m

α
2
Φα(X∗AX). (20)

Combining (20) with Lemma 2.1 and Lemma 2.2, we get

∥∥∥∥∥∥ (M −m)p

2
p
2 (M + m)

p
2

M
p
4 m

p
4

(
Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)

) p
2

Φ(X∗AX)−
p
2

∥∥∥∥∥∥
≤

1
4

∥∥∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
) p

2
+

(
(M −m)2

2(M + m)

√

MmΦ(X∗AX)−1

) p
2

∥∥∥∥∥∥∥
2

≤
1
4

∥∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
)α

+
(M −m)2α

2α(M + m)α
(Mm)

α
2 Φ(X∗AX)−α

∥∥∥∥∥∥
p
α

≤
1
4

∥∥∥∥∥∥ (M −m)2α

2α(Mm)
α
2 (M + m)α

Φ(X∗AX)α +
(M −m)2α

2α(M + m)α
(Mm)

α
2 Φ(X∗AX)−α

∥∥∥∥∥∥
p
α

=
(M −m)2p

22+pM
p
2 m

p
2 (M + m)p

∥∥∥Φ(X∗AX)α + MαmαΦ(X∗AX)−α
∥∥∥ p
α

≤
(M −m)2p(Mα + mα)

p
α

22+pM
p
2 m

p
2 (M + m)p

.

The last inequality follows from (8) and 0 < m ≤ X∗AX ≤M. This proves the inequality (19).

Putting α = 1, 2 in Theorem 3.1, we have

Corollary 3.2. Under the same conditions as in Theorem 3.1, then∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
) p

2
Φ(X∗AX)−

p
2

∥∥∥∥∥ ≤ (M −m)p(M + m)
p
2

22+
p
2 M

3p
4 m

3p
4

, p ≥ 2 (21)

and ∥∥∥∥∥(Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)
) p

2
Φ(X∗AX)−

p
2

∥∥∥∥∥ ≤ (M −m)p(M2 + m2)
p
2

22+
p
2 M

3p
4 m

3p
4 (M + m)

p
2

, p ≥ 4. (22)

Remark 3.3. (22) is better than (21) as p ≥ 4. When M
m ≤ 57.7341, a simple computation shows that

(M −m)2(M + m)

8M
3
2 m

3
2

≤

(M −m
M + m

)2 M
m
≤

1
4

((M −m
M + m

)2

M +
1
m

)2

,

which points out that the right side of (21) is a better bound than that of (17) for p ≥ 2 and that of (18) for p = 2,
respectively.

Following from (19) and the line of the prove of Theorem 2.6, we have
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Theorem 3.4. Under the same conditions as in Theorem 3.1, denote

Γ =
(
Φ(X∗AY)Φ(Y∗AY)−1Φ(Y∗AX)

) p
2

Φ(X∗AX)−
p
2 ,

then

|Γ + Γ∗| ≤
(M −m)p(Mα + mα)

p
α

21+
p
2 M

3p
4 m

3p
4 (M + m)

p
2

and

Γ + Γ∗ ≤
(M −m)p(Mα + mα)

p
α

21+
p
2 M

3p
4 m

3p
4 (M + m)

p
2

.
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