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Abstract. In this paper, firstly we prove an integral identity that one can derive several new equalities
for special selections of 1 from this identity. Secondly, we established more general integral inequalities for
functions whose second derivatives of absolute values are GA—convex functions based on this equality.

1. Introduction

We will start with the definiton of convexity that has utilization in all branches of mathematics and has
several applications in mathematical analysis, optimization and statictics.
The function f : I ¢ R — R is a convex function on I, if the inequality

fltx+(A-Hy)<tfx)+Q -1 f(y)

holds forall x,y € I and ¢ € [0, 1].
The notion of convex functions has attract attention of several researchers have been studied on in-
equality theory. Remarkable studies have been improved for convex functions. One of them is Hermite-

Hadamard inequality that gives us upper and lower bounds for the mean-value of a convex function which
is given as:

f(a+b) ff()d (a)+f(b)

Anderson et al. mentioned mean function in [4] as following;:

Definition 1.1. A function M : (0, c0) X (0, 00) — (0, o) is called a Mean function if
)M (x,y) = M(y,x),
(2) M(x,x) = x,
(3) x < M(x,y) <y, whenever x <y,
(4) M (ax,ay) = aM (x, y) for all a > 0.
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Based on the definition of mean function, let us recall special means (See [4])
1. Arithmetic Mean: M (x,y) = A(x, y) = HTy
2. Geometric Mean: M (x, y) = G (x,y) = /xy.

3. Harmonic Mean: M (x,y) = H (x,y) = 1/A (}—(, %)
4. Logarithmic Mean: M (x,y) = L(x,y) = (x — y) / (Inx — In y) for x # y and L(x, x) = x.

5. Identric Mean: M (x,y) = I (x,y) = (1/e) (x"/yy)l/(’“y) for x # y and I(x, x) = x.
In [4], Anderson et al. also gave a definition that include several different classes of convex functions as
the following:

Definition 1.2. Let f : I — (0, o) be continuous, where I is a subinterval of (0, 00) . Let M and N be any two Mean
functions. We say f is MIN-convex (concave) if

fM(x,y) < ()N &), f(v)
forallx,y el
In [2], Niculescu mentioned the following considerable definitions:

The AG—-convex functions (usually known as log —convex functions) are those functions f : I — (0, )
for which

xyeland A €[0,1] = f(A-Nx+Ay) < fO fF(y), 1)

i.e., for which log f is convex.
The GG—convex functions (called in what follows multiplicatively convex functions) are those functions
f : 1 — ] (acting on subintervals of (0, o)) such that

vyeland 1 €[0,1] = f(x*y') < f)' ™ F(). )

The class of all GA—convex functions is constituted by all functions f : I — R (defined on subintervals of
(0, 0)) for which

vyeland A €[0,1] = f(x''y") < (1= 1) F () + Af (y). 3)

Besides, recall that the condition of GA—convexity is x2f” + xf’ > 0 which implies all twice differentiable
non-decreasing convex functions are also GA—convex.
In [1], authors proved the following lemma and established new inequalities of Hermite-Hadamard

type.
Lemma 1.3. Let f: I € Ry = (0,00) — R be differentiable on I° and a,b € I° witha < b. If f’ € L[a, b], then

b 1
[bf (b) —af (@)] - ff(x) dx = (Inb —Ina) betaz(l_t)f' (btal_t) dt.
a 0

In [10], Latif gave the following integral identity and proved new inequalities of Hermite-Hadamard
type.

Lemma 1.4. Let f : I C R, = (0,00) — IR be a differentiable function on I° and a,b € I witha < b.If f' € L[a,b],
then the following equality holds:

b 1 1
bf(b)—af(a)—ff(x)dx = Wlfb%l-ff'(b%?)dnfbl-falﬂf'(blz“al%‘)dt‘.
a 0 0

For recent results, generalizations, improvements and counterparts see the papers [1]-[10] and references
therein.

The main aim of this paper is to prove some new integral inequalities for GA—convex functions by using
a new integral identity.
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2. A New Lemma

We will give a new integral identity which is emboided in the following lemma to obtain our results.

Lemma2.1. Let f : I ¢ Ry = (0,00) — R be a twice differentiable mapping on I° and a,b € I° with a < b. If
f" € Lla,b], then the following identity holds:

(4)
b
A f (@) = (b)  a'f(a) = b f (b) e
H(a,b;n) = Y - - —fu f(w)du
1 1 ( 1 Inb 1
_ ma-—Inx (n+2)t L (n+2)(A=t) 17 (£ 1t nx—in (n+2)t 7, (n+2)(1=t) grr (t3,1-t
w1 fa x f(ax )dt+—n(n+1) fx b f (xb )dt

0

forall x € [a,b] and n > 1.

Proof. Integrating by parts and by using the change of the variables, one can see the proof. [
Remark 2.2. Several new equalities can be derived from (4), by selecting of the special cases of n.

3. New Inequalities

Theorem 3.1. Let f : I € Ry = (0,00) — R be a twice differentiable mapping on I°, a,b € I° with a < b and
f” €Lla,b]. If|f” (x)) is GA—convex function on [a, b], then the following inequality holds:

xn+2 bn+2
|H(a,b;n)| < ——— = [Fi(a,x)]+ ——— [Fa(b, x)]
(@ bim) n(n+1) (n+2) 1(,2) 10+ 1) (1 + 2) ;)
where
n+2 n+2 n+2 n+2 n+2
Fey = |7 @) () m(s) "-(5) "+ 1 ) (8) -mn(f) -1
’ Inx —Ina Inx —1Ina
n+2 n+2 n+2 n+2 n+2
) In(x) —-(F) +1 F) —-In(x) -1
)G () v |G ()
Balx) = f (x)| Inb—Inx lf (b)| Inb—1Inx
forall x € [a,b] and n > 1.
Proof. From Lemma 2.1 and by using the GA—convexity of |f" (x)|, we have
1 1 ( Inb-1 (
nx—lIna nb-Inx
) < (42)t ( (142) (1) | g7 (1 1t (n4+2)t 1 (n1+2)(A=t) | rr (t71-t
Habml < So=m fa x £ (x| e + D fx b £ (x| e
0 0
Inx —Ina
(n+2)t . (n+2)(1-t) 1" _ 17
sl K [t @]+ @ =0 @) at
Inb-1 ‘
no-—nx (n+2)t1,(n+2)(1-t) ” _ "
T D fx b [t1f” @]+ a-p|f @]

0
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By computing the above integrals and simplfying, we obtain

n+2 n+2 n+2
|H(a,b;n)| < f,,(a)l[(;) ln(;) _(;) +1J

"2 (Inx — Ina) l

nmn+1) (Ina™*2 — In x1+2)>?

fll (x)| [(i)VH—Z ln(%)m—z _ (%)M—Z + 1]

(Inb™2 —In xn+2)2

(Ina"2 — 1 xn+2)2

ol et

(Inbm+2 — lnxn+2)2

b2 (Inb - Inx)
nn+1)

which completes the proof. [

Corollary 3.2. Under the assumptions of Theorem 3.1, if we choose n = 1, we have the following ineqality:

b
2pr(N 12
M_uf(a)mf(b)—ff(u)du < f [F3(a, x)]+b [Fa(b, x)]
where
3 3 3 3 3
) In(2) —(4) +1 ., ) ~In(3) -1
Fy@x) = |f" (@) () lr(1x)—1n(a) +|f ) ()lnx—(ln)a ’
3 3 3 3 3
) In(2) - (2) +1 )" In(3) -1
Fbx) = |f" W) ) rlr(ﬁ))—ln(? +|f o) (b)lnbri(lil)x

forall x € [a,b].

Theorem 3.3. Let f : I € Ry = (0,00) — R be a twice differentiable mapping on I°, a,b € I° with a < b and
f" €Lla,b].If ’ bl (x))'7 is GA—convex function on [a, ], then the following inequality holds:

n+2 _ n+2 Ln+2 %
+ f// (x)|q l:x L (El X )]]

(an+2 xn+2) _ an+2
4

17 q
@) [ )

_1
|H (a,b;n)] < (Inx — Ina)™s L' (x”*z a’ﬁz){

nn+1) n+2)
_(11'1 b—In x)l_% 1*% n+2 pn+2 2 q (xn+2’ bn+2) B x"+2 7 q bn+2 -L (xn+2, bn+2) ‘
n(n+1) : (x ! )[f @ [ (n+2) f ) (n+2)

forallx €a,b],n>1andg>1.

Proof. From Lemma 2.1, by using the GA—convexity of
have

1 (x)|q and by power-mean integral inequality, we

1 1

Inx —Ina (bt Inb—Inx (o me2)a-p
. < —
|H(a,b;n)| < A1) fﬂ (”x )|dt+ nn+1) *h
0

i (xtbl‘t)' dt

0

1-1
1 q 1
Inx —Ina 2+ (211 74 g1+t (n+2)(1-t) [t
nn+1)
0
1
q

ol

@]+ -t)

0
1—

1 1
lnb Inx f 242 (1) g f § 2t (n+2)(1-1) [t
n (n +1)

0 0

1
;

£ o) dtJ :

|+ @ -1
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By making use of the necessary computation, we get

lnx—lnalﬁ _1
|H(a,b;n)] < —( n(n+1; L (x”+2,a”+2)

n+2 n+2 n+2
x[xn+2 f”(a)|ql(z) in(s) - (%) +1]+x"+2

(n + 2) (Inx"*2 — In a"*2)
(Inb-Inx)'"7 110
nn+1) ' (x /b )

n+2 n+2 n+2
x{bmz f” (x)|‘1[(%) n(3) " -(5) +1] +b"+?

(n +2) (Inb"*+2 — In x"+2)
which completes the proof. [

[T

f”mvleyﬂ‘m@fﬂ—1u

(n + 2) (In x"*2 — In a"+2)

==

7

ﬂwq

(n +2) (Inb"*2 — In x"+2)

el )

Corollary 3.4. Under the assumptions of Theorem 3.3, if we choose n = 1, we have the following ineqality:

b
2 ¢ —b2f" (b
Ql%riﬂ_ﬁ@+w®—fﬂww

3 .3)_ 3
ol

+

1
(Inx—Ina)'™7 11,4
< fL q (x ,a )

LS S

7))
L(x3,1%) —x b —L(x3,0° i
ﬂwdijﬁ—LW@%—%—Jn

_1
o

forall x € [a,b].

Theorem 3.5. Let f : I € Ry = (0,00) — R be a twice differentiable mapping on I°, a,b € I° with a < b and
f” €Lla,b]. If ) N (x))q is GA—convex function on [a, b], then the following inequality holds:

fN (d)‘q +
2

1 _1 1
(Inx-Ina)7 { g-1 ! '1( W) g2 )17
H ; < T — -1
He bl < =50 \wrog) &7 7

ﬂmﬂé

1
9

(Inb-Tnx)7 ( g=1 \"0wa _way=i (|7 @+ O
T ((n+2)q) (b” e ) ( 2 '

1
forallxe[a,b],nzlandq>1,ﬁ+

1_
q_l.

Proof. Since

Vil (x)|'7 is GA—convex function on [4,b], from Lemma 2.1 and by using Holder integral
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inequality, we can write

1 1
Inx —Ina Inb—Inx
. m+2)t . (n+2)(A—=t) | gr7 [ At 1t (n+2)t1,(n+2)(1-t) | gr7 (7,11
H@bm < o= fa x £ (a'x )|dt+—n(n+1) fx b £ (xit)| e
0 0
1 . 1= 1 i
Inx —Ina an+2) ;5 ' .
x"+2m[f; ! dt] [ftf @[ +a-plf (x)|th]
0 0
1 -7 i
Inb—Inx| (x5 ” ”
+b<"+2>m[f5 ’ dtJ [ft'f @|"+@-plf (b)(th] .
0 0
By a simple computation, we have
1 -1 1 17" q 1" q %
. (Inx-Ina)! ( g-1 1%(%@ ﬁﬁf7 f @[+ |f7 )
H @ binl - < nn+1l) \(n+2)q e 2
1 1
+(mb—lnx)% g-1 \'7 (mez) _xq(;qz’)l_}a @+ @)
nn+1) \(n+2)q 2 !

which completes the proof. 0O

Corollary 3.6. Under the assumptions of Theorem 3.5, if we choose n = 1, we have the following ineqality:

b
2£7(a) — B2 (b
ﬂl%rLQ—ﬁ@+W@—fﬂwW

(Inx — Ina)s (q—l)l_‘l?( 3 *4)1;( f” (ﬂ)|q+ 1 (x)|q]q
< xa1 — gl
2 34 2

(Inb-Tnx)7 (g=1\"7( 5  u\-} @+ | o)
T (3q)(bq_“)( 2

forall x € [a,b].

Theorem 3.7. Let f : I € Ry = (0,00) — R be a twice differentiable mapping on I°, a,b € I° with a < b and
f" €Lla,b].If ’ Jid (x))'7 is GA—convex function on [a, ], then the following inequality holds:

EYN)

2 (Inx - lna)lf%

b < R (a2 L b))
where
(n+2) (n+2) (n+2) (n+2) (n+2)

N Pt (5 M1 el I IR PP (6 i el
o P (n+2) P (n+2)

X (n+2) X (n+2) X (n+2) X (n+2) x (n+2)
et = |f (5" ()T -()" 1 o) (5" -m()"
" P (n+ 27 P (n+2)

forall x € [a,b] and g > 1.
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Proof. By a similar argument to the proof of previous theorem, since

1015

" (x)|q is GA—convex function on

[a,0], from Lemma 2.1 and by using power-mean integral inequality, we have

1

. Inx-lna f Dt 21D

|H (a, b; n)l T D)

1 (atx1 t)|dt+ Inb -

1

%H

1
Inx —Ina
n+2
X n(n+l) fdt
0
b(”+2)lnb lnxf
nn+1)

By computing the above integrals, we deduce
H (a, b; n)|

1—

s o

1
(n+2)qt
0

aplnx—Ina
nn+1)

2 \IH2) e Nam+2) N g(n+2)
@ (&) zln(z)q ] -(2) s
(in (e

£ \401+2) £ \d(n+2)
P
(1n ()"}

) Inb—Inx

>q(n+2)
nn+1)

S

which completes the proof. [

Inx Dt +2)(1-1)
nn+1)
0

(&) el @f +a -

ol +a

7 @ff

X q(n+2)
SR ()

1

dt

fu (xtbl—t)

0

1
q

£ @[] at

1

H|f” @)'] dt] .

==

(i)q(n+2) _ ln<%)q(n+2) _1
(ln (E)WHZ) )2

~in(3)" -1

(ln (i)q(n+2) )2 !

==

Corollary 3.8. Under the assumptions of Theorem 3.8, if we choose n = 1, we have the following ineqality

b
2 ¢ —b2f (b
M—af(a)+bf(b)—ff(”)d”

RCLLEEES

94?

¥ (Inx—Ina)"
2

3 _ 1-2
+b (Inb —Inx)

2

£3q1 37 () 1
£ @) ;) n(b)ng (;)"+ .

forall x € [a,b].

Remark 3.9. Several applications can be given to special means of two real number, by choosing f (x) = o

s>0¢(

" (x)( is GA—convex function).

+ f// (x)|‘7

f// (b))q

(&) -m(2)" -1
94?

() - () -1))
9g?

x e Ry,

S+17

Remark 3.10. In our results, if we set a™*! f' (a) = b f” (b), we can obtain several new inequalities
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