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On an Ill-posed Problem for a Biharmonic Equation

Tynysbek Kal’menova, Ulzada Iskakovaa

aInstitute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract. A local boundary value problem for the biharmonic equation in a rectangular domain is
considered. Boundary conditions are given on all boundary of the domain. We show that the considered
problem is self-adjoint. Herewith the problem is ill-posed. We show that the stability of solution to the
problem is disturbed. Necessary and sufficient conditions of existence of the problem solution are found.

1. Introduction

The most known example of an ill-posed boundary value problem is the Cauchy problem for the Laplace
equation. In Ω = {(x, t) : 0 < x < π, 0 < t < T} a problem for the equation

4u ≡ utt(x, t) + uxx(x, t) = 0, (x, t) ∈ Ω, (1)

with the boundary conditions

u|x=0 = 0, u|x=π = 0, 0 ≤ t ≤ T, (2)

and the initial conditions

u|t=0 = ϕ1(x),
∂u
∂t
|t=0 = ϕ2(x), 0 ≤ x ≤ π (3)

is considered.
The classic example of Hadamard showing [1] the instability of the solution

uk(x, t) =
sin(kx) sinh(kt)

k2

to the Cauchy problem for the Laplace equation (1) with the boundary conditions (2) and the initial
conditions

u
∣∣∣∣
t=0

= 0,
∂u
∂t

∣∣∣∣
t=0

=
1
k

sin(kx)
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with respect to small changes of initial data is well-known.
The prominent Soviet mathematicians, academicians A.N. Tikhonov and M.M. Lavrent’ev, their disciples

and followers proved that the Cauchy problem is conditionally well-posed for the Laplace equation and
ill-posed for other problems [2, 3]. And also they suggested the regularization of these ill-posed problems.

In [4, 5] they obtained a necessary and sufficient condition of well-posedness in the space L2(Ω) for
problem (1) - (3) by the method of expansion with the help of the eigenfunctions of the mixed Cauchy
problem for the Laplace equation with deviating argument. In [6] a nonlocal boundary value problem for
the biharmonic equation in the disk is considered.

The main monograph for ill-posed boundary value problems for the biharmonic equation may be
considered [7]. In it three essentially ill-posed internal boundary value problems for the biharmonic
equation and the Cauchy problem for the abstract biharmonic equation was studied. In addition, some
variants of these problems and the Cauchy problem, as well as the m-dimensional case, are considered.
Ill-posed boundary value problems for the biharmonic equation were investigated extensively in the recent
years (see, for example, [8 - 14]).

One of the reasons of the ill-posedness of boundary value problems for elliptic equations is considered
to be a case when a part of the domain boundary is exempt from boundary conditions. A part of the
boundary t = T, 0 ≤ x ≤ π is exempt from boundary conditions in the Cauchy problem considered above.

In the present paper we consider a local problem for an elliptic equation of the fourth order, ill-posedness
of which is analogous to the ill-posedness of the Cauchy problem for the Laplace equation. Herewith
boundary conditions are given on all boundary of the domain.

2. Statement of the Problem

Problem 2.1. Find a solution to the biharmonic equation

4
2u ≡ utttt(x, t) + 2uttxx(x, t) + uxxxx(x, t) = 0, (x, t) ∈ Ω, (4)

satisfying boundary conditions in the spatial variable x:

u|x=0 = 0, 4u|x=0 = 0; u|x=π = 0, 4u|x=π = 0; (5)

and boundary conditions in the variable t:

u|t=0 = ϕ1(x),
∂u
∂t
|t=0 = ϕ2(x), 0 ≤ x ≤ π; (6)

4u|t=T = ψ1(x),
∂4u
∂t
|t=T = ψ2(x), 0 ≤ x ≤ π. (7)

Definition 2.2. The function u ∈ C4(Ω)
⋂

C3(Ω) satisfying equation (4) and boundary conditions (5) - (7) is called
a classic solution to the problem 2.1.

3. Instability of Solution

Similarly to the Hadamard example one can construct an instability example of classic solution to the
problem 2.1. Really, by direct calculation it is easy to obtain that the function

uk(x, t) = sin(kx)
{

cosh(kT) sinh(kt)
k4 − t

cosh (k (T − t))
k3

}
is the solution to the problem 2.1 for the biharmonic equation (4) with the boundary conditions (5) and with
conditions

u|t=0 = 0,
∂u
∂t
|t=0 = 0, 0 ≤ x ≤ π,
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4u|t=T = 0,
∂4u
∂t
|t=T = −

2
k

sin kx, 0 ≤ x ≤ π.

It is easy to see that the boundary data tend to zero for k→∞, but the solution uk(x, t) does not tend to
zero in any norm. Consequently, the solution to the problem is instable. Therefore the considered problem
2.1 is ill-posed.

4. Symmetry and Positivity of an Operator of the Problem

Consider the problem with homogeneous boundary conditions (6) - (7):

u|t=0 = 0,
∂u
∂t
|t=0 = 0, 0 ≤ x ≤ π, (6′)

4u|t=T = 0,
∂4u
∂t
|t=T = 0, 0 ≤ x ≤ π. (7′)

Let L be an operator in L2(Ω) being a closure of the operator given by the differential expression

Lu ≡ utttt(x,T) + 2uttxx(x, t) + uxxxx(x, t), (x, t) ∈ Ω

on a linear manifold of functions u ∈ C4(Ω)
⋂

C3(Ω) satisfying the boundary conditions (5), (6’), (7’).
We show that the operator L is symmetric. Let u, v ∈ D(L) be two arbitrary elements from the definition

domain of the operator L. For these elements there exist corresponding sequences of smooth functions
un, vn ∈ C4(Ω)

⋂
C3(Ω) satisfying the boundary conditions (5), (6’), (7’) such that

lim
n→∞

un = u, lim
n→∞

Lun = Lu; lim
n→∞

vn = v, lim
n→∞

Lvn = Lv

in L2(Ω).
Then by direct calculation we obtain for all u, v ∈ D(L)

(Lu, v) − (u,Lv) = lim
n→∞

{
(Lun, vn) − (un,Lvn)

}
= 0.

Consequently the operator L is symmetric. In this sense the boundary value problem (4) - (7) is self-adjoint.
Similarly, for all u ∈ D(L) we obtain (Lu,u) = ‖4u‖2 ≥ 0. Consequently the operator L is positive.

5. Construction of a Formal Solution of Problem (4) - (7)

By ωk(x) =
√

2/π sin(kx), k = 1, 2, ..., let denote an orthonormal basis in L2(0, π). The solution to problem
(4) - (7) can be represented in the form of an expansion into the orthogonal series

u(x, t) =

∞∑
k=1

ωk(x)vk(t). (8)

By considering that series (8) converges and allows a term by term differentiation (the required number
of times), we construct a formal solution to the problem. Satisfying (8) to equation (4) and to the boundary
conditions (6), (7), for vk(t) we obtain the problems

v(IV)
k (t) − 2k2v

′′

k (t) + k4vk(t) = 0, 0 < t < T, (9)

vk(0) = ϕ1k, v′k(0) = ϕ2k, (10)

v′′k (T) − k2vk(T) = ψ1k, v′′′k (T) − k2v′k(T) = ψ2k. (11)
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Here ϕik and ψik are Fourier coefficients of the expansion according to the orthonormal basis {ωk(x)}∞k=1 of
the functions ϕi(x) and ψi(x) respectively:

ϕi(x) =

∞∑
k=1

ϕikωk(x), ψi(x) =

∞∑
k=1

ψikωk(x), , i = 1, 2.

Equation (9) has a general solution

v(t) = (C1t + C2)ekt + (C3t + C4)e−kt.

This solution satisfies the boundary conditions (10), (11). Then we get the system of linear equations
C2 +C4 = ϕ1k,

C1 +kC2 +C3 −kC4 = ϕ2k,
2kekTC1 −2ke−kTC3 = ψ1k,

2k2ekTC1 +2k2e−kTC3 = ψ2k.

(12)

A determinant of this system equals to
∆ = 16k4.

Since ∆ ≥ 16, then system (12) has a unique solution. By the direct calculation we get

C1 =
1

4k2 e−kT
{
kψ1 + ψ2

}
,

C2 =
1
2k

{
kϕ1 + ϕ2

}
+

1
8k2

{
ekT
− e−kT

}
ψ1 −

1
8k3

{
ekT + e−kT

}
ψ2,

C3 = −
1

4k2 ekT
{
kψ1 − ψ2

}
,

C4 =
1
2k

{
kϕ1 − ϕ2

}
−

1
8k2

{
ekT
− e−kT

}
ψ1 +

1
8k3

{
ekT + e−kT

}
ψ2.

Consequently the solution to problem (9) - (11) has the form

vk(t) = −
t

2k
sinh

(
k(T − t)

)
ψ1 +

t
2k2 cosh

(
k(T − t)

)
ψ2

+
{
ϕ1 +

1
k
ϕ2 +

1
2k2 sinh(kT)ψ1 −

1
2k3 cosh(kT)ψ2

}
sinh(kt). (13)

Substituting the found result into (8), we get the formal solution to problem (4) - (7).

6. A generalized Solution of Problem (4) - (7)

Consider problem (4) - (7) in sense of a generalized solution. The most suitable notion for demonstrating
conditions of stability is the notion of a strong solution.

Definition 6.1. The function u(x, t) ∈ L2(Ω) is called a strong solution to problem (4) - (7), if there exists the sequence
of the smooth functions un ∈ C4(Ω), such that un → u takes place in L2(Ω) for n→∞ and

un(x, 0)→ ϕ1, (un)t(x, 0)→ ϕ2, (∆un)(x,T)→ ψ1 ((∆un)t)(x,T)→ ψ2 (14)

in L2(0, π).
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As the required sequence un, we choose a sequence of partial sums of the Fourier series:

un(x, t) =

n∑
k=1

ωk(x)vk(t). (15)

If ϕi ∈ L2(0, π), ψi ∈ L2(0, π), i = 1, 2, then fulfillment (14) is obvious. Consequently the existence of the
strong solution to problem (4) - (7) is equivalent to the convergence of the sequence un in L2(Ω).

By virtue of the Parseval equality, the convergence of the sequence un in L2(Ω) is equivalent to the
convergence of the numerical series

∞∑
k=1

‖vk(t)‖2L2(0,T) < ∞. (16)

7. A Criterion of Existence of a Solution to Problem (4) - (7)

The main result of the paper is the following theorem:

Theorem 7.1. Let ϕi ∈ L2(0, π), ψi ∈ L2(0, π), i = 1, 2. A strong solution to problem (4) - (7) exists iff the numerical
series converge

∞∑
k=1

1
k3 e2kT

∣∣∣kϕ1k + ϕ2k

∣∣∣2 < ∞, (17)

∞∑
k=1

1
k7 e4kT

∣∣∣kψ1k − ψ2k

∣∣∣2 < ∞. (18)

Proof. The solution (13) is represented in the form

vk(t) =
1

8k3 ekT
(
ekt + (2kt + 1)e−kt

)
(kψ1 − ψ2) +

1
2k

ekt(kϕ1 + ϕ2)+

+
1

8k3 e−kT
(
(2kt − 1)ekt + e−kt

)
(kψ1 + ψ2) +

1
2k

e−kt(kϕ1 − ϕ2). (19)

Taking into account that∥∥∥ekt + (2kt + 1)e−kt
∥∥∥2

=
1
2k

{
e2kT + 4(k2T2 + kT + 1) − (4k2T2 + 8kT + 5)e−2kT

}
,

∥∥∥ekt
∥∥∥2

=
1
2k

{
e2kT
− 1

}
,

from (19) we obtain that conditions (17) and (18) are necessary and sufficient for fulfillment of (16).

8. Conclusion

One problem for the biharmonic equation is considered in the paper. It is shown that this problem
is ill-posed. The example of the instability of solution to the problem is shown. Herewith the boundary
conditions are given on the whole boundary, and the operator corresponding to the boundary value problem
is symmetric and positive. The criterion on the existence in terms of the Fourier coefficients of the boundary
data is proved for the introduced definition of the strong solution. The necessary condition for the existence
of the solution is the tendency to zero with the exponential speed.
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