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Abstract. This paper presents a survey of most of the known fundamental results involving the sequence
spaces £(p), co(p), c(p) and €w (p), wo(p), w(p) and w(p), fo(p) and f(p). These spaces are generalizations of the
classical BK spaces £, ¢y, c and £, the spaces wg, w? and w”, of sequences that are strongly summable to zero,
strongly summable and strongly bounded with index p by the Cesaro method of order 1, and of almost null
and almost convergent sequences, respectively. The results inlude the basic topological properties of the
generalized spaces, the complete lists of their known a-, -, y—, functional and continuous duals, and the
characterizations of many classes of matrix transformations between them, in particular, the complete list
of characterizations of matrix transformations between the spaces £(p), co(p), c(p) and €. (p). Furthermore, a
great number of interesting special cases are included. The presented results cover a period of four decades.
They are intended to inspire the inreasing number of researchers working in related topics, and to provide
them with a comprehensive collection of results they may find useful for their work.

1. Introduction and Notations

By w, we denote the vector space of all complex valued sequences. Any vector subspace of w is called a
sequence space. By {«, ¢, co and ¢, for 0 < p < oo, we denote the classical spaces of all bounded, convergent,
null and absolutely p-summable sequences, respectively; also let ¢ be the set of all finite sequences, that
is, of sequences that terminate in zeros. Moreover, we write bs and cs for the spaces of all bounded and
convergent series, respectively, and bv = {x € w : Y17 [x¢ — Xi+1] < oo} for the set of all sequences of bounded
variation. Also, let e and e for n € N = {1,2,...} be the sequences with ¢, = 1 for all k and egl) =1 and
¢ =0 for k # n. Finally let " = ¥/ x;e® denote the n—section of the sequence x = (x;)%,.

A subset X of w is said to be normal if x € X and y € w with |yi| < |xi| for all k implies y € X.

A subspace X of w is said to be an FK space if it is a Fréchet space with continuous coordinates P, : X — C
for all n € N, where P, (x) = x, for all x = (xx);2, € X; an FK space is called a BK space if its metric is given
by a norm. An FK space X O ¢ is said to have AD if ¢ is dense in X, and to have AK if every sequence
x = (xp)p2,; € X has a unique representation x = };, xe®. A sequence space is called an IFK (IBK) space if
it can be written as the union of an increasing sequence of FK (BK) spaces. It is endowed with the inductive
limit topology ([3]). We recall the definition of the inductive limit topology for the reader’s convenience.
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Given a set X and a family of topological spaces Yj with functions f : Yy — X, the inductive limit topology or
final topology 7 on X is the finest topology such that each function f; : Yy — (X, 7) is continuous. Explicitly,
the final topology can be described as follows: A subset U of X is open if and only if the pre-image £, (L)
of U is open for each k ([7]).

Let A = (11,7;()1‘;"’};1 be an infinite matrix of complex numbers, X and Y be subsets of @, and x € w. Then

we write A, and A® for the nth row and kth column of A, A, x = Yreq ankXy for all n € N and Ax = (Anx)
(provided all the series Y., auxx converge). Thesets Xy = {x € w: Axe X}and M(X,Y)=facw:a-x =
(akxi);2, € Y for all x € X} are called the matrix domain of A in X and the multiplier space of X in Y; in particular,
X = M(X, 61), XF = M(X,cs) and X” = M(X, bs) are called the a—, - and y—duals of X. A subset X of w
is said to be p-reflexive if XPf = (XP)f = X. If a subset X of w is a linear topological space, we denote its
continuous dual by X', and if X D ¢, then

X ={xew:x= (f(e(k))),‘:‘;1 for some f € X'}

is called the f-dual of X; X, denotes the space X’ with the strong topology; if X is a normed sequence space
then X* denotes the space X’ with the norm defined by

Il = sup{lf()| : llxll = 1} for all f € X .

Finally, (X, Y) is the class of all matrices A such that X C Y4;s0 A € (X,Y) ifand only if A, € XP foralln € N
and Ax € Y forall x € X.

Throughout, let I, £ and C; denote the matrices with the rows I, = ¢, &, = el"l = ¥!'_ ¢® and
(Ci)n =(@1/n)2, forn =1,2,..., thatis, I, £ and C; are the identity and sum matrices, and the Cesaro matrix
of order 1.

We recall the definition of the concept of a paranorm.

Definition 1.1. Let X be a real or complex linear space, g be a function from X to the set R of real numbers. Then,
the pair (X, g) is called a paranormed space and g is a paranorm for X, if the following axioms are satisfied for all
elements x,y € X

(PN.1) g(0) = 0ifx = 0, where O is the zero element of X;
(PN.2) g(x) = 0;

(PN.3) g(—x) = g(x);

(PN.4) g(x +y) < g(x) + g(y) (triangle inequality);

(PN.5) if (@) is a sequence of scalars with a, — a asn — oo and (x,)), is a sequence in X with g(x, — x) — 0as
(n — oo) then g(anx, — ax) — 0as (n — oo) (continuity of multiplication by scalars).

A paranorm g is said to be total, if g(x) = 0 implies x = 0.

2. Maddox’s Spaces and Some Fundamental Properties

In this section, we list the fundamental properties of Maddox’s sequence spaces.

2.1. Definitions and set inclusions

The definition of the spaces in this section can be found in [20, 21, 34, 39]; special cases were studied, for
instance, in [4, 10, 26, 37]. We also refer to [17-19].
Let p = (px);2, be a sequence of positive reals, x € w and B = (byk);",_;- Then we write

(o)
bl = ()2, Bullxl) = ) bl for n € N,
k=1
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and
B(x") = (Bu(1xl)ze
(provided the all the series converge), and
[B,plo = {x € @ : B(lxF") € col,
[B,p] = {x € w : B(lx — &el’) € ¢y for some & € C},

and

[B,pleo = {x € @ : B(lxP) € {u},

are the sets of all sequences that are strongly B—convergent to zero, strongly B—convergent, and strongly
B-bounded. If x € [B, p] then & € C with B(|lx — &elP) € ¢ is referred to as a strong B-limit, or [B, p]-limit, of
the sequence x. We write x;x — &[B, p] if lim,—,c0 By (lx — &el’) = 0.

Conditions for the uniqueness of the [B, p]-limits of sequences in [B, p] and of convergent sequences
were given in [20, Theorems 2 and 4] for a certain class of matrices B. Let A denote the class of all infinite
matrices A = (ax),;,_, for which there exists a positive integer M such that

(i) au > 0 for each n > 1 and for each k > M,
(i) laml —am — 0 (n — 00;1 <k < M).

Two important subclasses of A are the nonnegative matrices, and the matrices satisfying (i) and the
condition g,y — ay >0 (n — 00;1 <k < M).
The following results hold.

Theorem 2.1. ([20, Theorem 2]) Let A € A and p = (pr);-, € L. Then the [A, p] limit of a sequence in [A, p] is
unique if and only if at least one of the following conditions fails to hold:

(i) Y.poq Ak converges for each n,
(ii) 2121 apr — 0 (n — o0).

Theorem 2.2. ([20, Theorem 4]) Let the sequence p = (p);-, converge to a positive limit and A € (co, o), that is,

IAll = sup |A4ll; = sup Z |2kl < o0 and A € co for each k, (1)
n n k=1
then limy_,o xx = & implies that x; — E[A, p] uniquely if and only if

[ee)
2o
k=1

Now we study a few simple set inclusions.

lim sup > 0.

n—oo

Remark 2.3. It is clear from the definition of the sets [B, plo, [B, p] and [B, ple that [B,plo C [B,p] and [B,plo C
[B, pleo, but [B, pl is not included in [B, ple, in general. For instance, we clearly have e € [Z, p] \ [Z, plw for arbitrary
sequernces p.

If A is a nonnegative matrix with no zero columns and p = (pr);2, € lw, then it is known ([24, p.318]) that

[A,p] C [A, plw if and only if

ANl = sup )" 2, < oo, 2)
mok=1
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The following results are known.

Theorem 2.4. ([20, Theorem 5]) Let A be a reqular matrix, that is, A satisfies the conditions in (1) and

(o8]

lim ane = 1. 3)

n—oo
k=1

If 0 < pr < qi for all k and qi/px — oo (k — o0), then x; — E[A, q] does not generally imply x, — E[A, p].

Theorem 2.5. ([20, p. 351]) Let A € A, ||All < 00, 0 < px < gk for all k, and (qx/px);e, € Lo Then xx — E[A, 4]
implies x, — &[A, pl.

Maddox’s sets are obtained as special cases of the above sets as follows:

B=1:  [pl=a@ ={rew: il =0},

Lpl= () ={xea);khm |xk—£|Pk=0forsomecfeC},

[L,pleo = €o(p) = {x € w :sup |l < oo};
k

B=Ci:  [Cyplo=wo(p) = {x €w: lim (% Y |xk|pk) =0y,
n—oo k=1

1 n

:lim | = —&Pl=0

(Copl= w(p) = XEw nl—l:I&;IO(nk;l'xk &l ,
forsome £ € C

[C1 Pl =We(p)={X € @ : Sup(l i kalpk) < oo};

n n k=1

B=[E,p]: [E ple= {(p) :{x Ew: f locklPx < oo}.

k=1
Remark 2.6. Let B be the matrix with the rows By = eand B, = e—el"~ for n > 2. Then we also have ¢(p) = [B, plo.

The sets £ (p), c(p), co(p) and £(p) were defined and studied Nakano [34], Simons [39] and by Maddox
[20, 21]; the sets wy(p), w(p) and w.(p) were also defined and studied by Maddox [20]. The special cases of
co(1/k), c(1/k) and €« (1/k) were studied, for instance, in [4, 10, 26, 37]. A detailed study of the topological
structures of Maddox’s spaces and the complete characterizations of matrix transformations between them
can be found in [8] and [9].

Remark 2.7. If B=1Tor A = Cy, then A € A and lim, e Y 1oy dnk = 1, and so the limit or strong (A, p) limit of
x € c(p) or x € w(p) is unique by Theorem 2.1.

We note that a study of the spaces

bs(p) = (Le(p))y, cs(p) = (c(p))x, cso(p) = (co(p))x and (€(p))x

and the determination of their a—, f— and y—duals can be found in [5, Chapter2].
Let A denote the matrix of the first order differences, that is, with the rows A; = e® and A,, = ™ — ¢ for
n > 1. Then various matrix transformations on the spaces (co(p))a, (c(p))a, (€s(p))a and bo(p) = (€(p))a were
characterized in [31] and [11].

If p > 0 is a constant and py = p for all k, then the sets cy(p), c(p), €= (p), £(p), bs(p) and cs(p) reduce to the
familiar sets cy, ¢, {w, €, bs and cs, respectively, and wy(p) = wg, w(p) = w” and we(p) = wh, ([23]).

We close this subsection with some set inclusions between Maddox’s spaces.
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Remark 2.8. (a) Let p = (pi);2, € L. Since the nonnegative matrices I and Cy satisfy (2), it follows from Remark
2.3 that

co(p) C c(p) C Lo(p) and wo(p) C w(p) C Woo(p).

(b) If 0 < px < gy for all k, then obviously £(p) C £(q) ([39, Lemma 2]).
(c) If pr, qi > O for all k, then co(p) C co(q) and Leo(p) C €oo(q) if and and only if ([20, Lemma 1 and remark on p.
348])

liminf Pk >0;
k—oo qk

since obviously I, C; € Aand ||I||, ||C1|| < oo, it follows from Theorem 2.5 that c(p) C c(q) and w(p) C w(g) whenever
0 < px < g for all k and (qx/pr), € loo-

Necessary and sufficient conditions for wy(p) C wo(q) can be found in [24]. We observe that wy(p) C wo(q)
if and only if wy(p/q) € wo, where p/q = (px/qx);2, and wy denotes wy(p) with px = 1 for all k. So it is enough
to give the exact conditions for wy(p) C wy when p is any positive sequence.

Theorem 2.9. ([24, Theorem 7]) Let p = (pk),2, be an arbitrary positive sequence and N,(y) denote the number of
integers k in [2¥,2"*1 — 1] such that p; > y.
Then woy(p) C wy if and only if

(i) there exists an integer N > 1 such that

H,= max N P27/ =((1)
2v<k<2v+1-1

and

(ii) in{ [lim sup Z‘VNV(y)] =0.
>

V—00

An analogous result holds concerning the inclusion we(p) C Weo(g).

Theorem 2.10. ([28, Lemma 2 and Corollary, p. 543]) Let p = (px);2, be an arbitrary positive sequence. Then
W (p/q) C Woo if and only if

H,= max 27" =0(1).
2v<k<2rH-1

The following special cases may be of interest.
Corollary 2.11. Let py, qx > O for all k. Then
(i) co(p) C coifand only if p = (pk)2, € o
(ii) ¢co C co(g) if and only if infy g > O;
(iii) €w(p) C lw if and only if infy px > 0;
(iv) le C Lo(q) ifand only if g = (qi);2; € -

Finally we obtain for constants p,q > 0.

Proposition 2.12. If0 < p < g, then w; C wy.
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Proof. Since the inclusion is trivial for p = ¢ we assume t = q/p > 1. Let x € w,;. Then we have by Holder’s
inequality with s = t/(t — 1)

0< Z %m —gp= Z (%)w i — &P (%)
k=1

1/s

" . 1]:1 n 1 s/s 1/s
(L] 26T
n 1/t
=[%Z|xk—g|qJ — 0 (1 — ),
k=1

thatis, x € wy,. O

2.2. Linearity of the spaces

Here we study the linearity of the spaces above. It will turn out that each of those sets is a linear space
if and only if the sequence p is bounded. To see this we use the following general results.

Throughout let B be a nonnegative matrix.

It is easy to show that p € £ is a sufficient condition for [B, plo, [B, p] and [B, p] to be linear spaces.

Theorem 2.13. Ifp = (px);2,; € lw, then the sets [B,plo, [B, p] and [B, ple are linear spaces.

Proof. We assume p € o, and put H = sup, p;.
We put C = max{1, 2671}, L = max{1, |A|"'} and M = max{1, |u|""} forA, u € C. Since

la + blP* < C (|aglP* + |bi|P¥) for each k € N 4)
and

[APF <L, |ulP* < M foreach k € N,
it follows that

0 <limsup B, (|Ax + py — (A& + un)el)

n—oo

< C-L-limsupB, (Jx — &el) + C- M - limsup B, (Jy — nel’). (5)
n—oo

n—o0 —

We consider the case of [B, p]; the cases of [B, ply and [B, p] are treated similarly.
Let x, y € [B,p]. Then there exist &, 1 € C with lim, . Bu(Ix — &elP) = 0 and lim,—,c B, (Jy — nel’) = 0, and it
follows from (5) that

lim B, (|JAx + py — (A& + un)el’) = 0,
thatis, Ax + yy € [B,p]. O

Remark 2.14. Let B = [ or B = Cy. Then the [B,p] limit & is unique for each x € [B,p] by Remark 2.7, that is,
& 2 [B,p]l — C where &(x) is such that x — &(x) - e € [B, plo, defines a functional, which is linear by the proof of
Theorem 2.13 whenever p = (pi);2; € Lo

The following results concerning the exact conditions for the linearity of the spaces [B, plo, [B, p] and
[B, pls can be found in [24].

Theorem 2.15. ([24, Theorem 1]) The set [B, ple is a linear space if and only if sup, ¢ px < oo, where S = {k € N :
0 < sup,, by < oo}.
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Theorem 2.16. ([24, Theorem 2]) Let B be a lower triangle with B® € ¢, for all k. Then [B,po is a linear space if
and only if sup, ¢ px < oo, with S as in Theorem 2.15.

Remark 2.17. The hypothesis sup;s px < oo in place of (px);2, € {w in Theorem 2.15 excludes the following trivial
cases

(a) Ifsup, by = 0 for some kg € N then B%) = 0, in which case py, is not subject to any restrictions.

(b) 1f B*) ¢ £, for some ko € N, then we must have xy, = 0 for all x = (x;)7°, € [B, plo, for otherwise by k| Axy, |P*
could be arbitrarily large for |A| > 1. Again py, can be chosen arbitrarily. This cannot happen in view of the
assumption B® € cq for all k.

Theorem 2.18. ([24, Theorem 3] and [27, p. 593]) Let B be a triangle and
T:{ke]N:O: limbnk<supb,,k<oo}.
n—o00 n

Then [B, p] is a linear space if and only if sup, . px < oo.

Remark 2.19. If B = [ or B = Cy, triangles, then clearly T = S = N, and B® € ¢, for all k, and so Maddox’s spaces
are linear spaces by Theorems 2.15, 2.16 and 2.18 if and only if p = (px);2, € {w ([20, Theorem 1], [24, Theorem
2], [27] and [25, Theorem 17, p. 190]).

2.3. Topological structures of the spaces

Here we list the fundamental topological properties of Maddox’s spaces. Throughout this subsection,
we assume that B is a nonnegative matrix and p = (px);2, € {w. We put H = sup, py and M = max{1, H}. If
we define d on [B, p]y and [B, pl« by

n

o 1/M
d(x, y) = sup [By(lx — yP)]'"™ = sup [Z bulxx — ykl”k) , (6)
" k=1

then d is a natural semi-metric on both spaces; if, in addition, B satisfies the condition in (2), then (6)
also defines a natural semi-metric on [B,p]. The triangle inequality is established as follows. We put
ty = pr/M < 1 for all k, apply the inequality in (4) with t; < 1 in place of p, and C = 1, and Minkowski’s
inequality, and obtain for all 7.

o 1/M
(By(la + clP))'™ = [Z D [l + ckrk]M]

N k=1 ”
< | 2o (" + lckrk)]M]
k:,l 1/M o 1
2 bnklak|tkM] + [Z bnklck|tkM]
k=1 k=1

1/M

(o) 1/M [y
2 bnklakw) + [Z bnklcm] = Ba(laP )™ + BulleP)'™.
k=1 k=1

/M

IN

IN

If we write a; = x; — zx and ¢, = zx — yy for all k, then it follows that

d(x,y) <d(x,z) +d(z,y).
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Remark 2.20. (a) It follows from Remark 2.3 that if the matrix B satisfies the condition in (2), then d in (6) is also a
semi—metric on [B, p].

(b) 1t is clear that if p = (pk)]‘:":1 € {w and B has no zero columns, then the semi—metrics are metrics; in particular,
Maddox’s spaces are metric spaces with respect to their natural metrics.

The space [B, p]o is a linear topological space.

Theorem 2.21. ([21, Theorem 1]) For any nonnegative matrix B and any sequence p = (pi)y~; € lw, [B,plo is
paranormed by

- 1/M
g(x) = d(x,0) = sup [Z bnklxklpk] for all x € [B, plo. ?)
k=1

n
The next result gives a sufficient condition for [B, p]« to have a natural paranorm.

Theorem 2.22. ([21, Corollary 2]) If B is a nonnegative matrix Band p = (px);-, € {w is a sequence with 0 < infy py,
then [B, pls is paranormed by g in (7).

The condition infy px > 0 is also necessary for [B, pl. to be paranormed by g when the matrix B satisfies
some additional conditions.

Theorem 2.23. ([24, Theorem 4]) Let B be a nonnegative triangle such that B* € ¢y and My = sup, by > 0 for
each k. If [B, ple is paranormed by g then infy py > 0.

Remark 2.24. Since, by Remark 2.3, [B, p] C [B, pl if and only if the condition in (2) holds, the results of Theorems
2.21 and 2.22 also hold for [B, p] in this case.

Now we study the completeness of [B, plo, [B, p] and [B, plw. We assume p = (px);2, € {~, and that the
matrix B is nonnegative and has no zero columns in which case 4 in (6) is a metric by Remark 2.20 (b).

Theorem 2.25. Let p = (px),2, € {w and B be a nonnegative matrix with no zero columns.

(a) Then [B, plo and [B, ple are complete with their natural metric defined in (6) ([24, p. 318]).

(b) If B satisfies the condition in (2), then either of the following conditions is sufficient for [B, p] to be complete ([24,
Theorem 5]):

(i) limsup, . Yoi bk =0,
(i) limsup, . Y.ioq bux > 0 and infi p > 0.
We summarize the statements for Maddox’s spaces.
Corollary 2.26. Let p = (pi);2; € loo-

(a) Then co(p), wo(p) and £(p) are complete with their natural total paranorms

sup, [ P/M on co(p)
1 n 1/M
g(x) = {5UP (E k§1 kalpk) on wo(p) ®8)
- 1/M
(kz kalpk) on {(p).
=1

(b) The spaces {o(p) and we(p) are complete metric spaces with their natural metrics d(x,y) = g(x — y) of Part
(a); they are complete totally paranormed spaces if and only if infy pr > 0.
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(c) The spaces c(p) and w(p) are complete metric spaces with their natural metrics d(x, y) = g(x — y) of Part (a); if
infy pr > 0 then they are complete totally paranormed spaces.

Remark 2.27. (a) If p = (px)2, € le and infypy > 0, then the spaces c(p), € (p), w(p) and we(p) reduce to the

well-known classical spaces c, €w, WP and wh,.
(b) It is usual to use the equivalent paranorm or metric

w4l /M
1 2"t -1
hx) = [sup oy |xk|mJ

v=0 k=2v

on wo(p), w(p) and We(p).
Remark 2.28. The space {(p) is an FK space with its natural paranorm; it is even a BK space if px > 1 for all k, with

a norm given by
) = | o [P
llx|| =inf{p >0 —| <1;.
Ll

2.4. Some further results

The results in the previous subsection are not completely satisfactory in view of Corollary 2.26 (b) and
(c) and Remark 2.27 (a). More satisfactory results concerning the topological structure of the spaces c(p)
and € (p) were established by Grosse-Erdmann in [8]. His results are based on the theory of echelon and
co—echelon spaces. The following definitions can be found in [8].

We write Xp = ¢pand X, = {, for 1 <p < oo. Let A = (a,);,_, be a Kdthe matrix, that is, a matrix with
A1k = agr > 0 forall n, k € N ([2, 1.2]), and let V = (1/a,);", _, be the associated matrix. Then the spaces

o

A(A) = ﬂ{x €w: Ay x = (@uxe), € X,)

n=1

and

16,(V) = U{xew LV, x€X,)
n=1
are called echelon and co—echelon spaces of order p. Echelon spaces of order 1 and co—echelon spaces of order
oo are known as the echelon and co-echelon spaces of Kéthe ([13, §30.8]). The matrix V' = (v);),_, is said
to be regularly decreasing if for every n € IN there exists some m > n such that for all subsets K of IN,

. ¢ Omk . .o Uk
inf — > 0 implies inf — > 0 for all [ > m.
keK Uk keK Upk

The following result is known

Theorem 2.29. ([8, Theorem 0]) Let p = (px);>, be a bounded sequence of positive reals. Then

colp) = ﬂ {x Ew: }}im x| /Pe = 0}
1’[:1 —00
and

(9]

l(p) = U {x € w:sup xln'/Pr < oo},
k

n=1

Hence co(p) is an echelon space of order 0 and Lo (p) is a co—echelon space of order co.
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Moreover ([8, Section 4]), we observe c(p) = co(p) @ e, and consider cy(p), {~(p) and c(p) endowed with
their projective and inductive limit, and limit, and direct sum topologies, respectively. The following result
holds.

Theorem 2.30. ([8, Theorem 2]) Let p = (px);2, be a bounded sequence of positive reals. Then
(a) co(p) and c(p) are FK spaces; they are normable if and only if infy py > 0;
(b) €w(p) is a complete IBK space which is metrizable if and only if infy p > 0.

Remark 2.31. It is easy to see that £(p) and c(p) have AK.

Remark 2.32. As we saw in the previous subsection, Maddox studied his sequence spaces within the framework of
paranormed sequence spaces. In each of the spaces {(p), co(p) and c(p), he considered the function g(x) = sup, [x|Pe/M
and introduced a topology T, via the corresponding metric d(x,y) = g(x — y) (Remarks 2.24 and 2.27).

In teo(p), g is a paranorm and 7, is a linear topology only in the trivial case infy py > 0, when lw(p) = lo ([39,
Theorem 9]). Indeed, by Theorem 2.30, the natural topology T, of £ (p) is not metrizable hence not paranormable
unless foo(p) = oo.

In co(p), g is a paranorm and 7, is an FK topology ([21, Theorem 1], [24, p. 318] and [28, Theorem 2]) so that,
by the uniqueness of FK topologies ([41, Corollary 4.2.4]), T, coincides with the projrctive limit topology for co(p)
(Theorem 2.30 (a)).

In c(p), again g is a paranorm and T, is a linear topology only if infy py > 0, when c(p) = c, by an argument as in
[39, Theorem 9]. But, in contrast to £ (p), the natural topology of c(p) can be induced by a paranorm. A convenient
one is g1(x) = g(x — &e) + |&|, where & is the unique number with x — & - e € co(p).

Remark 2.33. To the best of the authors’ knowledge, no results seem to exist concerning the topologies of the spaces
Woo (p) and w(p) analogous to those for Lo (p) and c(p) in [8].

3. The Dual Spaces

Here we list the dual spaces of Maddox’s spaces, and of wy(p), w(p) and we(p) in the known cases, that
is, when 0 < p; < 1 for all k.

3.1. The f—-duals

First we give the f—duals of Maddox’s spaces. The following results are known and were also listed in
[18]. Throughout, let p = (px);2, be a positive sequence, not necessarily bounded. We need the following
notations. If p; > 1 then we put gx = px/(px — 1), and write

(o)

M(p) = U {aew: @/m, et@),
n=2

00

M) = Jfacw: (™) e al,
=2

(o)

Mg,)(p) = ﬂ {a Ew: (aknl/pk)lzl € 51},
n=2

00

Méz)(p) = m {u Ew: (aknl/r’k):; € 500}
n=2
and

00

Mf,)(p) = U {a Ew: (akn‘l/”k):;l € &0}.

n=2
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The first and second p—duals are known for £(p), co(p), c(p) and Ce(p).

Theorem 3.1. We have

to(p) if px <1 forall k ([39, Theorem 7])
M(p)  ifpx > 1 forall k ([22, Theorem 1]);

(@ [P = {

b) [eo)lf = M’ (p) (122, Theorem 6]);

(©) [e(p))f = M(()l)(p) N cs ([14, Theorem 1]);

d) [Lo(p)]f = MO (p) ([15, Theorem 2]).
Theorem 3.2. We have

MO(@p) ifpr <1forall k

[
(@) ([14, Theorem 4]) [£(p)] {f(p) if pr > 1 for all k;
®) o) = MP (p) (114, Theorem 2]);

© [c(p)]Pf = M@ (p) + bv ([8, Theorem 4 (ii)]);
(d) [tx(p)]P = Mu(p) ([15, Theorem 3]);

1109

The first and second p—duals of wy(p), w(p) and we(p) in the general case are only known when p; < 1
for all n. Some results on [wy(p)]P and [we(p)]f for some special cases of sequences p = (pr);2, with pr > 1

can be found in [30]. We need the following notations:

"W(()l)(p) = U {a Ew: max [(ZV/n)l/’”k . |ak|] < oo},

2v<k<2vtl—1
v=0

(Wg,)(p) = ﬁ {a Ew: 3 max [(2vn)1/pk . |ak|] < oo},

V<<Vl
gy 2v<k<2 1

n=2
00 2v+1_1

"W(()z)(p) = ﬂ {a Ew: sg%)[ Z (2‘Vn)1/pk . |ak|] < oo}
n=2 v20 | j=pv

and

o0 2v+1_q
’Wg)(p) = U {a Ew: Sup{ Z (Z‘V/n)l/’”‘ . Iakll < oo}

v>0 k=2v
Theorem 3.3. Let 0 < py < 1 for all k. Then we have
@ [wo@ = [wp)lf = W(p) (17, p. 84], [15, Theorem 3]);

B) [we@]lf = W) (17, p. 84]);
() [wo@)IPf = [wp)Ff = WP (p) (117, p. 88, 86]) ;
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@) [we(p)f = WS(p) (17, p. 88)).
The next result concerns the f—reflexivity of the sets {(p), {-(p) and co(p).

Theorem 3.4. Let p = (px);2, be a positive sequence. Then we have

(a) ([15, Theorem 4])

) L) =0 ifpe <1forallk
)PP = ¢ d onl
[Ep)] (p) if an Onylf{pefw ifpe > 1 forall k;

(1) [co()IP? = c(p) if and only if p € co ([15, Theorem 8]);
(©) [l(p)IPP = Lus(p) if and only if p € £ ([15, Theorem 5]).
Finally we consider a few special cases.
Theorem 3.5. Let p = (py);2, be a positive sequence. Then we have:

(a) if px < 1 forall k, then [€(p)]P = lw if and only if infy py > 0; if p € Lo, px > 1 and gy = pr/(px — 1) for all k
then [€(p)]f = €(q) if and only if infe pr > 1 ([22, p. 432]);

(b) the following statements are equivalent ([15, Theorem 8])
(i) infpe >0, (if) [co(@)’ = &, (i) [co(PI¥ = Cos;

(¢) the following statements are equivalent ([15, Theorem 6])

(i) infpe >0, (i) @ = b1, (i) ()] = Cw;

(d) the following statements are eqivalent ([15, Theorem 71])
(i) infpe >0, (i) eV =&, (i) [c@)F = b, (V) co C c(p).

3.2. The a, y—, functional and topological duals

We use the following notations: If X and Y are isomorphic linear spaces, then we write X = Y; if X and
Y are linearly homeomorphic spaces, then we write X ~ Y.

First, we observe that since all the spaces with the exception of c(p) and w(p) are normal, the a—, f— and
y— duals coincide for them.

The following results hold for the f-— and continuous duals of cy(p), {(p) and (e (p). We assume that
P = (Pr)ie, is a positive sequence with p € {w. Since {(p) and cy(p) are FK spaces with AK (Remark 2.31), we
have [é’(p)]f =[tp)]f = [f(p)]' and [co(p)]f = [eo(p)]f = [co(p)]/ by [41, Theorems 7.2.7 (ii) and 7.2.9].

Before we state the next theorem we recall that if X is a linear topological space then we denote by X
the continuous dual of X with the strong topology. In the case of locally convex spaces the strong topology
coincides with the topology of uniform convergence of bounded sets in X. Thus, for instance f, — f in
[f(p)];7 means that f,(x) — f(x) uniformly on any sphere of {(p). For instance, in the case of {(p), we have
[€(p)] = M(p) if px > 1 for all k, and [€(p)] = Lw(p) if px < 1 for all k, by Theorem 3.1 (a). We define a® — a
(n — o0) in M(p) or in £ (p) to mean that

(o)

lim Z al((”)xk = Z axxy uniformly in x on any sphere of £(p).
k=1

n—oo
k=1

With this definition M(p) and £« (p) become linear topological spaces, denoted by M(p) and €., (p).
The following results hold.
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Theorem 3.6. (a) If 1 < py for all k, then [é’(p)]/h ~ ]\71(;7) ([22, Theorem 3]).
(b) If 1 < inf py and €(q) has its natural paranorm topology, then [£(p)], ~ €(q) ([22, Theorem 4]).

(c) If 0 < px < 1 for all k then [f(p)]; ~ Z,o(p) ([22, Theorem 5]).
Only partial results seem to be known concerning the continuous duals of wy(p) and w(p).
Theorem 3.7. Let 0 < infy py < px < 1 for all k and

‘W(p) = {a Ew: Zmaxv

v=0

2vIpe -ak( < oo}.

(a) Then we have [w(p)] = C X ;VT/(p). This means that, for arbitrary a € C, a € ‘W(p) and x € w(p) with
X = E(w(p)),

fa(x) = a& + Z axxy, where a = f(e) — Zf(e(k)) and ay = f(e(k))for all k )
k=1 k=1

defines an element of [w(p)]’, and conversely every element of [w(p)] can be represented in this form and the map
T : W(p) — [w(p)] with Ta = f, defined in (9) is an isomorphism ([20, Theorem 5]).
(b) Then we have [wy(p)] = W (p). This means that, for arbitrary a € W(p) and x € wy(p),

(o)

fa(x) = Zakxk, where ai = f(e(k))for all k (10)

k=1

defines an element of (wo(p))’, and conversely every element of [wo(p)] can be represented in this form and the map
T : W(p) — [wo(p)] with Ta = f, defined in (10) is an isomorphism ([20, pp. 354-355]).

Maddox also obtained the continuous dual of wy(p) for certain sequences p = (px);-; € co

Theorem 3.8. ([21, Theorem 3]) Let Q be the set of all sequences p = (px);=, of positive real numbers for which a
number N = N(p) > 1 exists such that Y ;2; N~1/Px < co. Then we have

[wo(p)] = S(p) = {a € w : sup 2"max, | * < oo}.

Concerning the continuous duals of the other Maddox spaces the following results are known.
Theorem 3.9. ([8, Theorem 4 (i)]) Let p = (px);2, be a positive sequence with p € {w. Then we have
o =M (), [eo()],~MP(p), [co(PV =M (p), (IcoP)],),~M(p),

L@V =MP®),  [La@)] > MO@)  with
[o(p)] =MD (p) ifand only if p € co,
in this case [€eo(p)], ~ MY (p);

[PV = ta(p), (L)), ~ Ep).
We also have for c(p) the next results.

Theorem 3.10. ([8, Theorem 4 (ii)]) Let p = (px);2, be a positive sequence. Then we have

(a) [c(p)]“—M?D(p)ﬂfl, [e(p) ]V—M;D(p)ﬁbs
[c(@)]*=MD(p) + lw, [c(p)]=M2(p) + bo.
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(b) Ifp = (pu)y2, € lw then
@)l = M), @ = MIQ),
el ~ cxMPp), (l@);) C x M2 (p).
Remark 3.11. In the special case where p is a constant sequence, that is, py = p > 0 for all k, the continuous duals of
the spaces €, (0 < p < o), co and wg are norm isomorphic to the f—duals, that is, €, ~ € for 0 <p <1, € ~ €, for
l<p<ooandq=p/(p-1) and (W) ~ W}’ = WP, where

¢

b

{“ €w: llallwr = ¥ 2P max,lay] < °°} O<p<1)
wr v=0

{a cw:|allwr = f 2017 (Y Jag ) < 00} (p>1).
v=0

Also c¢* is norm isomorphic to C X £y and (wP)* is norm isomorphic to C x WP.

Remark 3.12. (a) The p—duals of Aleo(p) = (Lo(p))a for arbitrary positive sequences p were determined in [33,
Theorem 2]; the B—duals of Aco(p) = (co(p))a, Ac(p) = (c(p))a and Alw(p) for bounded positive sequences p were
determined in [31, Theorem 1].

(b) The results of (a) were generalized in [32]. Let u be s sequence with no zero terms, m € IN and A™ denote the
operator of the m—th difference, that is, A = A and A™ = Ao A"~ for m > 1. Given any set of sequences X, we write
APX ={x € w:u-A"x € X}. Then the a—, p—duals and y—duals of the sets A} X, when X is any of the sets co(p),
c(p) or Lo (p), were determined in [32, Theorems 2.1, 3.1, 3.2 and 4.1].

(c) A detailed study of the p—duals of the sets bu(p) = (€(p))a can be found in [11].

4. Matrix Transformations

In this section, we give a list of characterizations of matrix transformations between Maddox’s sequence
spaces. More general results and a comprehensive list can be found in [9].

Given a sequencep = (py),-, of positive real numbers we write K1 = {k € N : py < 1}, Kz = {k € N : p > 1}
and gi = pr/(px — 1) for k € Ks.

4.1. Matrix transformations involving €(p)

Many of the results in this subsection can also be found in a more general form in the next subsection.
A theorem concerns matrix transformations between £(p), £, cp and ¢;.

Theorem 4.1. ([9, Proposition 3.2]) Let p = (px),2, € {w be a sequence of positive real numbers.
(a) Then the necessary and sufficient conditions for A € (€(p),Y) where Y = {w, co, €1 can be read from the following
table

From (p)to | e | co | &n
1. | 2. | 3.

where

1 (114 {SUPnSUPier, Il < o0
S sup,, Yokex, [auM ™% < co for some M € N

2. (1.1%) and (2.1+) limy_ o apx = 0 forallk € N

supf| Yen anl™ 1 k € K1, N € N finite} < oo
3. (3.1%) {sup{Yicx, | Luen @M% : N C N finite} < oo
for some M € IN.
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(D) If pr 2 1 for all k € IN, then the necessary and sufficient conditions for A € (X, {(p)) when X = €«,co, {1 can be
read from the following table

From | € | co | €1 | to€(p)
4. | 5. | 6.

where
4.,5. (4.1%) sup{X,q | Xrex ankl" : K € N finite} < oo
6. (6.1%) sup, XYooy lal’" < oco.

Remark 4.2. (a) The characterization of the class (£(p), €«) can also be found in [15, Theorem 1] or [29, Theorem 4].
(b) The necessary and sufficient condition for A € (£(p), c) are (1.1+) and

lim a, = ay exists for all k € IN ([15, Corollary, p. 101]). (11)

(c) Since ¢y C ¢ C € it follows from 4. and 5. in Theorem 4.1 that (c, {(p)) = (co, €(p)) = (Ce, (£(p)) for pr = 1
k=1,2,...).

The following results are due to Maddox and Willey [29], and generalize some of the results in the
previous theorem.

Theorem 4.3. Let p = (px);2, and q = (qn),, be bounded sequences of positive real numbers, and sy = pi/(px — 1)

if px > 1. Then we have
(a) ([29, Theorems 5 (i) and 7]) A € (£(p), £ (q)) if and only if

qll
sup (sup IankIMl/Vk) <ooforsomeM>1 (0<pr<1)
no\ k

0 (12)
sup Y, |al*M/7 < oo for some M > 1 (e > 1).
n k=1
(b) [29, Theorem 5 (ii) and (iii)]) Let O < px < 1 for all k. Then we have A € (£(p), co(q)) if and only if
lim |ay|™ = 0 for every k € N (13)
n—oo
and
qn
A}Iim lim sup (sup IankIMl/’”k) =0; (14)
7% nooo k
A€ (tp), c(@)) ifand only if
sup |a M7 < oo (15)
nk
and there exist a1, a, - - - € C such that
lim |ay — o™ = 0 for every k € N (16)
n—oo
and
In
A}{im lim sup [sup lau — a MVl = 0. 17)

n—oo k
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(c) ([29, Theorems 8 and 9]) Let px > 1 for all k. Then we have A € (€(p), co(q)) if and only if the condition in (13)
is satisfied and

) qn
lim lim sup [Z Ianklsszk/q”B_sk] = 0 for every D > 1 (18)

B—oo
n—co =

holds; A € (E(p), c(q)) if and only if

sup Z |a,k [ B~ < co for some B > 1, (19)
"ok=1

and there exist a1, a, - -+ € C such that (16) holds and

) n
lim lim sup [Z @, — aklsszk/q”B_sk] =0forall D > 1. (20)

B—oo
n—oo k=1

Remark 4.4. The following special case is also known ([29, Theorem 6]). Let 0 < px < 1forall kand q = (qn)
then A € (£(p), co(q)) if and only if the condition in (17) is satisfied.

oo
n=1 € Co

Now we give the characterizations of ({w(p), {x0), (€(p), ¢) and (w(p), c).
Theorem 4.5. (a) Let py > 0 for every k. Then A € (£« (p), £) if and only if

n

sup Z |a, |INVPE < oo for every integer N > 1 ([15, Theorem 3]). (21)
k=1
(b) Let px > O for every k. Then A € (€ (p), ¢) if and only if

Z |a,kINY/P converges uniformly in n, for all integers N > 1 (22)
k=1

and (11) holds ([15, Corollary, p. 102]).
(c)Let 0 < px < 1forall k € N. Then A € (w(p), c) if and only if

sup Z max, ((ZVB_l)l/Vklankl) < oo for some integer B > 1, (23)
noy=0
lim Aux = « exists (24)
n—oo P
and (11) holds ([15, Theorem 5]).

We mention a few more characterizations.

Remark 4.6. (a) The characterization of the class (co(p), co(p’)) for arbitrary positive sequences p = (px);2, and
bounded poitive sequences p’ = (p;);2, can be found in [26, Theorem 1]; the special cases px = p; fork =1,2,..., and
pr =1 forall k and p’ € co are due to Brown [4] and Roles [38], respectively. Lascarides [14, Corollary 2] gave the
characterization of the class (co(p), c), and the special case of (co(1/k), ¢) is due to Rao [37, Theorem (II1)].

(b) The characterizations of the classes (co(p), {e(p)) and (c(p),c) are due to Lascarides [14, Theorems 10 and 9]:

A € (co(p), e(p)) if and only if

- Pn
sup [Z |ank|B_1/ka < oo for some constant B > 1; (25)
o \k=1
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A € (c(p), c) if and only if the conditions in (25) with p, = 1 for alln, (11) and (24) are satisfied. Whenp = (pi);2, € Q
with Q defined as in Theorem 3.8, then A € (co(p), L (p)) if and only if

sup |aq | A/PP) < oo ([14, Theorem 11]).
nk

This generalizes the result for the characterization of the class (co(1/k), €«(1/k)) by Rao ([37, Theorem (V)]).

At the end of this subsection, we mention the characterizations of the classes (bv, Y) where bv = bu(e),
and Y is any of the spaces €(7), {«(g), co(q) and c(g) ([40]), and more generally, characterizations of some
matrix transformations on bu(p) ([11]).

Theorem 4.7. ([40, Theorems 1-4]) Let q = (q4);, be a bounded sequence of positive real numbers. Then the
necessary and sufficient conditions for A € (bv,Y) where Y = £(q), € (q), co(q), c(q) can be read from the following
table

Frombuto | €(q) | €e(q) | co(q) | c(9)
7. 8. 9. 10.

where

qn

oo
Z Ank

k=j

8. (8.1%) sup (sup Y ank
n j o lk=j

7. (7.1+) sup f
i n=1

< 0

In
M‘lJ < oo for some M > 1

o n
9. (9.1%) 1\}11{20 lim sup sup ,;.”nk M—lJ =0,
n—oo j =]

n

(9.2) lim |} ax| =0 foreachj
n—o0o k:]

10.  (10.1%) sup | Y am

< 00,
nj |k=j
there exist a1, ap - - - € C such that
I In
(10.2) * lim limsup (sup Y aw - a; M‘l) =0,
Mooy 00 i lk=j
In
(10.3+) Lim |} ay —a;| =0 for each j.
n—o0 k:]

Remark 4.8. The results in Theorem 4.7 are contained as special cases in [11, Theorems 3.1 and 3.2] where, for
bounded sequences p and s of positive real numbers, the characterizations were established of the classes (bv(p), £(s))
Jor pe < 1and s 2 1, (bo(p), Les(p)), (b0(p), co(s)) and (bo(p), c(p)), and of (bu(p), &1), (bo(p), L), (bo(p), co) and
(bo(p), o).

Remark 4.9. If T is an arbitrary triangle then the characterization of any class (X, Yt) can be reduced to that of
(X,Y) by the trivial observation that A € (X, Yt) ifandonlyif B=T-A € (X, Y).

4.2. Matrix transformations between (co—)echelon spaces

The general results in this subsection are due to Grosse-Erdmann [9], and give the characterizations of
matrix mappings between general (co-)echelon spaces.
Let Xo = cpand X, = £, for 1 < p < oo.
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Theorem 4.10. ([9, Theorem 4.1]) Let B = (bw),,_, and C = (cuk);,_, be Kothe matrices, V and W be their
associated matrices and p,q € {0} U [1, o0]. Let A = (ank):’kzl be an infinite matrix. Then we have
(a) A € (x,(V), A4(C)) if and only if

(ankanka)kazl € (Xp, Xy) forall L,M € IN;
(b) A € (k,(V), x4(W)) if and only if
for all M € IN there exists L € IN with (ankka/an);’;’kzl € (Xp, Xy).

If (p,q) # (c0,0), then
(c) A € (Ap(B), A4(C)) if and only if

forall L € N there exists M € IN with (unkan/ka):szl € (Xp, Xy);
(d) A € (Ay(B), k(W) if and only if
there exist L, M € IN with (ank/(anka)),‘j,’k:1 € (Xp, Xy).
Now we consider the case (p, ) = (00, 0) which has been excluded in Theorem 4.10 (c), (d).

Theorem 4.11. ([9, Theorems 4.3 and 4.4]) We use the notations of Theorem 4.10. Then we have
(a) A € (A(B), Ao(C)) if and only if

forall L € N, (ankcrn)y, € x1(V) foralln € N
and
@icrn)pey = 0in k1 (V) as n — oo;

(b) A € (Aoo(B), k0(W)) if and only if

there exists L € IN with (au/cn)pe, € x1(V) foralln € N
and
@uk/cLn)ie, — 0in ki (V) asn — oo.

If V is reqularly decreasing, then we have
(c) A € (A«(B), Ao(C)) if and only if

forall L € N there exists M € IN with }, |ank|£ﬂ <ooforalln € N
k=1 Mk
and

. < ClLn
lim Y laul— =0;
n—eo T bk

(d) A € (Aw(B), Ao(C)) if and only if

. 2 a

there exist L, M € N with Y, 19,
k=1 CLnOMk
and

(o]
) a
lim Y, ol =0.
=00 k=1 CLabmik

< oo foralln e N

The characterizations of matrix transformations between any two of the spaces £(p), co(p), c(p) and oo (p)
can be found in [9], of course, with the exception of ({(p), {(7)) in the general case; even the classical pair
(€y, €;) is an open problem if 1 < p,q < oo and (p, q) # (2,2). Also, in the case of (E, £(g)) it has to be assumed
that gx > 1 for all k. Let L and M denote natural numbers, N and K be finite subsets of IN, and a and a be
complex numbers.
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Remark 4.12. (a) The class (£(p), €1) was characterized in Theorem 4.1 3..
(b) ([9, Theorem 5.1 0]) If px < 1 and qx > 1 for all k € IN, then A € (£(p), €(q)) if and only if
sup Z (ankM‘l/Pkr’” < oo for some M,
k=1

or equivalently,

o0
lim sup E |ankM_1/”k "~ 0.
M—oo k 4
n=

In the following theorem conditions in (X*) and (X * *) are equivalent.

Theorem 4.13. ([9, Theorem 5.1]) Let p = (px),2, and q = (qx),~, be sequences of positive real numbers and p € w;
q € {w is only assumed in 11.-13.. Then the necessary and sufficient conditions for A € (X,Y), where X and Y are
any of the spaces €(p), co(p), c(p) and €« (p), can be read from the following table

Y
x U, @e=1) | colq) | cq) | Leo(q)
t(p) unknown 14. | 18. 12.
co(p) 11. 15. | 19. 23.
c(p) 12. 16. | 20. | 24.
Lo (p) 13. 17. | 21. | 25.
where
s In
11.  (11.1%) sup Y | Y auM~P| < oo for some M,
K n=1 |keK
o In
(11.1%%) A}{im sup Zl kZKankM‘l/”k =0
-0 o= <
(o] oo qu
12.  (11.1%) and (12.1%) Y ‘Z Al < o0
n=1 k=1
00 In
13.  (13.1%) sup Y | Y auMPr| < oo for all Mj;
K n=1|keK

14. (14.1%), (14.2%) and (14.3%), where
(14.1%) lim |a,|™ = O for all k,

(14.2%) supsup |ankL1/‘7"|pk <ooforall L,

n  kek
(142+%) lim sup sup IankM‘l/PkV” =0,

M—oo keK, ,
(14.3+) for all L there exists M with sup }, |ankL1/%M—1 Pk oo,

n kekp

(14.3%%) lim sup Y, |11,7;<L1/‘4"M‘1 IPL =0forall L
M—eo n k€K2

15. (14.1%) and (15.1%), where
(15.1%) for all L there exists M with sup LY Y |a,u|M~1/Pr < oo,
n k=1

00 n
(Z IankIM‘””k) =0

15.1 %) lim su
( ) M- p k=1

n



16.

17.
18.

19.

20.

21.

22,
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(14.1%), (15.1%) and (16 1%), where

(16.1%) lim ’Z ay| =0

n—0oo |11

00 qn
(17.1%) lim (z la, [ MYPx| =0 for all M
100 \k=1

(18.1x), (18.2+) and there exists a sequence (o)
such that (18.3+), (18.4%) and (18.5%), where
(18.1%) supsup |aul* < oo,

n  kek ,
(18.2%) sup Z |a,,kM‘1 |pk < o for some M,

n

(18.2 % %) hm sup Y, |a WM™ 1|pk =
= ke K2
(18.3%) hm [aux — o™ = 0 for all k,
n—00

(18.4%) sup sup (lank — ay| LV )pk <ooforall L,
n  keky
(18.4 %) hm 1 sup sup (Iank —ai| M~ 1/”k) =0,
n  keKi
(18.5%) for all L there exists M such that

_1\
sup ¥ (Jam —ar LVM)" < oo,
n kEKz

(18.5+%) lim sup Y, (lank — ay Ll/q"M‘l)pk = 0 for some L
M—oo " kek,

(19.1x) and there exists a sequence (ax);2, such that
(18.3%) and (19.2+), where

(19.1%) sup Y. |auIM~1/Px < oo for some M,
n k=1

(19.1+#) lim sup Z |a /M~ =0,
(19.2%) for all L there exzsts M such that

sup L1/ Z e — e M~1Px < oo,
n k=1 0

(192++) lim (sup T la — M| =0
=N\ n k=1
(19.1%), there exists a such that (20.1x%)

and there exists a sequence (ax);”, such that (18.3+) and (19.2+), where

(20.1%) lim la —al™ =0
(21.1%) and there exists a sequence (ax),>, such that (21.2+), where
(21.1%) sup Z |2, |MY/Pe < oo for all M,

qn
(21.2%) hm (Z | — aklMl/F’k) =0 for all M

(22.1%) and (22.2%), where
(22.1%) supsup |aL "/ ‘7") < oo for some L,
n  kekKy
(22.1% %) sup sup |aM|" < oo for some M,
n  kek;

(22.2%) sup ¥ |awl™ 1/4n| < oo for some L

n kek,

1118



E. Malkowsky, F. Bagar / Filomat 31:4 (2017), 1099-1122 1119

o In
23.  (23.1¥) sup ( Y IanklM‘l/f’k) < oo for some M
n \k=1

qu
< 00

24,  (23.1%) and (24.1%) sup‘z Ak
n |k=1

. 1/n

25.  (25.1¥) sup (): IankIMl/Pk) < oo for all M.
n \k=1

Remark 4.14. Let p and q be bounded positive sequences.

(a) The characterizations of the classes (X, Y) for X = Al (p), Aco(p), Ac(p) and Y = £« (q), co(q), c(q) were established

in [31, Theorem 4].

(b) The characterizations of the classes (A} X, Y) for X = €u(p), co(p), c(p) and Y = £(q), co(q), c(q) were established

in [32, Theorems and Corollaries 3.1-3.3]

5. The Paranormed Space of Almost Convergent Sequences

In this section, the indices of sequences start with 0.

The concept of almost convergence arises from a generalization of that of convergence. Banach [1] proved
the existence of a functional L on £, satisfying the following conditions for all x, y € . and all scalars A
and y

() L(Ax + py) = AL(x) + uL(y)

(ii) xx > O for all k implies L((xt);2,) = 0
(iii) L((Xk1n)peg) = L((xk)pe) for all n € IN
(iv) L(e) = 1.

Lorentz [16] defined a Banach limit to be any functional on . satisfying the condition in (i)-(iv), and
called a bounded sequence x = (x¢);”, to be almost convergent to s if L(x) = s for every Banach limit L; s is
then called the generalized limit of x; this is denoted by Limx, = s. Lorentz proved that

m

1 . .
Xk+m = S uniformly in n.
0

+1
m .

Lim x, = s if and only if lim t,,(x) =

The sets of all sequences that are almost convergent or almost convergent to zero are denoted by f or
fo; some authors write ¢ = f and & = fo.

Again let p = (px),2, be a sequence of positive real numbers. S. Nanda [35] generalized the sets f; and f
as follows:

folp) = {x = (%) € @ : lim |ty,(x)" = 0 uniformly in n} ,
m—oo
Fp) = {x — () €w: A €C 3 lim |t (x) — I = 0 uniformly in n}.

The following set inclusions between the spaces co(p), fo(p), c(p) and f(p) hold.
Theorem 5.1. ([35, Proposition 1]) The following inclusions hold:
cop) € folp),  c(p) < fp) and fo(p) < f(p).
Theorem 5.2. ([35, Proposition 2]) If 0 < p,, < g < 00, then the inclusions fo(p) C fo(q) and f(p) C f(q) hold.

The following results are known concerning the topological structures of the spaces fy(p) and f(p). Again
we assume thatp = (pk)]‘:‘;o is a bounded sequence of positive real numbers, and M = max{1, sup, pi}.
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Theorem 5.3. ([35, Theorem 1]) The space fo(p) is a complete linear topological space with respect to the paranorm
g defined by

Pm /M

g(x) = sup |tm,n(x)

Ifinf,, p,y > 0, then f(p) is a complete linear topological space with respect to the paranorm g.

We recall that for ¥ > 0, a non-empty subset Y of a linear space X is said to be absolutely r-convex if
x,¥ € Yand a, € C with |a” +|B]" < 1 together imply that ax + Sy € Y. A linear topological space X is said
to be r-convex (cf. [28]) if every neighbourhood of 6 € X contains an absolutely r-convex neighbourhood
of 0 € X. The next result is known.

Theorem 5.4. ([35, Proposition 3]) The spaces fo(p) and f(p) are 1-convex.

Several classes of matrix transformations into the normed or paranormed spaces of almost convergent
or almost null sequences were characterized in [35, 36]. Let A = (@n);,_, be an infinite matrix. Then we
write '

1 m
aln, k,m) = —— Z @i for all m, k, m.
j=0

Theorem 5.5. ([35, Theorems 2, 3, 5, 6]) We have
(@) A € (colp), folp)) if and only if

(i) there exists an integer B > 1 such that

) Pm
Cy =sup [Z la(n, k, m)IB_l/pk] < oo forall n,
M\ k=0
lim |a(n, k, m)|P" uniformly in n. (i)
m—00
(b) A € (c(p), f) if and only if

(i) there exists an integer B > 1 such that

D, = supZ la(1, k, m)|B~Y/P« < co for all n,

" k=0
lim a(n, k, m) = oy uniformly in n for each k, (ii)
lim a(n, k, m) = o uniformly in n. (iii)
m—00
k=0

(c) A € (Co(p), f) if and only if the condition (b.ii) is satisfied and
sup Z la(n, k, m)| < oo for all n, (ii)
" k=0
(iii) for all integers N > 1

lim |a(n, k, m) — i[NP =0 uniformly in n.

(d) A € (€4, fo) if and only if

sup la(n, k, m)| < oo forall n, )
n,k

lim a(n, k, m) = 0 uniformly in n. (ii)
m—o0
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Remark 5.6. (a) The characterizations of the classes (co(p), ) and (£s(p), fo) can be found in the [35, Corollaries p.
180 and 181] as special cases of [35, Theorems 3 and 5].

(b) Parts (b) and (c) of Theorem 5.5 generalize the characterizations of the classes (c, f) and (€«, f) established in [12,
Theorem 3.1] and [6, Theorem 2.1].

We close with the characterizations of the classes (¢(p), f) and (w(p), f) in [36, Theorems 1 and 5].

Theorem 5.7. We have
(a) A € (E(p), f) if and only if the condition in Theorem 5.7 (b.ii) holds and
(i) there exists an integer B > 1 such that for all n

sup Z la(n, k, m)|%"B™% < oo ifpr <1and qi = pr/(px — 1) for all k

m k=0
sup la(n, k, m)IPk < oo if0<pp <1forall;

m,k

(D) if 0 < px <1 forall k then A € (w(p), f) if and only if the conditions in Theorem 5.7 (b.ii) and (b.iii) hold and
(i) there exists B < 1Bsuch that

Cy =sup Z max, ((ZVB_l)l/pk la(n, k, m)l) < oo for all n.
moy=0

References

[1] S.Banach, Theorie des Operations Lineaires, Warzawa (1932)
[2] K.D. Bierstedt, R. G. Meise, W. H. Summers, Kothe sets and Kothe sequence spaces, in Functional Anaylsis, Holomorphy and
Approximation Theory, Notas de Matematica, vol. 88, North-Holland, 1982, 27-91
[3] J. Boos, Der induktive Limes von abziihlbar vielen FH-Raumen. Vereinigungsverfahren, Manuscripta Math, 21 (1977), 205-225
[4] H.I Brown, Entire methods of summation, Compositio Math. 21 (1969), 35-43
[5] R.Colak, M. Et, E. Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Firat University, Elazig (2004)
[6] C.Eizen, G. Laush, Infinite matrices and almost convergence, Math. Japon. 14 (1969), 137-143
[7]1 D.J.H. Garling, A generalized form of inductive limit topology for vector spaces, Proc. London Math. Soc. (3)14 (1964), 1-28
[8] K.—G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Can. J. Math. 44 (2) (1992), 298-307
[9] K—G. Grosse—Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180, No 1 (1993), 223-238
[10] V.G. Iyer, On the space of integral functions-I, J. Indian Math. Soc. (2) 12 (1948), 13-30
[11] A.M. Jarrah, E. Malkowsky, The space bu(p), its p—dual and matrix transformations, Collect. Math. 55(2) (2004), 151-163
[12] ]J.P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219-1255
[13] G.Kothe, Topological Vector Spaces I, Grundlehren der math. Wiss. no 159, Springer—Verlag, 1983
[14] C.G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific J. Math 38 No. 2 (1971),
487-500
[15] C.G. Lascarides, 1.]. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104
[16] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190
[17] Y. Luh, Toeplitz—Kriterien fiir Matrixtransformationen zwischen paranormierten Folgenriumen, Diplomarbeit, Giessen (1985)
[18] Y. Luh, Die Riume £(p), Los(p), c(p), co(p), w(p), wo(p) und wes(p). Ein Uberblick, Mitt. Math. Sem. Giessen 180 (1987), 35-57
[19] Y. Luh, Some matrix transformations between the sequence spaces €(p), £oo(p), c(p), co(p) and w(p), Anlysis 9 (1989), 67-81
[20] LJ. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, London, 18 (2) (1967), 345-355
[21] LJ. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc. 64 (1968), 335-340
[22] 1J. Maddox, Continuous and Kothe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1969), 431-435.
[23] 1J. Maddox, On Kuttner’s theorem, London J. Math. Soc. 43 (1968), 285-290
[24] 1J. Maddox, Some properties of paranormed sequence spaces, London J. Math. Soc. 2 (1) (1969), 316-322
[25] LJ. Maddox, Elements of Functional Analysis, Cambridge University Press (1970)
[26] 1J. Maddox, Operators on the generalized entire sequences, Proc. Camb. Phil. Soc. 71 (1972), 491-494
[27] L1J. Maddox, An addendum on some properties of paranormed sequence spaces, London J. Math. Soc. 2 (8) (1974), 593-594
[28] 1J. Maddox, J. W. Roles, Absolute convexity in certain topological linear spaces, Proc. Camb. Phil. Soc. 66 (1969), 541-545
[29] 1J.Maddox, M.A.L. Willey, Continuous operators on paranormed spaces and matrix transformations, Pac. J. Math. 53,1 (1974), 217-228
[30] E. Malkowsky, A study of the a—duals for we(p) and wo(p), Acta Sci. Math. (Szeged) 60 (1995), 559-570
[31] E. Malkowsky, M. Mursaleen, Matrix transformations between the difference sequence spaces Aco(p), Ac(p) and Alw(p), Filomat 15
(2001), 353-363
[32] E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta
Math. Sinica, English Series, 23, No. 3 (2007), 521-532



E. Malkowsky, F. Bagar / Filomat 31:4 (2017), 1099-1122 1122

[33] E.Malkowsky, M. Mursaleen, Qamaruddin, Generalized sets of difference sequences, their duals and matrix transformations, Advances
in Sequence Spaces and Applications, Norosa Publ. Co. Delhi (1999), 68-83

[34] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508-512

[35] S.Nanda, Infinite matrices and almost convergence, J. Indian Math. Soc. 40 (1976), 173-184

[36] S. Nanda, Matrix transformations and almost convergence, Matemati¢ki vesnik 13(28) (1976), 305-312

[37] K.C.Rao, Matrix transformations of some sequence spaces, Pacific J. Math. 31 (1969), 171-174

[38] J.W. Roles, The characterization of certain classes of matrix transormations, J. London Math. Soc. (2) 3 (1971), 485487

[39] S.Simons, The sequence spaces {(p,) and m(py), Proc. London Math. Soc. 15 (3) (1965), 422436

[40] S.M. Sirajudeen, Matrix transformations of bv into £(g), £« (q), co(q) and c(q), Indian J. Pure Appl. Math. 23(1) (1992), 55-61

[41] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam-New York-Oxford,
1984



