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Abstract. Let 0 < s < ∞. In this study, we introduce the double sequence space Rqt(Ls) as the domain of
four dimensional Riesz mean Rqt in the spaceLs of absolutely s-summable double sequences. Furthermore,
we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ≤ s < ∞ and is not a barrelled space
for 0 < s < 1. We determine the α- and β(ϑ)-duals of the space Ls for 0 < s ≤ 1 and β(bp)-dual of the
space Rqt(Ls) for 1 < s < ∞, where ϑ ∈ {p, bp, r}. Finally, we characterize the classes (Ls : Mu), (Ls : Cbp),
(Rqt(Ls) : Mu) and (Rqt(Ls) : Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ≤ s < ∞
together with corollaries some of them give the necessary and sufficient conditions on a four dimensional
matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.

1. Introduction

We denote the set of all real or complex valued double sequences by Ω which is a vector space with
coordinatewise addition and scalar multiplication. Any vector subspace of Ω is called as a double sequence
space. A double sequence x = (xmn) of complex numbers is said to be bounded if ‖x‖∞ = supm,n∈N |xmn| < ∞,
where N = {0, 1, 2, . . .}. Consider the sequence x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0(ε) ∈ N
and l ∈ C such that |xmn − l| < ε for all m,n > n0, then we call that the double sequence x is convergent in
the Pringsheim’s sense to the limit l and write p − limm,n→∞ xmn = l; where C denotes the complex field. We
give the set definitions of the spacesMu, Cp and Ls of bounded, convergent in the Pringsheim’s sense and
absolutely s-summable double sequences, respectively, as follows:

Mu :=

x = (xkl) ∈ Ω : ‖x‖∞ = sup
k,l∈N
|xkl| < ∞

 ,
Cp :=

{
x = (xmn) ∈ Ω : ∃l ∈ C such that p − lim

m,n→∞
xmn = l

}
,

Ls :=

x = (xkl) ∈ Ω :
∑

k,l

|xkl|
s < ∞

 , (0 < s < ∞).
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Mu is a Banach space with the norm ‖ · ‖∞. One can easily see that there are such sequences in the space Cp
but not in the spaceMu. Indeed, if we define the sequence x = (xkl) by

xkl :=


k , k ∈N, l = 0,
l , l ∈N, k = 0,
0 , k, l ∈N \ {0}

for all k, l ∈N, then it is trivial that x ∈ Cp \Mu, since p− limk,l→∞ xkl = 0 but ‖x‖∞ = ∞. So, we can consider
the space Cbp of the double sequences which are both convergent in the Pringsheim’s sense and bounded,
i.e., Cbp = Cp ∩Mu. A sequence in the space Cp is said to be regularly convergent if it is a single convergent
sequence with respect to each index and denote the space of all such sequences by Cr.

Let us consider a double sequence x = (xmn) and define the sequence s = (smn) via x by smn =
∑m,n

k,l=0 xkl for
all m,n ∈ N. Then, the pair (x, s) and the sequence s = (smn) are called as a double series and the sequence
of partial sums of the double series, respectively. Here and after, unless stated otherwise we assume that
ϑ denotes any of the symbols p, bp or r. If the double sequence (smn) is convergent in the ϑ-sense, then the
double series

∑
k,l xkl is said to be convergent in the ϑ-sense and it is showed that ϑ−

∑
k,l xkl = ϑ− lim

m,n→∞
smn.

Also, we find some criteria about the convergence of a double series in Limaye and Zeltser [1]. Throughout
the text we use the notation

∑
k,l xkl instead of

∑
∞

k,l=0 xkl.
By Ls, we denote the space of absolutely s-summable double sequences defined by Başar and Sever [2].

Throughout the text, we assume that 0 < s < ∞ and s′ denotes the conjugate of s, that is, s′ = s/(s − 1) for
1 < s < ∞, s′ = ∞ for s = 1 or s′ = 1 for s = ∞. Also, by Lu, we mean the space of absolutely convergent
double series.

The α-dual λα, β(ϑ)-dual λβ(ϑ) with respect to the ϑ-convergence and the γ-dual λγ of a double sequence
space λ are respectively defined by

λα :=

(akl) ∈ Ω :
∑

k,l

|aklxkl| < ∞ for all (xkl) ∈ λ

 ,
λβ(ϑ) :=

(akl) ∈ Ω : ϑ −
∑

k,l

aklxkl exists for all (xkl) ∈ λ

 ,
λγ :=

(akl) ∈ Ω : sup
m,n∈N

∣∣∣∣∣∣∣
m,n∑

k,l=0

aklxkl

∣∣∣∣∣∣∣ < ∞ for all (xkl) ∈ λ

 .
It is easy to see for any two spaces λ, µ of double sequences that µα ⊂ λα whenever λ ⊂ µ and λα ⊂ λγ.
Additionally, it is known that the inclusion λα ⊂ λβ(ϑ) holds while the inclusion λβ(ϑ)

⊂ λγ does not hold,
since the ϑ-convergence of a sequence of partial sums of a double series does not imply its boundedness.

Let λ and µ be two double sequence spaces, and A = (amnkl) be any four-dimensional real or complex
infinite matrix. Then, we say that A defines a matrix mapping from λ into µ and we write A : λ → µ, if for
every sequence x = (xkl) ∈ λ the A-transform Ax = {(Ax)mn}m,n∈N of x exists and is in µ; where

(Ax)mn = ϑ −
∑

k,l

amnklxkl for each m,n ∈N. (1)

We define the ϑ-summability domain λ(ϑ)
A of A in a space λ of double sequences by

λ(ϑ)
A :=

x = (xkl) ∈ Ω : Ax =

ϑ −∑
k,l

amnklxkl


m,n∈N

exists and is in λ

 .
We say with the notation (1) that A maps the space λ into the space µ if λ ⊂ µ(ϑ)

A and we denote the set of all
four dimensional matrices, transforming the space λ into the space µ, by (λ : µ). Thus, A = (amnkl) ∈ (λ : µ)
if and only if the double series on the right side of (1) converges in the sense of ϑ for each m,n ∈ N, i.e,
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Amn ∈ λβ(ϑ) for all m,n ∈N and every x ∈ λ, and we have Ax ∈ µ for all x ∈ λ; where Amn = (amnkl)k,l∈N for all
m,n ∈ N. We say that a four-dimensional matrix A is Cϑ-conservative if Cϑ ⊂ (Cϑ)A, and is Cϑ-regular if it is
Cϑ-conservative and ϑ − limA x = ϑ − lim

m,n→∞
(Ax)mn = ϑ − lim

m,n→∞
xmn, where x = (xmn) ∈ Cϑ. In this paper, we

only consider bp−summability domain.
Using the notation of Zeltser [3], we define the double sequences ekl =

(
ekl

mn

)
, el, ek and e by ekl

mn = 1 if
(k, l) = (m,n) and ekl

mn = 0 otherwise, and el :=
∑

k ekl, ek :=
∑

l ekl and e :=
∑

k,l ekl (coordinatewise sum) for
all k, l,m,n ∈N and we denote Φ by Φ = span{ekl : k, l ∈N}.

For all m,n, k, l ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0 for k > m or l > n or both,
[4]. Following Adams [4], we also say that a triangular matrix A = (amnkl) is called a triangle if amnmn , 0 for
all m,n ∈ N. Referring to Cooke [5, Remark (a), p. 22], one can conclude that every triangle matrix has an
unique inverse which is also a triangle.

Zeltser [3] essentially studied both the theory of topological double sequence spaces and the theory of
summability of double sequences in her PhD thesis. Altay and Başar [6] have defined the spaces BS and
CSϑ of double series whose sequence of partial sums are in the spaces Mu, Cϑ, respectively. Mursaleen
and Başar [7] have introduced the spaces M̃u, C̃ϑ and L̃s of double sequences whose Cesàro transforms are
inMu, Cϑ and Ls, respectively. The reader can refer to Başar [8] and Mursaleen and Mohiuddine [9] for
relevant terminology and required details on the double sequences and related topics.

Following Mursaleen and Başar [7] and Alotaibi and Çakan [10], Yeşilkayagil and Başar [11] have
defined the double sequence spaces Rqt(Mu), Rqt(Cp), Rqt(Cbp) and Rqt(Cr) as the domain of four dimensional
Riesz mean Rqt in the spacesMu, Cp, Cbp and Cr, respectively. Also, they have characterized the matrix class
(Mu : Mu) in [12] and have introduced the some topological property of the double spaces C f0 and C f of
almost null and almost convergent double sequences, respectively, in [13].

In [14] Tuǧ and Başar have introduced some new double sequence spaces B(Mu), B(Cϑ), and B(Ls)
as the domain of four-dimensional generalized difference matrix B(r, s, t,u) in the spaces Mu, Cϑ and Ls,
respectively.

Let q = (qk), t = (tl) be two sequences of non-negative numbers which are not all zero and Qm =
∑m

k=0 qk,
q0 > 0, Tn =

∑n
l=0 tl, t0 > 0. Then, the Riesz mean with respect to the sequences q = (qk) and t = (tl) is defined

by the matrix Rqt = (rqt
mnkl) as follows

rqt
mnkl =

{ qktl
QmTn

, 0 ≤ k ≤ m, 0 ≤ l ≤ n,
0 , otherwise

for all m,n, k, l ∈ N. It is known by Theorem 2.8 of Yeşilkayagil and Başar [11] that the four dimensional
Riesz mean Rqt is RH-regular if and only if lim

m→∞
Qm = ∞ and lim

n→∞
Tn = ∞. The Riesz transform Rqt of a

double sequence x = (xkl) is given by

ymn = (Rqtx)mn =
1

QmTn

m,n∑
k,l=0

qktlxkl (2)

for all m,n ∈ N. Throughout the paper, we suppose that the terms of the double sequences x = (xkl) and
y = (ymn) are connected with the relation (2) and the term with negative index is zero. If p− lim(Rqtx)mn = s,
s ∈ C, then the sequence x = (xkl) is said to be Riesz convergent to s (see [10]). Note that in the case qk = 1 for
all k and tl = 1 for all l, the Riesz mean Rqt is reduced to the four dimensional Cesàro mean C of order one.

Let I = (δmnkl) is four dimensional unit matrix, that is, δmnkl =

{
1 , (m,n) = (k, l),
0 , otherwise . Using the equality

δmnkl =
∑

i, j rmnijdi jkl = 1
QmTn

∑m,n
i, j=0 qit jdi jkl, one can obtain by a straightforward calculation that the inverse

(Rqt)−1 = (dmnkl) of the triangle matrix Rqt is given, as follows:

dmnkl =

{
(−1)m+n−(k+l) QkTl

qmtn
, m − 1 ≤ k ≤ m, n − 1 ≤ l ≤ n,

0 , otherwise
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for all m,n, k, l ∈N.
In the present paper, referring Başar and Sever [2] we introduce the new space Rqt(Ls) defined by

Rqt(Ls) :=
{
x = (xkl) ∈ Ω : {(Rqtx)mn} ∈ Ls

}
, (0 < s < ∞).

2. The Space Rqt(Ls) of Double Sequences

In this section, we give some results on the space Rqt(Ls).

Theorem 2.1. The set Rqt(Ls) is the linear space with the coordinatewise addition and scalar multiplication, and the
following statements hold:

(i) If 0 < s < 1, then Rqt(Ls) is a complete s-normed space with

‖x̃‖s =
∑
m,n

∣∣∣∣∣∣∣ 1
QmTn

m,n∑
k,l=0

qktlxkl

∣∣∣∣∣∣∣
s

which is s-norm isomorphic to the space Ls.
(ii) If 1 ≤ s < ∞, then Rqt(Ls) is a Banach space with

‖x̂‖s =

∑
m,n

∣∣∣∣∣∣∣ 1
QmTn

m,n∑
k,l=0

qktlxkl

∣∣∣∣∣∣∣
s

1/s

(3)

which is norm isomorphic to the space Ls.

Proof. Since, Part (i) can be proved in the similar way, we give the proof only for Part (ii).
The first part is a routine verification and so we omit it.
To prove the fact Rqt(Ls) is norm isomorphic to the space Ls, we should show the existence of a linear

bijection between the spaces Rqt(Ls) and Ls. Consider the transformation U defined from Rqt(Ls) to Ls by
x 7→ Ux = {(Rqtx)mn}. It is trivial that U is linear. We get from the equation

Ux =



x00
t0x00+t1x01

T1

t0x00+t1x01+t2x02
T2

· · ·

q0x00+q1x10

Q1

1∑
k=0

qk(t0xk0+t1xk1)
Q1T1

1∑
k=0

qk(t0xk0+t1xk1+t2xk2)
Q1T2

· · ·

q0x00+q1x10+q2x20

Q2

2∑
k=0

qk(t0xk0+t1xk1)
Q2T1

2∑
k=0

qk(t0xk0+t1xk1+t2xk2)
Q2T2

· · ·

...
...

... · · ·
m∑

k=0

qkxk0

Qm

m∑
k=0

qk(t0xk0+t1xk1)
QmT1

m∑
k=0

qk(t0xk0+t1xk1+t2xk2)
QmT2

· · ·

...
...

... · · ·



= θ

that x = θ whenever Ux = θ, where θ denotes the zero vector. This shows that U is injective.
Let y = (ykl) ∈ Ls and define the sequence x = (xkl) via y by

xkl =
1

qktl
(QkTlykl −Qk−1Tlyk−1,l −QkTl−1yk,l−1 + Qk−1Tl−1yk−1,l−1) (4)
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for all k, l ∈N. Then, we have

QmTn(Rqtx)mn =

m,n∑
k,l=0

(QkTlykl −Qk−1Tlyk−1,l −QkTl−1yk,l−1 + Qk−1Tk−1yk−1,l−1)

= Q0

n∑
l=0

(Tly0l − Tl−1y0,l−1) +

n∑
l=0

(Q1Tly1l −Q0Tly0l −Q1Tl−1y1,l−1 −Q0Tl−1y0,l−1)

+

n∑
l=0

(Q2Tly2l −Q1Tly1l −Q2Tl−1y2,l−1 −Q1Tl−1y1,l−1) + ... +

+

n∑
l=0

(Qm−1Tlym−1,l −Qm−2Tlym−2,l −Qm−1Tl−1ym−1,l−1 −Qm−2Tl−1ym−2,l−1)

+

n∑
l=0

(QmTlyml −Qm−1Tlym−1,l −QmTl−1ym,l−1 −Qm−1Tl−1ym−1,l−1)

= Qm

n∑
l=0

(Tlyml − Tl−1ym,l−1) = QmTnymn

and so∣∣∣(Rqtx)mn

∣∣∣ = |ymn|

which yields that∑
m,n

∣∣∣(Rqtx)mn

∣∣∣s =
∑
m,n

|ymn|
s. (5)

Since y ∈ Ls, we have x ∈ Rqt(Ls), that is, U is surjective. Also, we see from (5) that U is a norm preserving
transformation.

Now, we can show that Rqt(Ls) is a Banach space with the norm ‖ · ‖̂s defined by (3). To prove this,
we use Part (b) of Corollary 6.3.41 in [15] which says that ”Let (X, p) and (Y, q) be semi-normed spaces and
U : (X, p) → (Y, q) be an isometric isomorphism. Then, (X, p) is complete if and only if (Y, q) is complete. In
particular, (X, p) is a Banach space if and only if (Y, q) is a Banach space.” Since the transformation U defined
above from Rqt(Ls) toLs is an isometric isomorphism and the spaceLs is a Banach space from Theorem 2.1
in [2], we conclude that the space Rqt(Ls) is a Banach space. This step completes the proof.

A non-empty subset S of a locally convex space X is called fundamental if the closure of the linear span
of S equals X, [15]. Using this definition, we define the set S ⊂ Ls as S := {ekl : k, l ∈ N}. Then, we have
Φ = spanS. We shall show that Φ is dense in Ls, that is, clΦ = Ls. Let the relation clΦ = Ls does not hold.
Hence, there exists a ball in Ls, no matter how small, does not contain any points of Φ, i.e, there does not
exist a y ∈ Φ such that

‖x − y‖ ≮ εs (6)

for a point x ∈ Ls.Then, by (6) we have that

‖x − y‖ =
∑

i, j

|xi j − ekl
i j |

s = |xkl − 1|s ≮ εs,

that is, |xkl − 1|s ≥ εs. Choose ε = 1/2. Then, we have either xkl ≤ 1/2 or 3/2 ≤ xkl for all k, l ∈ N. For both
statement, we can find x < Ls, a contradiction. Since x ∈ Ls is arbitrary, every ball in Ls contains a point of
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Φ, i.e, Φ is dense inLs. Therefore, S is fundamental set ofLs. Using this fact, we define the double sequence
b(kl) =

(
b(kl)

mn

)
by

b(kl)
mn :=



QkTl
qktl

, m = k, n = l,
−

QkTl
qktl+1

, m = k, n = l + 1

−
QkTl
qk+1tl

, m = k + 1, n = l,
QkTl

qk+1tl+1
, m = k + 1, n = l + 1,

0 , otherwise

(7)

for all k, l,m,n ∈N. Then, {b(kl); k, l ∈N} is the fundamental set of the space Rqt(Ls); since Rqtb(kl) = ekl with
0 < s < ∞.

Theorem 2.2. If
(

1
QmTn

)
< Ls, then Ls 1 Rqt(Ls) holds.

Proof. Let
(

1
QmTn

)
< Ls. We take the sequence e00. Obviously, e00

∈ Ls. For all m,n ∈N, we have that

(Rqte00)mn =
q0t0

QmTn
.

Since
(

1
QmTn

)
< Ls, Rqte00 < Ls. So, e00 < Rqt(Ls), as desired.

Theorem 2.3. Let 1 < s < r < ∞. Then, the inclusion Rqt(Ls) ⊂ Rqt(Lr) strictly holds.

Proof. Let 1 < s < r < ∞ and x = (xkl) ∈ Rqt(Ls). Then, the following inequality i, j∑
m,n=0

∣∣∣∣∣∣∣ 1
QmTn

m,n∑
k,l=0

qktlxkl

∣∣∣∣∣∣∣
r

1/r

<

 i, j∑
m,n=0

∣∣∣∣∣∣∣ 1
QmTn

m,n∑
k,l=0

qktlxkl

∣∣∣∣∣∣∣
s

1/s

(8)

holds by Jensen’s inequality. Therefore, one can see by applying p-limit to (8), as i, j→∞ that ‖x̂‖r < ‖x̂‖s < ∞
which means that x ∈ Rqt(Lr), as desired.

Now, consider the sequence x = (xkl) defined by

xkl =
1

qktl

{
QkTl

[(k + 2)(l + 2)]1/s −
Qk−1Tl

[(k + 1)(l + 2)]1/s −
QkTl−1

[(k + 2)(l + 1)]1/s +
Qk−1Tl−1

[(k + 1)(l + 1)]1/s

}
(9)

for all k, l ∈N. Using (9), we have

|(Rqtx)mn| =
1

[(m + 2)(n + 2)]1/s

and so∑
m,n

|(Rqtx)mn|
s =

∑
m,n

{
1

[(m + 2)(n + 2)]1/s

}s

=
∑
m,n

1
(m + 2)(n + 2)

= ∞,

that is, x < Rqt(Ls). Since 1 < s < r < ∞, 1 < r/s. So, we have∑
m,n

|(Rqtx)mn|
r =

∑
m,n

{
1

[(m + 2)(n + 2)]1/s

}r

=
∑
m,n

1
[(m + 2)(n + 2)]r/s < ∞,

that is, x ∈ Rqt(Lr). This step completes the proof.

Let λ be a locally convex space. Then, a subset is called barrel if it is absolutely convex, absorbing and
closed in λ. Moreover, λ is called a barrelled space if each barrel is a neighborhood of zero; [15, p. 336].

Lemma 2.4. [17] Every Banach space and every Fréchet space is a barrelled space.
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Theorem 2.5. The following statements hold:

(i) Let 1 ≤ s < ∞. Then, Rqt(Ls) is a barrelled space.
(ii) Let 0 < s < 1. Then, Rqt(Ls) is not a barrelled space.

Proof. (i) By Lemma 2.4 and Part (ii) of Theorem 2.1, we say that Rqt(Ls) is a barrelled space for 1 ≤ s < ∞.
(ii) We show that the space Ls is not a locally convex space for 0 < s < 1. Let U := {x : ‖x‖s ≤ 1}. We

shall show thatU includes no convex neighborhood of 0. LetV be a convex neighborhood of 0. For some
ε > 0,V ⊃ {x : ‖x‖s ≤ ε}. In particular, ε1/sekl

∈ V for each k, l ∈N. Choose integers m,n > 1
ε1/2(1−s) and define

the sequence x = (xkl) by

xkl :=
{

ε1/s

(m+1)(n+1) , 0 ≤ k ≤ m and 0 ≤ l ≤ n,
0 , otherwise.

Then, by choosing of ε we see that x ∈ V and

‖x‖s =

m∑
k=0

n∑
l=0

∣∣∣∣∣∣ ε1/s

(m + 1)(n + 1)

∣∣∣∣∣∣s =
ε

[(m + 1)(n + 1)]s

m∑
k=0

n∑
l=0

1

=
ε

[(m + 1)(n + 1)]s (m + 1)(n + 1)] = ε[(m + 1)(n + 1)]1−s

> ε
1
ε1/2

1
ε1/2

= 1.

So, V 1 U. Since the space Ls is not a locally convex space for 0 < s < 1, the space Rqt(Ls) is not, too.
Therefore, the space Rqt(Ls) is not a barrelled space.

A double sequence space λ is said to be solid if and only if

λ̃ := {(ukl) ∈ Ω : ∃(xkl) ∈ λ such that |ukl| ≤ |xkl| for all k, l ∈N} ⊂ λ,

[2, p. 153]. A double sequence space λ is said to be monotone if xu = (xklukl) ∈ λ for every x = (xkl) ∈ λ
and u = (ukl) ∈ {0, 1}N×N, where {0, 1}N×N denotes the set of all double sequences of zeros and ones. If λ is
monotone, then λα = λβ(ϑ); [3, p. 36] and λ is monotone whenever λ is solid.

Theorem 2.6. Let 0 < s < ∞. Then, the space Ls is monotone.

Proof. Let 0 < s < ∞, x = (xkl) ∈ Ls and u = (ukl) ∈ {0, 1}N×N. Then, we have |xklukl|
s = |xkl|

s
|ukl|

s
≤ |xkl|

s for
each k, l ∈N. So, we have that

∑
k,l |xklukl|

s
≤

∑
k,l |xkl|

s, that is, xu ∈ Ls.

Theorem 2.7. Let 0 < s < ∞. If
(

1
QmTn

)
< Ls, then the space Rqt(Ls) is not monotone.

Proof. Let 0 < s < ∞ and
(

1
QmTn

)
< Ls. Choose the sequence x = (xkl) ∈ Rqt(Ls) such that x00 , 0 and take the

sequence u = (ukl) = e00
∈ {0, 1}N×N. Hence, for the sequence z = ux = e00x we derive that

(Rqtz)mn =
1

QmTn
q0t0x00.

Since
(

1
QmTn

)
< Ls, Rqtz < Ls. So, z < Rqt(Ls), as desired.
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3. Dual Spaces

In this section, we determine the α- and β(ϑ)− duals of the spaceLs in the case 0 < s ≤ 1 and β(bp)− dual
of the space Rqt(Ls) for 1 < s < ∞.

Theorem 3.1. Let 0 < s ≤ 1. Then, the α-dual of the space Ls is the spaceMu.

Proof. Since Lu ⊂ Mu, Lαu =Mu and Ls ⊂ Lu for 0 < s ≤ 1, we have thatMu ⊂ L
α
s .

Conversely, suppose that z = (zkl) ∈ Lαs \Mu. Then,
∑

k,l |zklxkl| < ∞ for all x = (xkl) ∈ Ls and supk,l∈N |zkl| =
∞. Hence, there exist sequences (km) and (lm) such that at least one is strictly increasing for m ∈ N. So, we
can take zkmlm > (m + 1)2/s. If we define x = (xkl) by

xkl :=
{

(m + 1)−2/s , k = km and l = lm,
0 , k , km or l , lm

for all k, l,m ∈ N, then we have x ∈ Ls. But
∑

k,l |zklxkl| =
∑

m |zkmlm xkmlm | >
∑

m 1 = ∞, that is, z < Lαs , a
contradiction. Therefore, the inclusion Lαs ⊂ Mu holds.

By combining the inclusionsMu ⊂ L
α
s and Lαs ⊂ Mu, we get Lαs =Mu, as desired.

Corollary 3.2. Let 0 < s ≤ 1. Then, the β(ϑ)-dual of the space Ls is the spaceMu.

Theorem 3.3. Let 0 < s ≤ 1. Then, the inclusion {Rqt(Ls)}α ⊂ Mu holds.

Proof. Suppose that z = (zkl) ∈ {Rqt(Ls)}α \ Mu. Then, zx ∈ Lu for all x ∈ Rqt(Ls). We take the sequence
b(kl) as in (7). So, we have

∑
m,n |(Rqtb(kl)

mn )|s =
∑

m,n |ekl
mn|

s = 1 for all k, l ∈ N. Hence, b(kl)
∈ Rqt(Ls) and so

zx = (zi jb(kl)
i j ) ∈ Lu. With some calculation, we have following five cases;

Case 1. zi jb(kl)
i j = zkl

QkTl
qktl

for (i, j) = (k, l).

Case 2. zi jb(kl)
i j = −zk,l+1

QkTl
qktl+1

for (i, j) = (k, l + 1).

Case 3. zi jb(kl)
i j = −zk+1,l

QkTl
qk+1tl

for (i, j) = (k + 1, l).

Case 4. zi jb(kl)
i j = zk+1,l+1

QkTl
qk+1tl+1

for (i, j) = (k + 1, l + 1).

Case 5. zi jb(kl)
i j = 0 for otherwise.

For example, in case 1, we write that
(
zkl

QkTl
qktl

)
∈ Lu so, is inMu. But, we know that (Qk) (or (Tl)) is a

positive increasing sequence, that is, it is not bounded. Therefore, (zkl) ∈ Mu, a contradiction. Hence, the
inclusion {Rqt(Ls)}α ⊂ Mu holds, as desired.

Theorem 3.4. Let 1 < s < ∞ and define the sets d1, d2 and d3, as follows:

d1 =

a = (akl) ∈ Ω :
∑

k,l

∣∣∣∣∣∣QkTl∆11

(
akl

qktl

)∣∣∣∣∣∣s
′

< ∞

 ,
d2 =

a = (akl) ∈ Ω : sup
n∈N

∑
k

∣∣∣∣∣∣QkTn∆10

(
akn

qktn

)∣∣∣∣∣∣s
′

< ∞

 ,
d3 =

a = (akl) ∈ Ω : sup
m∈N

∑
l

∣∣∣∣∣∣QmTl∆01

(
aml

qmtl

)∣∣∣∣∣∣s
′

< ∞ and
(
QmTn

|amn|

qmtn

)s′

∈ Mu

 .
Then,

{
Rqt(Ls)

}β(bp)
= d1 ∩ d2 ∩ d3.
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Proof. Let x = (xmn) ∈ Rqt(Ls). Then, there exists a double sequence y = (ymn) ∈ Ls by Part (ii) of Theorem
2.1. Also, we have s = (smn) from (4) such that

smn =

m,n∑
k,l=0

xkl =

m,n∑
k,l=0

1
qktl

(
QkTlykl −Qk−1Tlyk−1,l −QkTl−1yk,l−1 + Qk−1Tl−1yk−1,l−1

)
for all m,n ∈N. Now, by the generalized Abel transformation for double sequences we obtain that

zmn =

m,n∑
k,l=0

aklxkl =

m−1,n−1∑
k,l=0

skl∆11akl +

m−1∑
k=0

skn∆10akn +

n−1∑
l=0

sml∆01aml + smnamn (10)

for all m,n ∈N. With some straightforward calculation, we can rewrite the relation (10) as follows

zmn =

m,n∑
k,l=0

aklxkl =

m−1,n−1∑
k,l=0

QkTl∆11

(
akl

qktl

)
ykl +

m−1∑
k=0

QkTn∆10

(
akn

qktn

)
ykn

+

n−1∑
l=0

QmTl∆01

(
aml

qmtl

)
yml + QmTn

amn

qmtn
ymn = (By)mn

for all m,n ∈N, where the four-dimensional matrix B = (bmnkl) is defined by

bmnkl =



QkTl∆11

(
akl
qktl

)
, 0 ≤ k ≤ m − 1 and 0 ≤ l ≤ n − 1,

QkTn∆10

(
akn
qktn

)
, 0 ≤ k ≤ m − 1 and l = n,

QmTl∆01

(
aml
qmtl

)
, k = m and 0 ≤ l ≤ n − 1,

QmTn
amn
qmtn

, k = m and l = n,
0 , otherwise

(11)

for all m,n, k, l ∈ N. Thus, we see that ax = (amnxmn) ∈ CSbp whenever x = (xmn) ∈ Rqt(Ls) if and only if
z = (zmn) ∈ Cbp whenever y = (ymn) ∈ Ls. This leads us to the fact that B ∈ (Ls : Cbp). Hence, from Part (ii)
of Theorem 4.3, the following statement

sup
m,n∈N

∑
k,l

|bmnkl|
s′

= sup
m,n∈N

m−1,n−1∑
k,l=0

∣∣∣∣∣∣QkTl∆11

(
akl

qktl

)∣∣∣∣∣∣
s′

+

m−1∑
k=0

∣∣∣∣∣∣QkTn∆10

(
akn

qktn

)∣∣∣∣∣∣
s′

+

n−1∑
l=0

∣∣∣∣∣∣QmTl∆01

(
aml

qmtl

)∣∣∣∣∣∣
s′

+

∣∣∣∣∣QmTn
amn

qmtn

∣∣∣∣∣s′
 < ∞.

holds. Therefore, we derive that∑
k,l

∣∣∣∣∣∣QkTl∆11

(
akl

qktl

)∣∣∣∣∣∣s
′

< ∞,

sup
n∈N

∑
k

∣∣∣∣∣∣QkTn∆10

(
akn

qktn

)∣∣∣∣∣∣s
′

< ∞,

sup
m∈N

∑
l

∣∣∣∣∣∣QmTl∆01

(
aml

qmtl

)∣∣∣∣∣∣s
′

< ∞,∣∣∣∣∣QmTn
amn

qmtn

∣∣∣∣∣s′ ∈ Mu.

Hence,
{
Rqt(Ls)

}β(bp)
= d1 ∩ d2 ∩ d3.
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4. Charactarization of Some Classes of Matrix Mappings

In this section, we characterize the classes (Ls :Mu), (Ls : Cbp), (Rqt(Ls) :Mu) and (Rqt(Ls) : Cbp) of four
dimensional matrices, in the cases both 0 < s ≤ 1 and 1 < s < ∞. We also characterize the class (Ls : Ls1 ) of
four dimensional matrices in the cases 0 < s ≤ 1 and 1 ≤ s1 < ∞.

Theorem 4.1. Let A = (amnkl) be any four dimensional matrix. Then, the following statements are satisfied:

(i) Let 0 < s ≤ 1. Then, A ∈ (Ls :Mu) if and only if

N = sup
m,n,k,l∈N

|amnkl| < ∞. (12)

(ii) Let 1 < s < ∞. Then, A ∈ (Ls :Mu) if and only if

M1 = sup
m,n∈N

∑
k,l

|amnkl|
s′ < ∞. (13)

Proof. (i) Let 0 < s ≤ 1 and A = (amnkl) ∈ (Ls : Mu). Then, Ax exists and belongs toMu for all x ∈ Ls, and
Amn ∈ Mu by Corollary 3.2 for each m,n ∈N. Therefore, we obtain for ekl

∈ Ls that

‖Aekl
‖∞ = sup

m,n∈N
|amnkl| < ∞

for each fixed k, l ∈N. That is to say that the condition (12) is necessary.
Conversely, suppose that (12) holds and take any x = (xkl) ∈ Ls. Then, Amn ∈ Mu by Corollary 3.2 for

each m,n ∈N which implies the existence of Ax. Let m,n ∈N be fixed. Then, since∣∣∣∣∣∣∣∑k,l

amnklxkl

∣∣∣∣∣∣∣
s

≤

∑
k,l

|amnkl||xkl|


s

≤

sup
k,l∈N
|amnkl|

s ∑
k,l

|xkl|


s

≤

sup
k,l∈N
|amnkl|

s ∑
k,l

|xkl|
s

one can obtain by taking supremum over m,n ∈N that

‖Ax‖∞ = sup
m,n∈N

∣∣∣∣∣∣∣∑k,l

amnklxkl

∣∣∣∣∣∣∣ ≤ N (‖x‖s)1/s .

This shows the sufficiency of the condition (12).
(ii) Let 1 < s < ∞ and A = (amnkl) ∈ (Ls : Mu). Then, Ax exists and is inMu for all x ∈ Ls. We assume

that M1 = ∞. Then, we may choose the sequences (mi), (ki), (n j) and (l j) in N with ki < ki+1 and l j < l j+1 for
all i, j ∈N such that

|amin jkil j |
s′ > (i j)s′ . (14)

Let us define the double sequence x = (xkl) ∈ Ls by

xkl :=
{

s1n (amin jkl) , k = ki and l = l j,
0 , otherwise

for all k, l ∈N. Since s′ > 1, using the inequality (14) we see that

|(Ax)min j | =

∣∣∣∣∣∣∣∑k,l

amin jklxkl

∣∣∣∣∣∣∣ =
∣∣∣amin jkil j xkil j

∣∣∣ =
∣∣∣amin jkil j

∣∣∣ > i j
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and so,

sup
i, j∈N
|(Ax)min j | > ∞,

a contradiction. Therefore, the condition (13) is necessary.
Conversely, suppose that (13) holds and take any x = (xkl) ∈ Ls. Then Ax exists, since Amn ∈ Ls′ for each

m,n ∈N by Theorem 2.7 in [2]. Therefore, we obtain by Hölder’s inequality that

‖Ax‖∞ = sup
m,n∈N

∣∣∣∣∣∣∣∑k,l

amnklxkl

∣∣∣∣∣∣∣
≤ sup

m,n∈N

∑
k,l

|amnkl|
s′


1/s′ ∑
k,l

|xkl|
s


1/s

< M1‖x‖s,

as desired.
This completes the proof.

Theorem 4.2. Let 0 < s ≤ 1 and 1 ≤ s1 < ∞. Then, A = (amnkl) ∈ (Ls : Ls1 ) if and only if

sup
k,l∈N

∑
m,n

|amnkl|
s1 < ∞. (15)

Proof. Let 0 < s ≤ 1, 1 ≤ s1 < ∞ and A ∈ (Ls : Ls1 ). Then, Ax exists and belongs to Ls1 for all x ∈ Ls, and
Amn ∈ Mu by Corollary 3.2 for each m,n ∈N. Therefore, we obtain for ekl

∈ Ls that

‖Aekl
‖s1 =

∑
m,n

|amnkl|
s1


1/s1

< ∞

for each fixed k, l ∈N. That is to say that the condition (15) is necessary.
Conversely, suppose that the condition (15) is satisfied and take any x = (xkl) ∈ Ls. Then, Amn ∈ Mu by

Corollary 3.2 for each m,n ∈N which implies the existence of Ax. Then,

 i, j∑
m,n=0

|(Ax)mn|
s1


1/s1

=

 i, j∑
m,n=0

∣∣∣∣∣∣∣∑k,l

amnklxkl

∣∣∣∣∣∣∣
s1

1/s1

≤

∑
k,l

 i, j∑
m,n=0

|amnklxkl|
s1


1/s1

=
∑

k,l

|xkl|

 i, j∑
m,n=0

|amnkl|
s1


1/s1


≤ sup

k,l∈N

 i, j∑
m,n=0

|amnkl|
s1


1/s1 ∑

k,l

|xkl| < ∞.

Since i, j ∈N’s are arbitrary, we obtain that ‖Ax‖s1 < ∞, as desired.

Theorem 4.3. Let A = (amnkl) be any four dimensional matrix. Then, the following statements hold:

(i) Let 0 < s ≤ 1. Then, A ∈ (Ls : Cbp) if and only if (12) holds and there exists (αkl) ∈ Ω such that

bp − lim
m,n→∞

amnkl = αkl. (16)
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(ii) Let 1 < s < ∞. Then, A ∈ (Ls : Cbp) if and only if (13) and (16) hold.

Proof. (i) Let 0 < s ≤ 1 and suppose that A = (amnkl) ∈ (Ls : Cbp). Then, since the inclusion Cbp ⊂ Mu
holds, the necessity of the condition (12) is obtained from Part (i) of Theorem 4.1. Besides, since Ax
exists and belongs to Cbp for every x ∈ Ls by hypothesis, this also holds for ekl

∈ Ls which gives that
Aekl = (amnkl)m,n∈N ∈ Cbp for each fixed k, l ∈N. Hence, the condition (16) is necessary.

Conversely, suppose that (12) and (16) hold, and x = (xkl) be any sequence in the space Ls. Then, since
Amn ∈ L

β(ϑ)
s for each m,n ∈N, Ax exists. Therefore, we get by (16) for each fixed k, l ∈N with (12) that

|αkl| = bp − lim
m,n→∞

|amnkl| ≤ sup
m,n∈N

|amnkl|

which gives that (αkl) ∈ Mu. Hence, the series
∑

k,l αklxkl converges for every x ∈ Ls.
Additionally, for every ε > 0 there exists n0 = n0(ε) ∈N such that |amnkl −αkl| < ε for all m,n > n0 by (16).

Then, we obtain that∣∣∣∣∣∣∣∑k,l

amnklxkl −
∑

k,l

αklxkl

∣∣∣∣∣∣∣
s

=

∣∣∣∣∣∣∣∑k,l

(amnkl − αkl)xkl

∣∣∣∣∣∣∣
s

≤

∑
k,l

|(amnkl − αkl)xkl|


s

< εs

∑
k,l

|xkl|


s

< εs
∑

k,l

|xkl|
s .

This shows that bp − limm,n→∞(Ax)mn =
∑

k,l αklxkl, as desired.
(ii) Let s > 1. Since the necessity of the conditions can be easily seen in the similar way used in Part (i),

we omit the details.
It is obtained with (13) for all i, j ∈N that

i, j∑
k,l=0

|αkl|
s′ = bp − lim

m,n→∞

i, j∑
k,l=0

|amnkl|
s′
≤ sup

m,n∈N

i, j∑
k,l=0

|amnkl|
s′ < ∞. (17)

This means that (αkl) ∈ Ls′ . Hence, the double series
∑

k,l αklxkl converges for every x ∈ Ls.
For any given ε > 0, let us choose fixed k0, l0 ∈N such that

k0,∞∑
k,l=0,l0+1

|xkl|
s +

∞,l0∑
k,l=k0+1,0

|xkl|
s +

∞∑
k,l=k0+1,l0+1

|xkl|
s <

 ε

12M1/s′
1

s

. (18)

Then, there exist an n0 ∈N by (16) such that∣∣∣∣∣∣∣
k0,l0∑
k,l=0

(amnkl − αkl)xkl

∣∣∣∣∣∣∣ < ε
2

(19)

for every m,n > n0. Therefore, by applying Hlder’s inequality with using relations (17)-(19) we have that∣∣∣∣∣∣∣∑k,l

amnklxkl −
∑

k,l

αklxkl

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∑k,l

(amnkl − αkl)xkl

∣∣∣∣∣∣∣ < ε
for all sufficiently large m,n. Hence, Ax ∈ Cbp.

This step completes the proof.
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Theorem 4.4. Let A = (amnkl) be any four dimensional matrix. Then, the following statements hold:

(i) Let 0 < s ≤ 1. Then, A ∈ (Rqt(Ls) :Mu) if and only if

sup
m,n,k,l∈N

∣∣∣∣∣QkTl
amnkl

qktl

∣∣∣∣∣ < ∞, (20)

sup
m,n∈N

∑
k,l

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣ < ∞, (21)

lim
k→∞

QkTl∆
kl
01

(
amnkl

qktl

)
= 0 for each l ∈N, (22)

lim
l→∞

QkTl∆
kl
10

(
amnkl

qktl

)
= 0 for each k ∈N. (23)

(ii) Let 1 < s < ∞. Then, A ∈ (Rqt(Ls) :Mu) if and only if the conditions (22)-(23) hold and

sup
m,n,∈N

∑
k,l

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣s
′

< ∞. (24)

Proof. (i) Let 0 < s ≤ 1 and x = (xmn) ∈ Rqt(Ls). Then, there exists a sequence y = (ymn) ∈ Ls. For the (i, j)th
rectangular partial sum of the series

∑
k,l amnklxkl, we have

(Ax)[i, j]
mn =

i, j∑
k,l=0

amnklxkl =

i−1, j−1∑
k,l=0

skl∆
kl
11amnkl +

i−1∑
k=0

skj∆
kj
10amnkj

+

j−1∑
l=0

sil∆
il
01amnil + si jamnij

for all m,n ∈N, where smn =
∑m,n

i, j=0 xi j. Now, using the relation (4) we derive that

(Ax)[i, j]
mn =

i, j∑
k,l=0

amnklxkl =

i−1, j−1∑
k,l=0

QkTl∆
kl
11

(
amnkl

qktl

)
ykl +

i−1∑
k=0

QkT j∆
kj
10

(
amnkj

qkt j

)
ykj

+

j−1∑
l=0

QiTl∆
il
01

(
amnil

qitl

)
yil + QiT j

amnij

qit j
yi j (25)

for all m,n, i, j ∈N. Define the matrix Bmn =
(
bmn

ijkl

)
by

bmn
ijkl =



QkTl∆
kl
11

(
amnkl
qktl

)
, 0 ≤ k ≤ i − 1 and 0 ≤ l ≤ j − 1

QkT j∆
kj
10

(
amnkj

qkt j

)
, 0 ≤ k ≤ i − 1 and l = j

QiTl∆
il
01

(
amnil
qitl

)
, k = i and 0 ≤ l ≤ j − 1

QiT j
amnij

qit j
, k = i and l = j

0 , otherwise.

(26)

Therefore, (25) can be written as (Ax)[i, j]
mn = (Bmny)[i, j]. Then, the bp-convergence of the rectangular partial

sums (Ax)[i, j]
mn for all m,n ∈ N and for all x ∈ Rqt(Ls) is equivalent to the statement that Bmn ∈ (Ls : Cbp) and
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hence the conditions

sup
k,l∈N

∣∣∣∣∣QkTl
amnkl

qktl

∣∣∣∣∣ < ∞, (27)

∑
k,l

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣ < ∞, (28)

lim
k→∞

QkTl∆
kl
01

(
amnkl

qktl

)
= 0 for each l ∈N, (29)

lim
l→∞

QkTl∆
kl
10

(
amnkl

qktl

)
= 0 for each k ∈N (30)

must be satisfied for every fixed m,n ∈N.

If we take bp-limit in the terms of the matrix Bmn =
(
bmn

ijkl

)
as i, j→∞, we have

bp − lim
i, j→∞

bmn
ijkl = QkTl∆

kl
11

(
amnkl

qktl

)
. (31)

Using the relation (31) we can define a four dimensional matrix B = (bmnkl) by

bmnkl = QkTl∆
kl
11

(
amnkl

qktl

)
(32)

for all m,n, k, l ∈N. So, by the relations (25), (29), (30) and (31) we have

bp − lim
i, j→∞

(Ax)[i, j]
mn = bp − lim(By)mn.

Thus, it is seen by combining the fact ”A = (amnkl) ∈ (Rqt(Ls) : Mu) if and only if B ∈ (Ls : Mu)” with
Part (i) of Theorem 4.1 that

sup
m,n,k,l∈N

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣ < ∞. (33)

Therefore, from the conditions (27)-(33), we see that A = (amnkl) ∈ (Rqt(Ls) :Mu) if and only if the conditions
(20)-(23) hold.

(ii) Let 1 < s < ∞. With the similar way used in the proof of Part (i), we have the bp-convergence of the
rectangular partial sums (Ax)[i, j]

mn for all m,n ∈ N and for all x ∈ Rqt(Ls) is equivalent to the statement that
Bmn ∈ (Ls : Cbp) and hence the conditions (21)-(23) and

∑
k,l

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣s
′

< ∞ (34)

must be satisfied for every fixed m,n ∈N. Also, by the definition of the matrix Bmn =
(
bmn

ijkl

)
in (26) we have

the relation (32).
Thus, it is seen by combining the fact ”A = (amnkl) ∈ (Rqt(Ls) : Mu) if and only if B ∈ (Ls : Mu)” with

Part (ii) of Theorem 4.1 that

sup
m,n,∈N

∑
k,l

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣s
′

< ∞. (35)

Also, the condition (35) contains the conditions (21) and (34). Therefore, we see that A = (amnkl) ∈
(Rqt(Ls) :Mu) if and only if the conditions (22)-(24) hold. This completes the proof.
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Since Theorems 4.5 and 4.6 can be proved in a similar way to that used in the proof of Theorem 4.4, we
give them without proof.

Theorem 4.5. Let A = (amnkl) be any four dimensional matrix. Then, the following statements hold:

(i) Let 0 < s ≤ 1. Then, A ∈ (Rqt(Ls) : Cbp) if and only if the conditions (20)-(23) hold and

∃(αkl) ∈ Ω such that bp − lim
m,n→∞

QkTl∆
kl
11

(
amnkl

qktl

)
= αkl. (36)

(ii) Let 1 < s < ∞. Then, A ∈ (Rqt(Ls) : Cbp) if and only if the conditions (22)-(24) and (36) hold.

Theorem 4.6. Let 0 < s < 1 and 1 < s1 < ∞. Then, A = (amnkl) ∈ (Rqt(Ls) : Ls1 ) if and only if the conditions
(21)-(23) hold and

sup
k,l∈N

∣∣∣∣∣QkTl
amnkl

qktl

∣∣∣∣∣ < ∞, (37)

sup
k,l∈N

∑
m,n

∣∣∣∣∣∣QkTl∆
kl
11

(
amnkl

qktl

)∣∣∣∣∣∣s1

< ∞. (38)

Theorem 4.7. Let λ, µ be two double sequence spaces, A = (amnkl) be any four dimensional matrix and B = (bmnij)
also be a four dimensional triangle matrix such that bmnij = 0 if i > m and j > n for all m,n, i, j ∈ N. Then,
A ∈ (λ : µB) if and only if BA ∈ (λ : µ).

Proof. Suppose that λ, µ are two double sequence spaces, A = (ai jkl) is any four dimensional matrix and
B = (bmnij) is also a four dimensional triangle matrix such that bmnij = 0 if i > m and j > n for all m,n, i, j ∈N.
Let x = (xkl) ∈ λ. Then, since the equality

m,n∑
i, j=0

bmnij

r,t∑
k,l=0

ai jklxkl =

r,t∑
k,l=0

 m,n∑
i, j=0

bmnijai jkl

 xkl (39)

holds for all m,n, r, t ∈ N one can obtain by letting r, t → ∞ in (39) that B(Ax) = (BA)x. Therefore, it is
immediate that Ax ∈ µB whenever x ∈ λ if and only if (BA)x ∈ µ whenever x ∈ λ.

This completes the proof.

Now, we define the four dimensional matrices C = (cmnkl), D = (dmnkl) and E = (emnkl) by

cmnkl =

m,n∑
i, j=0

ai jkl, dmnkl =

m,n∑
i, j=0

ai jkl

(m + 1)(n + 1)
and emnkl =

m,n∑
i, j=0

qit jai jkl

QmTn

for all m,n, k, l ∈N.
One can derive several new results from Theorems 4.1-4.7.

Corollary 4.8. Let 0 < s ≤ 1. Then, the following statements hold:

(i) A = (amnkl) ∈ (Ls : BS) if and only if (12) holds with cmnkl instead of amnkl.
(ii) A = (amnkl) ∈ (Ls : M̃u) if and only if (12) holds with dmnkl instead of amnkl.

(iii) A = (amnkl) ∈ (Ls : Rqt(Mu)) if and only if (12) holds with emnkl instead of amnkl.
(iv) A = (amnkl) ∈ (Ls : CSbp) if and only if (12) and (16) hold with cmnkl instead of amnkl.

(v) A = (amnkl) ∈ (Ls : C̃bp) if and only if (12) and (16) hold with dmnkl instead of amnkl.
(vi) A = (amnkl) ∈ (Ls : Rqt(Cbp)) if and only if (12) and (16) hold with emnkl instead of amnkl.

Corollary 4.9. Let 1 < s < ∞. Then, the following statements hold:

(i) A = (amnkl) ∈ (Ls : BS) if and only if (13) holds with cmnkl instead of amnkl.
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(ii) A = (amnkl) ∈ (Ls : M̃u) if and only if (13) holds with dmnkl instead of amnkl.
(iii) A = (amnkl) ∈ (Ls : Rqt(Mu)) if and only if (13) holds with emnkl instead of amnkl.
(iv) A = (amnkl) ∈ (Ls : CSbp) if and only if (13) and (16) hold with cmnkl instead of amnkl.
(v) A = (amnkl) ∈ (Ls : C̃bp) if and only if (13) and (16) hold with dmnkl instead of amnkl.

(vi) A = (amnkl) ∈ (Ls : Rqt(Cbp)) if and only if (13) and (16) hold with emnkl instead of amnkl.

Corollary 4.10. Let 0 < s ≤ 1. Then, the following statements hold:
(i) A = (amnkl) ∈ (Rqt(Ls) : BS) if and only if (20)-(23) hold with cmnkl instead of amnkl.

(ii) A = (amnkl) ∈ (Rqt(Ls) : CSbp) if and only if (20)-(23) and (36) hold with cmnkl instead of amnkl.
(iii) A = (amnkl) ∈ (Rqt(Ls) : M̃u) if and only if (20)-(23) hold with dmnkl instead of amnkl.
(iv) A = (amnkl) ∈ (Rqt(Ls) : C̃bp) if and only if (20)-(23) and (36) hold with dmnkl instead of amnkl.
(v) A = (amnkl) ∈ (Rqt(Ls) : Rqt(Mu)) if and only if (20)-(23) hold with emnkl instead of amnkl.

(vi) A = (amnkl) ∈ (Rqt(Ls) : Rqt(Cbp)) if and only if (20)-(23) and (36) hold with emnkl instead of amnkl.

Corollary 4.11. Let 1 < s < ∞. Then, the following statements hold:
(i) A = (amnkl) ∈ (Rqt(Ls) : BS) if and only if (22)-(24) hold with cmnkl instead of amnkl.

(ii) A = (amnkl) ∈ (Rqt(Ls) : CSbp) if and only if (22)-(24) and (36) hold with cmnkl instead of amnkl.
(iii) A = (amnkl) ∈ (Rqt(Ls) : M̃u) if and only if (22)-(24) hold with dmnkl instead of amnkl.
(iv) A = (amnkl) ∈ (Rqt(Ls) : C̃bp) if and only if (22)-(24) and (36) hold with dmnkl instead of amnkl.
(v) A = (amnkl) ∈ (Rqt(Ls) : Rqt(Mu)) if and only if (22)-(24) hold with emnkl instead of amnkl.

(vi) A = (amnkl) ∈ (Rqt(Ls) : Rqt(Cbp)) if and only if (22)-(24) and (36) hold with emnkl instead of amnkl.
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