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Abstract. Let 0 < s < c0. In this study, we introduce the double sequence space R (L) as the domain of
four dimensional Riesz mean R? in the space L; of absolutely s-summable double sequences. Furthermore,
we show that R7(L,) is a Banach space and a barrelled space for 1 < s < oo and is not a barrelled space
for 0 < s < 1. We determine the a- and B(9)-duals of the space L; for 0 < s < 1 and B(bp)-dual of the
space R"(L;) for 1 < s < co, where 9 € {p,bp, r}. Finally, we characterize the classes (£; : M,), (L : Cw),
(R™(Ls) : M) and (R"(L;) : Cyp) of four dimensional matrices in the cases both0 <s <land 1 <s < o
together with corollaries some of them give the necessary and sufficient conditions on a four dimensional
matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.

1. Introduction

We denote the set of all real or complex valued double sequences by Q) which is a vector space with
coordinatewise addition and scalar multiplication. Any vector subspace of Q is called as a double sequence
space. A double sequence x = (x,;;,) of complex numbers is said to be bounded if ||x]||e = SUP,,, e Xmnl < 0,
where N = {0,1,2,...}. Consider the sequence x = (x,,;,) € Q. If for every ¢ > 0 there exists 19 = np(e) € N
and [ € C such that |x,, —I| < ¢ for all m,n > ny, then we call that the double sequence x is convergent in
the Pringsheim’s sense to the limit [ and write p — limy, y—c0 Xmn = [; where C denotes the complex field. We
give the set definitions of the spaces M,, C, and L of bounded, convergent in the Pringsheim’s sense and
absolutely s-summable double sequences, respectively, as follows:

Mu = X = (xkl) eQ: ||X||oo = sup |xkl| <00,
k,leN
Cp = {x = (xmn) € Q) : dl € C such that p- lim xp, = l}/
L =

x=(xkl)€Q:Z|xkl|S<oo , (0<s < o).
k1
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M, is a Banach space with the norm || - [|l. One can easily see that there are such sequences in the space C,
but not in the space M,. Indeed, if we define the sequence x = (xy) by

k , kelN,I=0,
Xkl = I , lEN,k=0,
0 , klelN\({0}

for all k,I € N, then it is trivial that x € C, \ M,,, since p — limy ;.o X = 0 but [|x[|ec = 0. So, we can consider
the space Cy, of the double sequences which are both convergent in the Pringsheim’s sense and bounded,
ie., Cy = Cp N M,. A sequence in the space C, is said to be regularly convergent if it is a single convergent
sequence with respect to each index and denote the space of all such sequences by C,.

Let us consider a double sequence x = (x,;;) and define the sequence s = (S;,,) via x by s, = ;”IZO xy for
all m,n € IN. Then, the pair (x,s) and the sequence s = (s;;;) are called as a double series and the sequence
of partial sums of the double series, respectively. Here and after, unless stated otherwise we assume that
9 denotes any of the symbols p, bp or r. If the double sequence (s,) is convergent in the 9-sense, then the
double series ) ; xy is said to be convergent in the 9-sense and it is showed that 9 -} ;xy = 9 — lim s,,.

m,n—00

Also, we find some criteria about the convergence of a double series in Limaye and Zeltser [1]. Throughout
the text we use the notation ), , xy instead of Z,ﬁf’,zo Xkl

By L;, we denote the space of absolutely s-summable double sequences defined by Basar and Sever [2].
Throughout the text, we assume that 0 < s < co and s’ denotes the conjugate of s, that is, s’ = s/(s — 1) for
1<s<oo,s =cofors=10rs =1fors=oco. Also, by L,, we mean the space of absolutely convergent
double series.

The a-dual A%, B(8)-dual AP®) with respect to the 9-convergence and the y-dual A7 of a double sequence
space A are respectively defined by

A9 = {(akl) cQ: Z lagxul < oo for all (xy) € A},
k1
AP = {(ak,) €Q:9- Z auxy exists for all (xy) € /\},
k1
AV = {(akl) eQ): sup Z ApXyr| < 00 for all (xkl) [S /\} .

m,neN k1=0

It is easy to see for any two spaces A, p of double sequences that u* C A* whenever A C y and A% C A7.
Additionally, it is known that the inclusion A* ¢ Af® holds while the inclusion A#® c A7 does not hold,
since the 9-convergence of a sequence of partial sums of a double series does not imply its boundedness.

Let A and p be two double sequence spaces, and A = (4,,x) be any four-dimensional real or complex
infinite matrix. Then, we say that A defines a matrix mapping from A into p and we write A : A — y, if for
every sequence x = (xy) € A the A-transform Ax = {(AX)un}mnen Of x exists and is in y; where

(AX)pn =9 — Z AmniiXy for each m,n € IN. 1)
7

We define the S-summability domain )\(j) of A in a space A of double sequences by

/\29) =x=(x) € Q:Ax = [S - Z amnklxkl] existsandisin A }.
kl mneN

We say with the notation (1) that A maps the space A into the space pif A C yff) and we denote the set of all
four dimensional matrices, transforming the space A into the space u, by (A : p). Thus, A = (@yux) € (A @ p)
if and only if the double series on the right side of (1) converges in the sense of 9 for each m,n € NN, i.e,
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Ay € AP for all m,n € N and every x € A, and we have Ax € p for all x € A; where Ay, = (@i jen for all
m,n € IN. We say that a four-dimensional matrix A is Cg-conservative if Cy C (Cs)a, and is Cg-reqular if it is

Cy-conservative and 9§ —limyg x = 3 — lim (Ax),, =9 — 11m L Xyun, where x = (x;,) € Cy. In this paper, we
m,n— o0

only consider bp—summability domain.

Using the notation of Zeltser [3], we define the double sequences eX! = (e],},ln) el, ey and eby el = 1if
(k,1) = (m,n) and ekl = 0 otherwise,and e' := Y, e, e, := ¥, ekl and e := Wy eX! (coordinatewise sum) for
allk,1,m,n € N and we denote ® by ® = span{e! : k,] € N}.

For all m,n,k,I € IN, we say that A = (@) is a triangular matrix if ay,y = 0 for k > m or I > n or both,
[4]. Following Adams [4], we also say that a triangular matrix A = (a,,,x) is called a triangle if aumn # 0 for
all m,n € N. Referring to Cooke [5, Remark (a), p. 22], one can conclude that every triangle matrix has an
unique inverse which is also a triangle.

Zeltser [3] essentially studied both the theory of topological double sequence spaces and the theory of
summability of double sequences in her PhD thesis. Altay and Basar [6] have defined the spaces 8BS and
CS; of double series whose sequence of partlal sums are in the spaces M,, Cg, respectively. Mursaleen

and Basar [7] have introduced the spaces M, Cs and .Es of double sequences whose Cesaro transforms are
in M,, Cs and L;, respectively. The reader can refer to Basar [8] and Mursaleen and Mohiuddine [9] for
relevant terminology and required details on the double sequences and related topics.

Following Mursaleen and Basar [7] and Alotaibi and Cakan [10], Yesilkayagil and Basar [11] have
defined the double sequence spaces R (M,), R"(C,), R(Cyp) and R%(C;,) as the domain of four dimensional
Riesz mean R7 in the spaces M,,C,, C v and C;, respectively. Also, they have characterized the matrix class
(M, : M,) in [12] and have introduced the some topological property of the double spaces Cy, and C of
almost null and almost convergent double sequences, respectively, in [13].

In [14] Tug and Basar have introduced some new double sequence spaces B(M,), B(Cy), and B(L;)
as the domain of four-dimensional generalized difference matrix B(r, s, t, u) in the spaces M,, Cs and L,
respectively.

Let g = (qx), t = (t;) be two sequences of non-negative numbers which are not all zero and Q,, = Y.L, Gk,
g0 >0, Ty = Yo ti, to > 0. Then, the Riesz mean with respect to the sequences g = (gx) and ¢ = (#;) is defined

by the matrix R7 = (r?ntnkl) as follows

o 2, 0<k<m 0<I<n,
0 , otherwise

for all m,n,k,I € N. It is known by Theorem 2.8 of Yesilkayagil and Ba§ar [11] that the four dimensional
Riesz mean R? is RH-regular if and only if hm Qm = oo and imT,, = . The Riesz transform R% of a

n—-oo

double sequence x = (xy) is given by

1
Ymn = (thx)mn = Q—T Z qrtixr 2)

for all m,n € IN. Throughout the paper, we suppose that the terms of the double sequences x = (x}) and
Y = (Ymn) are connected with the relation (2) and the term with negative index is zero. If p — Hm(R% %), = s,
s € C, then the sequence x = (xy) is said to be Riesz convergent to s (see [10]). Note that in the case gx = 1 for
all k and #; = 1 for all /, the Riesz mean R is reduced to the four dimensional Cesaro mean C of order one.
1, (mmn) =kl

Let I = (0,11) is four dimensional unit matrix, that is, 0, = 0 otherwise

" . Using the equality

Omnkl = Lj, j Tunijdijkn = ﬁ Z;”].’ZO qitjdij, one can obtain by a straightforward calculation that the inverse
(R™)™ = (dyyur) of the triangle matrix R is given, as follows:

Gmtn

. (=1 &y <k <m,n—-1<1<n,
ikl 0 , otherwise
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for all m,n,k,1 € IN.
In the present paper, referring Basar and Sever [2] we introduce the new space R%(L;) defined by

RY(L) = {x = () € Q: (R} € L], (0<'5 < o).

2. The Space R7(L;) of Double Sequences

In this section, we give some results on the space R7(L;).

Theorem 2.1. The set R (L) is the linear space with the coordinatewise addition and scalar multiplication, and the
following statements hold:

(i) If0 < s <1, then R7(Ly) is a complete s-normed space with

_ 1 mn
llxlls = Jrtixx

which is s-norm isomorphic to the space L.
(i) If1 <s < oo, then R7(L) is a Banach space with

s\1/s
Il = [Z ] 3)

mn
which is norm isomorphic to the space Ls.

Qrtixw
QuTy =

Proof. Since, Part (i) can be proved in the similar way, we give the proof only for Part (ii).
The first part is a routine verification and so we omit it.

To prove the fact R7(L;) is norm isomorphic to the space L, we should show the existence of a linear
bijection between the spaces R9(L;) and .L;. Consider the transformation U defined from R% (L) to L, by
x = Ux = {(R"X),}. Tt is trivial that U is linear. We get from the equation

X foxoo+t1X01 foXoo+t1X01 +E2X02
00 ) T ) T,
JoXoo+41X10 Z qr(foxXko+H1241) Z i (FoXko +11Xk1 +2Xk2)
Q1 =0 QiTy o Tz
2 2
GoX00+q1X10+q2X20 y Gi(toxko +t1Xk1) y G (foxko +H1 X1 HoXi2)
Q2 s Q:Ty p QT
Ux = 0 0 =0
JkXko g Gr(toxko+t1Xk1) g i (FoXko +£1Xk1 +2Xk2)
k=0 Qm k=0 mTl k=0 anTZ

that x = 0 whenever Ux = 0, where 0 denotes the zero vector. This shows that U is injective.
Let y = (yu) € Ls and define the sequence x = (xy) via y by

1
X = %(Qle]/kl — Q-1 Tiyi—1 — QkTi—1yr -1 + Qr-1Ti—1Yk-1,-1)

(4)
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for all k,I € IN. Then, we have

QuTu(RTX)yn = Z(Qsz}/kl = Q-1T1yk-1 = QTimyk -1 + Q=1 Th—1Yi-1,1-1)
k=0
= Qo Z(lem = Ti-1yo 1) + Z(Qllell - QoTiyor — Q1 Ti—1y1,-1 — QoTi-1Yo,-1)

1=0 1=0

+ Z(Qthyzz - Qi Tiyu— QTiysi—1 — QiTimayi ) + .. +

1=0

n
+ Z(Qm—thym—l,l = Qu-2T1ym-21 = Qm-1T1-1Ym-1-1 — Qm-2T1-1Ym-2,-1)

1=0

+ Z(Qmleml = Qu-aaTiym-1) — QuT1-1Ymi-1 — Qu-1Tim1Ym—1,-1)

1=0

= Qu Z(leml = Ti-1Ymi-1) = QuTnYmn
1=0

and so
|(thx)mn‘ = [Yunl

which yields that
Z |(thx)mn|S = Z |ymnls- (5)

Since y € L;, we have x € R(L,), that is, U is surjective. Also, we see from (5) that U is a norm preserving
transformation. _

Now, we can show that R7(L;) is a Banach space with the norm || - ||; defined by (3). To prove this,
we use Part (b) of Corollary 6.3.41 in [15] which says that “Let (X, p) and (Y, q) be semi-normed spaces and
U: (X,p) = (Y, q) be an isometric isomorphism. Then, (X,p) is complete if and only if (Y,q) is complete. In
particular, (X, p) is a Banach space if and only if (Y,q) is a Banach space.” Since the transformation U defined
above from R7(L;) to L; is an isometric isomorphism and the space £; is a Banach space from Theorem 2.1
in [2], we conclude that the space R7(L;) is a Banach space. This step completes the proof. [

A non-empty subset S of a locally convex space X is called fundamental if the closure of the linear span
of S equals X, [15]. Using this definition, we define the set S ¢ L; as S := {ed : k,1 € N}. Then, we have
® = spanS. We shall show that @ is dense in L, that is, cI® = L;. Let the relation c/® = £; does not hold.
Hence, there exists a ball in £;, no matter how small, does not contain any points of @, i.e, there does not
exist a y € ® such that

e —yll £ € (6)

for a point x € L;.Then, by (6) we have that

kls
b= yll = ) iy — €F = g = 1F £ &,
i,j

that is, |xy — 1I° > €°. Choose ¢ = 1/2. Then, we have either x; < 1/2 or 3/2 < xy; for all k,I € IN. For both
statement, we can find x ¢ L, a contradiction. Since x € L; is arbitrary, every ball in £, contains a point of
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D, i.e, Dis dense in L. Therefore, S is fundamental set of L. Using this fact, we define the double sequence
b = (5) by

% , m=k n=1I,
—% , m=kn=1+1
%)
R 5—%3 , m=k+1,n=], 7)
L) _ _
s M =k+1,n=1+1,

, otherwise

for all k,1,m,n € N. Then, {b*V;k,1 € IN} is the fundamental set of the space R7(L;); since R7b® = eM with
0<s<oo.

Theorem 2.2. If (51 ) ¢ L, then L. ¢ R¥(Ls) holds.

Proof. Let (ﬁ) ¢ L;. We take the sequence e”. Obviously, e® € £;. For all m,n € N, we have that

(R7e®),,, = Yoo

QuTy’
Since (ﬁ) ¢ L, R1%e% ¢ L. So, e ¢ RT*(L,), as desired. [

Theorem 2.3. Let 1 <s < r < co. Then, the inclusion RT(Ls) c RT(L,) strictly holds.

Proof. Let1 <s <r < ocoand x = (xg) € R"(L;). Then, the following inequality

i,j 1 mn 1T i,j 1 mn s\1/8
qrtiXr ] <( qrtixr ] (8)
[m;() Qan k,lZ=0 m;o Qan l;)

holds by Jensen’s inequality. Therefore, one can see by applying p-limit to (8),asi, j — oo that Il < Ilx]ls < oo
which means that x € R%(L,), as desired.
Now, consider the sequence x = (xy) defined by

N QcTi _ Qi1 T; _ QT 4 QT 9
Tt [k + 2+ 215 [+ DI+ 215 [(k+2)(+ DI [+ 1)+ DI
for all k,I € N. Using (9), we have
, ~ 1
Rl = S 2y DT
and so

t s 1 ¢ _ 1 _
nzl,;‘ (REml = Z“{[(m +2)(n +2)]1/5} - ; m+2)n+2) o

mn

thatis, x ¢ R7"(L;). Since 1 <s <r < 00,1 < r/s. So, we have

ooV 1 Voy 1
ZKR” X)n _Z{[(m+2)(1/l+2)]1/5} _Z [(m+2)(n+2)]r/s < 00,

mn mn mn

that is, x € R"(L,). This step completes the proof. O

Let A be a locally convex space. Then, a subset is called barrel if it is absolutely convex, absorbing and
closed in A. Moreover, A is called a barrelled space if each barrel is a neighborhood of zero; [15, p. 336].

Lemma 2.4. [17] Every Banach space and every Fréchet space is a barrelled space.
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Theorem 2.5. The following statements hold:

(i) Let 1 <s < oo. Then, R7(L;) is a barrelled space.
(ii) Let 0 < s < 1. Then, R7(L;) is not a barrelled space.

Proof. (i) By Lemma 2.4 and Part (ii) of Theorem 2.1, we say that R (L) is a barrelled space for 1 < s < co.

(ii) We show that the space L; is not a locally convex space for 0 < s < 1. Let U := {x : [|x]|; < 1}. We
shall show that U includes no convex neighborhood of 0. Let V be a convex neighborhood of 0. For some
£>0,V D {x:|lxl < ¢). In particular, ¢/*e¥! € V for each k,I € N. Choose integers 1, 1 > -7 and define
the sequence x = (xi) by

1/s
Xy = ooy 0 Osk<mand0<l<n,
0 , otherwise.

Then, by choosing of ¢ we see that x € V and
S

Z;Z [(m+1)(n+1)]5221

k=0 =0
= m(ﬂl +1)n+1)]=¢[(m+1)(n+ 1)]1—5

11
851/2517_

llxlls

(m+ 1)(n +1)
£

So, V ¢ U. Since the space L is not a locally convex space for 0 < s < 1, the space R7(L;) is not, too.
Therefore, the space R%(L;) is not a barrelled space. [

A double sequence space A is said to be solid if and only if

A= {(ug) € Q : (x) € A such that [ug < |xul for allk, € N} € 2,

[2, p. 153]. A double sequence space A is said to be monotone if xu = (xyuy) € A for every x = (xg) € A
and u = (uy) € {0, 1NN, where {0, 1}N*N denotes the set of all double sequences of zeros and ones. If A is
monotone, then A% = Af®; [3, p. 36] and A is monotone whenever A is solid.

Theorem 2.6. Let 0 <s < oo. Then, the space L is monotone.

Proof. Let0 < s < 00, x = (x) € Ls and u = (uy) € {0, 1}NN. Then, we have |xuul® = |xgl'lunl® < |xul® for
each k,I € N. So, we have that }'; ; [xguul® < Yy, [xul’, thatis, xu € £;. O

Theorem 2.7. Let 0 <s < co. If (Q,,,;T) ¢ L, then the space R (Ls) is not monotone.

Proof. Let0 <s < oo and ( O.T ) ¢ L. Choose the sequence x = (xy) € R(L;) such that xo # 0 and take the
sequence u = (uy) = e € {0, 1NN Hence, for the sequence z = ux = e®x we derive that

(thz)mn =

GotoXoo-

1
Qu'Tn

Since (g) ¢ Lo, R¥z ¢ L. So, z ¢ R¥(L), as desired. [
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3. Dual Spaces

In this section, we determine the a- and §(8)— duals of the space £, in the case 0 < s < 1 and S(bp)— dual
of the space R7(L;) for 1 < s < oo.

Theorem 3.1. Let 0 <s < 1. Then, the a-dual of the space L is the space M,,.

Proof. Since L, ¢ M, Li = M, and L; c L, for 0 <s <1, we have that M, c L¢.

Conversely, suppose that z = (zy) € L5\ M,. Then, }';  |zux| < oo forall x = (x) € Lsand SUPy N |zw| =
oo. Hence, there exist sequences (k,,) and (I,,) such that at least one is strictly increasing for m € IN. So, we
can take zy,;, > (m + 1)%/°. If we define x = (x) by

f m+1)s, k=kyand =1,
Xl -= 0 L k#kyorl#1l,

for all k,I,m € IN, then we have x € L;. But Y |zuxul = X, [Zk,0,%k,0,] > X1 = oo, thatis, z ¢ L§, a
contradiction. Therefore, the inclusion £ ¢ M, holds.
By combining the inclusions M, ¢ £L$ and L ¢ M,, we get L = M,, as desired. O

Corollary 3.2. Let 0 <s < 1. Then, the B(S)-dual of the space Ls is the space M,,.
Theorem 3.3. Let 0 < s < 1. Then, the inclusion {R7(L)}* € M, holds.

Proof. Suppose that z = (z) € {R7(Ls)}* \ M. Then, zx € L, for all x € R7(L;). We take the sequence
b™ as in (7). So, we have ¥, , (RTVEV) = ¥, leklFF = 1 for all k,I € N. Hence, b® e R%(£;) and so
zx = (z; jb(,l,‘”) € L,,. With some calculation, we have following five cases;

Case 1. zjb}" = zy %:f' for (i, j) = (k,I).

Case 2. z,]b(kl) = —Zk i1 q%z Lfor (i, j) = (k, 1+ 1).

Case 3. ;b =~z 28 for (i, j) = (k+1,1).
Case 4. z,]b( D — Zi1, 141 qglthl for (i, j) = (k+1,1+1).

b(kl) —

Case 5. z;;b, 0 for otherwise.

For example, in case 1, we write that (zkl %"tl ) € L, so, is in M,. But, we know that (Qy) (or (T})) is a

positive increasing sequence, that is, it is not bounded. Therefore, (zy) € M,, a contradiction. Hence, the
inclusion {R%(L,)}* € M, holds, as desired. [

Theorem 3.4. Let 1 <s < oo and define the sets dy, d, and ds, as follows:

&
dlz{az(akl)eQ:Z ll <OO},
k1

Q1A (—ak )
qxt
_ _ . Afn
dz = {ﬂ = (tlkl) eQ): sup E QanAl() (qktn)

nelN k

QnTiAn ( D )

melN i

dsz = {a = (an) € Q : sup

Then, {R* (L) = d; ndy N ds.
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Proof. Let x = (Xuy) € R7(L;). Then, there exists a double sequence y = (Ymn) € Ls by Part (ii) of Theorem
2.1. Also, we have s = (s;;;,) from (4) such that

mmn mmn 1
Smn =) X = o (O Ty — Q1 Tiyi-11 — QkTi-aYii—1 + Qk—1T1-1Yk-1,1-1)

t
k=0 im0 Tr

for all m,n € IN. Now, by the generalized Abel transformation for double sequences we obtain that

mmn m-1n-1 n-1
Zymn = Z X = Z SpA1ag + Z Skn A0k + Z S N1l + Synmn (10)
k1=0 k1=0 k=0 1=0

for all m,n € IN. With some straightforward calculation, we can rewrite the relation (10) as follows

mn m—1,n-1
Zmn = Z A Xy = Z QxTiAn ( )ykz + Z QxTrA10 ( )]/kn
k=0 k=0 qrt
n-1
+ QmTlAm (q )yml + Qm n. . t mn = (By)mn

=0

for all m,n € IN, where the four-dimensional matrix B = (b,ux) is defined by

QleAn(qkt,) , 0<k<m-1andO<lI<n-1,
QanAlo(qkk}’) , 0<k<m-1andl=n,
bunit =1 QuTiAor () , k=m and0<I<n-1, (11)
Qm namn ’ k=m andl:n,

Wl t}’l
, otherwise

for all m,n,k,I € IN. Thus, we see that ax = (@unXun) € CSp, whenever x = (x,) € R7(L,) if and only if
z = (Zun) € Cpp whenever y = (y,,,) € Ls. This leads us to the fact that B € (Ls : Cpp). Hence, from Part (ii)
of Theorem 4.3, the following statement

’
sup Z |bmnkl|S
m,neN k1

m-1,n-1
= sup
m,neN P

holds. Therefore, we derive that

s n—1 s’

amn
+ QT ——
]Z " nqmtn

q.

Q1AL ( )

'z

T, Alo(

Qm Tl A01 ( )
Im tl

s
< 00.

%

Agl
Q1A (qktz)

y e
k1

a ¢
su T Aw( ko ) < 0,
neﬂl\? Zk‘ ! Jitn

s

Al
su Q T1A01( ) < 0o,
me]ll\)IZ " Gmti
QT e p,.

EInltn

Hence, [RM( L)Y =dindynds. O
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4. Charactarization of Some Classes of Matrix Mappings

In this section, we characterize the classes (L : M,,), (Ls : Cyp), (RT(L;) : M,) and (R(L;) : Cyp) of four
dimensional matrices, in the cases both 0 < s < 1and 1 < s < co. We also characterize the class (£; : Ls,) of
four dimensional matrices in the cases0 <s <land 1 < s; < co.

Theorem 4.1. Let A = (ayun) be any four dimensional matrix. Then, the following statements are satisfied:

(i) Let 0 <s < 1. Then, A € (Ls: M,) if and only if

N= sup |amml < oo. (12)
m,n,k,leEN
(ii) Let1 <s < oo. Then, A € (Ls : M) if and only if
M; = sup Z |@yial® < 0. (13)
mmneN k1

Proof. (i) Let 0 < s <1and A = (@) € (Ls : M,). Then, Ax exists and belongs to M, for all x € L;, and
Amn € M, by Corollary 3.2 for each m, n € IN. Therefore, we obtain for ekl ¢ £, that

A"l = sUp [apmul < o
mnelN
for each fixed k,! € IN. That is to say that the condition (12) is necessary.
Conversely, suppose that (12) holds and take any x = (xy) € L. Then, A, € M, by Corollary 3.2 for
each m,n € N which implies the existence of Ax. Let m,n € IN be fixed. Then, since

S S
Z Ak Xit| < Z |ﬂmnk1||xkl|]
Kl k1
s S
< | sup @l Z il
k,leN k1
Bl
< | sup [ml Z |l
k,lEN k1
one can obtain by taking supremum over m, n € IN that
1
Al = sup |} awmeci| < N (lxll)'
mmneN

k1

This shows the sufficiency of the condition (12).

(ii)) Let 1 < s < oo and A = (ayun) € (Ls : M,,). Then, Ax exists and is in M, for all x € £;. We assume
that M; = co. Then, we may choose the sequences (), (k;), (n;) and (I;) in N with k; < k11 and [; < ;41 for
all 7, j € N such that

|amm]‘kil,’|5, > (ij)s" (14)
Let us define the double sequence x = (xq) € L; by

Yo = sgn (am‘-n]kl) , k= kl' and !l = l]',
k= 0 ,  otherwise

forall k,I € N. Since s’ > 1, using the inequality (14) we see that

Z am,'n;klxkl

k1

|(Ax)mi7‘l]‘| = = ‘am,n,kil;xkilj| = |am,-n,-k,-lj| > l]
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and so,
sup I(Ax)m,.n].| > 00,
i,jeN
a contradiction. Therefore, the condition (13) is necessary.

Conversely, suppose that (13) holds and take any x = (xy) € L;. Then Ax exists, since Ay, € Ly for each
m,n € IN by Theorem 2.7 in [2]. Therefore, we obtain by Holder’s inequality that

Axle = sup | i
mmneN kI
1/s' 1/s
s’ s
< sup 2|ﬂmnkl| lekﬂ
mmnelN k1 k1
< Mllxlls,
as desired.

This completes the proof. [J
Theorem 4.2. Let 0 <s <1land1<s; <oo. Then, A = (ayun) € (Ls : Ls,) if and only if

sup Z ||t < 0. (15)
kleN “pn

Proof. Let0 <5<1,1<5 <ooand A € (L : L,,). Then, Ax exists and belongs to L, for all x € £, and
Apn € M, by Corollary 3.2 for each m, n € IN. Therefore, we obtain for el e £, that

1/51
k1l
lAeMl, :[Z |amnkl|51] < o0

mn

for each fixed k,I € IN. That is to say that the condition (15) is necessary.
Conversely, suppose that the condition (15) is satisfied and take any x = (xy) € L. Then, A, € M, by
Corollary 3.2 for each m, n € IN which implies the existence of Ax. Then,

)

1/s1 1/s1

[ 12] |(Ax)mn|51] [ IZ] Z Annk1 Xkl

m,n=0 m,n=0| k1
i,j 1/51
< Z( Z |amnklxkl|sl]
k1 \m,n=0
1-’]- 1/51
=) |xkz|[z |amnk1|51]
k1 m,n=0
i,j 1/51
< SUP[Z |amnkl|51] lekﬂ < oo,
kIEN\ ;=0 k1

Since i, j € IN’s are arbitrary, we obtain that ||Ax||s, < oo, as desired. [J

Theorem 4.3. Let A = (ayu1) be any four dimensional matrix. Then, the following statements hold:

(i) Let 0 <s < 1. Then, A € (Ls : Cyp) if and only if (12) holds and there exists (ay) € C such that

bP = lim auug = ag. (16)
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(ii) Let1 <s < oco. Then, A € (Ls : Cyp) if and only if (13) and (16) hold.

Proof. (i) Let 0 < s < 1 and suppose that A = (@) € (Ls : Cpp). Then, since the inclusion Cy, € M,
holds, the necessity of the condition (12) is obtained from Part (i) of Theorem 4.1. Besides, since Ax
exists and belongs to Cy, for every x € L; by hypothesis, this also holds for e € £; which gives that
A€M = (@) mnen € Cyp for each fixed k, I € N. Hence, the condition (16) is necessary.

Conversely, suppose that (12) and (16) hold, and x = (xi) be any sequence in the space £,. Then, since

Ay € Lf(s) for each m, n € IN, Ax exists. Therefore, we get by (16) for each fixed k,! € IN with (12) that

layl =bp — Lim |auul < sup |ammul
,1—00 mneN

which gives that () € M,. Hence, the series }'; ; ayxy converges for every x € L.
Additionally, for every ¢ > 0 there exists ng = ny(e) € IN such that |a,,u — axl < € for all m,n > ngy by (16).
Then, we obtain that

Z Amnki Xkl — Z Ak Xkl

kI k1

S S

Z(amnkl — Q)X

k1

S
[Z [(@mnks — Oékl)xkzl}
Tl

S
& [Z |xkl|]
Tl
< & Z x|
%l

This shows that bp — limy; e (AX)mn = Y auXy, as desired.

(ii) Let s > 1. Since the necessity of the conditions can be easily seen in the similar way used in Part (i),
we omit the details.

It is obtained with (13) for all 7, j € IN that

IA

A

ij ij ij
Yl =bp— tim Y lapul’ < sup Yl < eo. (17)
k=0 k=0 mneN =g

This means that (ay) € L. Hence, the double series ), ; axxx converges for every x € L.
For any given ¢ > 0, let us choose fixed ky, Iy € N such that

ko,00 00,1y o s
. &
Y okl Y bafe Y |xk,|><(W]. (18)

k,1=0,lp+1 k,I=ko+1,0 kI=ko+1,lo+1 1
Then, there exist an 1y € IN by (16) such that

k[)/l()

(Amnkl — Q)X
k=0

< % (19)

for every m, n > ng. Therefore, by applying Hlder’s inequality with using relations (17)-(19) we have that

Z Apunki XKl — Z QXK Z(ﬂmnki — ay)xy
)

k1 k1
for all sufficiently large m, n. Hence, Ax € Cy,.
This step completes the proof. [

<ée&
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Theorem 4.4. Let A = (ayu1) be any four dimensional matrix. Then, the following statements hold:

(i) Let 0 <s < 1. Then, A € (R1(Ls) : M,) if and only if

sup Q )~k Amnkl < oo, (20)
m,n k€N rti
Amnkl
su Qi TiAR ( ) < o, (21)
m,neI;\IkZ,l‘ 1 qrti
lim Q.TiAf] (“l;”’;“) =0 foreachl €N, 22)
lll)rg QT AN, (aq'jl;’;l) =0 foreach k € N. (23)

(it) Let1 <s < oco. Then, A € (RT(Ls) : My,) if and only if the conditions (22)-(23) hold and

TAkl (umnkl)
Qk 1211 qktl

’

S

< oo. (24)

wp T
m,n,eIN ki

Proof. (i) Let0 <s < 1and x = (X,y) € R?(L;). Then, there exists a sequence y = (Yun) € Ls. For the (i, j)th
rectangular partial sum of the series }'y | @nXk, we have

i,j i-1,j-1 i—1
[t] Kl kj
(AX) i Amnki Xkl = SAY Amnki + ) Sk Amnkj

k=0 k=0 k=0

-

il
+ SitAy Annit + SiAmnij
1=0

for all m,n € N, where s,,;,, = Z i, j0 Xij- Now, using the relation (4) we derive that

ij i-1,j-1
(Axhl = Akt Xki = QTIA} ( mnkl) Y+ Z QiT; A ( m];k])]/
k=0 k=0 At q
j_
4 y
+ QleAgl ( nf;”l) Yi + QZT] m‘:l‘] if (25)
=0 qit] ity
for all m,n, i, j € IN. Define the matrix B, = (b%) by
QA (22) , 0<k<i-land 0</<j-1
QuT;AY (”;';’;f) , O<k<i-1land =]
b=\ QT (), k=iand 0<l<j-1 (26)
Ql ]ﬂmm/ , kzi and lzj
0 , otherwise.

Therefore, (25) can be written as (Ax)[ - = (Buny)i,j)- Then, the bp-convergence of the rectangular partial
sums (Ax)m,, for all m,n € N and for all x € R"(L;) is equivalent to the statement that B,,, € (£L; : Cp) and
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hence the conditions

sup |QeT; 2| < o, 27)
kleN it

Y |Qemal (22 ) < o, (28)
5l Gt

lim Qi TiAf, (%) =0 foreachle N, (29)
llgg QkTIA% (a‘;;lld) =0 foreachk e N (30)

must be satisfied for every fixed m,n € IN.
If we take bp-limit in the terms of the matrix B, = (bl’%) asi, j — oo, we have

amn
bp — lim b = Q. TiAY, (—k’) (31)

Li ;
i, o0 ijkl thl

Using the relation (31) we can define a four dimensional matrix B = (b)) by

a
b = QleAI{ll( 6;7;7) (32)
for all m,n,k,1 € N. So, by the relations (25), (29), (30) and (31) we have

bp — lim (A = bp ~ Gim By

Thus, it is seen by combining the fact A = (@) € (R™(L;) : M,) if and only if B € (£ : M,)” with
Part (i) of Theorem 4.1 that

Qi TIAY (”’"“kl) < oo
qrti

sup (33)

m,n,k,leEN

Therefore, from the conditions (27)-(33), we see that A = (@) € (R™(Ls) : M,) if and only if the conditions
(20)-(23) hold.
(ii) Let 1 < s < co. With the similar way used in the proof of Part (i), we have the bp-convergence of the

rectangular partial sums (Ax)%l for all m,n € N and for all x € R7(L;) is equivalent to the statement that
Byun € (Ls : Cpp) and hence the conditions (21)-(23) and

)y

k1

%

<o (34)

T, AN (amnkl)
Qk 1211 thl

must be satisfied for every fixed m, n € IN. Also, by the definition of the matrix B, = (b:;’,fl) in (26) we have
the relation (32).

Thus, it is seen by combining the fact A = (@) € (R™(Ls) : M,) if and only if B € (£ : M,)” with
Part (ii) of Theorem 4.1 that

< oo. (35)

T Akl (amnkl)
Qk 18171 0 tl

swp ¥
m,n,€N "

Also, the condition (35) contains the conditions (21) and (34). Therefore, we see that A = (a,,x) €
(R"(Ls) : M,) if and only if the conditions (22)-(24) hold. This completes the proof. [
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Since Theorems 4.5 and 4.6 can be proved in a similar way to that used in the proof of Theorem 4.4, we
give them without proof.

Theorem 4.5. Let A = (ayuu) be any four dimensional matrix. Then, the following statements hold:
(i) Let 0 <s < 1. Then, A € (RT(L) : Cyp) if and only if the conditions (20)-(23) hold and

(amnkl) _
= ay.
gkt

(ii) Let1 <s < co. Then, A € (R¥(L) : Cyp) if and only if the conditions (22)-(24) and (36) hold.

Haw) € Q such that bp — lim QyT;AM

m,n— o0

(36)

Theorem 4.6. Let 0 <s < 1land 1 < s, < co. Then, A = (amun) € (RT(Ls) : Ls,) if and only if the conditions
(21)-(23) hold and

sup |QeT 2} < o, (37)
kleN Gkt
51
Akl
sup QleAk’( ) co. (38)
k,le]NmZ,:f it

Theorem 4.7. Let A, u be two double sequence spaces, A = (aynxi) be any four dimensional matrix and B = (bynij)
also be a four dimensional triangle matrix such that by,; = 0 if i > m and j > n for all m,n,i,j € IN. Then,
A€ (A:ug)ifand only if BA € (A : ).

Proof. Suppose that A, u are two double sequence spaces, A = (4;jx1) is any four dimensional matrix and
B = (bunij) is also a four dimensional triangle matrix such that b,,,;; = 0ifi > mand j > n for all m,n,i, j € IN.
Let x = (xi) € A. Then, since the equality

m,n Tt
Z bunij Z AijaXi =

i,j=0 k=0

holds for all m,n,r,t € IN one can obtain by letting r,t — oo in (39) that B(Ax) = (BA)x. Therefore, it is
immediate that Ax € ug whenever x € A if and only if (BA)x € u whenever x € A.
This completes the proof. [

1t

2,

k,1=0

mn

[Z bmnijai/‘kl] Xkl

,j=0

(39)

Now, we define the four dimensional matrices C = (cyni1), D = (dpnir) and E = (eynir) by

mmn mmn mn
i Aijki q git jijki
Cimnkl = E Aijkl,  Omnkl = ana. €ypkl =
+1)(n+1 T
e = (m+1mn+1) = QuTy

for all m,n,k,1 € IN.
One can derive several new results from Theorems 4.1-4.7.

Corollary 4.8. Let 0 <s < 1. Then, the following statements hold:

(i) A= (apm) € (Ls:
(ll) A= (amnkl) € (LS :
(iii) A = (amnkl) € ('LS :
(zv) A= (amnkl) € (LS :
(v) A = (@mnn) € (Ls
(vi) A= (amnkl) € (‘LS :

BS) if and only if (12) holds with ¢y, instead of Ay

M,) if and only if (12) holds with d,,. instead of ayp.
R7(M.,)) if and only if (12) holds with ey instead of y.
CSyp) if and only if (12) and (16) hold with ¢y instead of ayp.

: a,p) if and only if (12) and (16) hold with d,,y instead of @y

qu(cbp)) if and only if (12) and (16) hold with ey, instead of @y

Corollary 4.9. Let 1 < s < co. Then, the following statements hold:

(i) A= (amnkl) € (LS :

BS) if and only if (13) holds with ¢k instead of Ay
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(i) A= (@) € (Ls: Ml,) if and only if (13) holds with d,, instead of Ay
(iii) A = (@) € (Ls : R1(M,)) if and only if (13) holds with e,y instead of Ay
(iv) A = (amnk) € (Ls : CSyp) if and only if (13) and (16) hold with ¢, instead of @y

(v) A = (aun) € (Ls : Cyp) if and only if (13) and (16) hold with dyy instead of a k-
(vi) A = @uun) € (Ls : th(Cbp)) if and only if (13) and (16) hold with ey, instead of @y

Corollary 4.10. Let 0 < s < 1. Then, the following statements hold:
(i) A = @una) € (RIN(L;) : BS) if and only if (20)-(23) hold with ¢y instead of Ay
(i) A = (@) € (RI(Ls) : CS8yp) if and only if (20)-(23) and (36) hold with ¢,y instead of @y
(iii) A = (@) € (RT(Ls) : }\7(“) if and only if (20)-(23) hold with d,,q instead of .
(iv) A = (@) € (RT(L) : Ebp) if and only if (20)-(23) and (36) hold with d,,, instead of @y
(v) A = () € (RI(Ls) : RT(M,)) if and only if (20)-(23) hold with ey instead of ay.
(vi) A= (@) € R*(L) : R"t(Cbp)) if and only if (20)-(23) and (36) hold with e, instead of @

Corollary 4.11. Let 1 <s < oo. Then, the following statements hold:
(i) A = () € RI(L;) : BS) if and only if (22)-(24) hold with ¢y instead of Ay
(i) A = (@) € (RI(Ls) : CSyy) if and only if (22)-(24) and (36) hold with ¢, instead of Ay
(iii) A = (@) € (RT(L;) : 7\7(“) if and only if (22)-(24) hold with d,, instead of .
(iv) A = (@) € (RT(L) : 5;,,,) if and only if (22)-(24) and (36) hold with d g instead of @y .
(v) A = () € (R1(Ls) : RT(M,)) if and only if (22)-(24) hold with ey instead of ayu.
(vi) A= (aum) € RT*(L) : qu(Chp)) if and only if (22)-(24) and (36) hold with e, instead of ay.
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