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On Projective Coordinate Spaces

Siileyman Ciftci?, Fatma Ozen Erdogan?

*Department of Mathematics, Uludag University, Bursa, Turkey

Abstract. Inthe present study, an (1+1)-dimensional module over the local ring K = M,,,,,(R) is constructed.
Further, an n— dimensional projective coordinate space over this module is constructed with the help of
equivalence classes. The points and lines of this space are determined and the points are classified. Finally,
for a 3—dimensional projective coordinate space, the incidence matrix for a line that goes through the given
points and also all points of a line given with the incidence matrix are found by the use of Maple commands.

1. Introduction

The structural properties of fields have been widely studied and many simplicities are found in the
operations. In the study of geometric structures constructed over fields, there are some advantages to
simplify operations by using the properties of field. The algebraic structures that have less properties
and geometric structures that are constructed over them have been also studied. Local rings are one of the
important classes of them. In [9], F. Machala studied Klingenberg projective spaces over alocal ring. Further,
M. Jukl and V. Snasel adapted the concept of projective coordinate space to their study as n-dimensional
coordinate projective Klingenberg space [6]. In [1], the concept of projective space over a vector space is
generalized to a space over a module by the help of equivalence classes using similar methods given in
[3]. Also the isomorphism between the space over a module and the n—dimensional coordinate projective
Klingenberg space is constructed in [1].

In the present paper, one of the special types of local rings and the free dimensional modules over
this special local rings are studied, and an (# + 1)— dimensional module over the local ring K = M,;,(IR)
is constructed. Further, an n—dimensional projective coordinate space over this module is constructed
with the help of equivalence classes. The points and lines of this space are determined and the points are
classified. Finally, for a 3—dimensional projective coordinate space, the incidence matrix for a line that goes
through given points and also all points of a line given with the incidence matrix are found by the use of
Maple commands.

2. Preliminaries

In this section, we recall some basic definitions, propositions and some information from [4], [5] and [2].
In many of algebra books, a local ring is defined as a ring with identity, whose non-units form an ideal.
Also, a module which is constructed over a local ring A is called an A-module.
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Definition 2.1. [4] The real plural algebra of order m is a linear algebra A on R having, as a vector space over R, a
basis {1, 0, ,nm‘l} where n™ = 0.

Definition 2.2. [4] Let A be a real plural algebra. By a system of projections A — R, a system of mappings py : A
onto R is meant which are defined for k =0,1,--- ,m — 1 as follows

m=1
VpeA, p=Y bal pup) = by
i=0

Proposition 2.3. [4] Let A be a real plural algebra. Then an element € € A is a unit if and only if po(e) # 0.

Proposition 2.4. [4] The real plural algebra A is a local ring with the maximal ideal nA. The ideals n/A, 1 < j < m,
are all ideals in A.

Definition 2.5. [5] Let A be a local ring and M be a finitely generated A-module. Then M is an A— space of finite
dimension if there exists E1, Ey, - -+ , E, in M with

i) M=AE,®AE, ®---© AE,,
ii) the map A — AE; defined by x — xE; is an isomorphism for 1 <i < n.

Let A be a real plural algebra having a basis {1, i, nm‘l} with " = 0. Let K = M,;(R) be the
linear algebra of upper triangular matrices of the form

ap a4z - Ap-l
0 a a1 -+ amo
0 0 apg -+ Ap-3 ,
0 0 0 - a
m=1
where g; € R for 0 < i < m — 1. Then the map which is defined for every a = Y, a1t as
k=0
—@y=4 W=0 j<i
f(Ol) = (az]) = { aij = aj, jZ i

is an isomorphism between A and K ([4]).
The set {1o, 1,2, -+ , Nm-1} is a basis of K where 1x = (@;)xm, 0 <k <m—1and
1, j=i+k

MTV o0, jritk

for 0<i, j<m—1 ([2]).

Proposition 2.6. [2] M = R} is a module over the linear algebra of a matrix K and the following set is a basis of
K—module M;

0 0 0 0 0 0 0 0

o0 o0 --- 0 0 00 0
Ev= . . . . .| k= ’

1 0 0 0 010 0
0 0 O 0 0 0 O 0
0 0 O 0 0 0 O 0

E3_ . ’ ’ E‘rl:

0 01 0 0 0 0 O 1
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Now, we would like to give a definition of being R—independent for a non-empty set from [9].

Definition 2.7. [9] Let R be a local ring, Ro be the maximal ideal of R and M be a free module with unity over R. Let
S be a non-empty subset of the module M. Let My be a submodule of M constructed over Ry. For x1,x2,-++ ,xx € S
and a1, q, -+, € R, if

k
Za,-xi € My = a; € Ry for every i
i=1

holds, then S is called R—independent. Otherwise, S is called an R—dependent subset.

Now we introduce the construction of n—dimensional coordinate projective Klingenberg space over a
local ring R from [6]:

Structure 1: [6] Let R be a local ring with maximal ideal I. Let us denote M = R"*}, M = M/IM and
R=R/L

Let f be the natural homomorphism M — M. If the following conditions hold, the incidence structure,
which is denoted by Py, is called the n-dimensional coordinate projective Klingenberg space over the local ring R.

The points are just 1-dimensional submodules Sp{x} of M such that f(x) # IM is an element of M,
namely x ¢ ["*1.

The lines are just 2-dimensional submodules Sp{x, y} of M such that Sp{f(x), f(y)} is a 2-dimensional
subspace of M.

The incidence relation is the inclusion given by

Spix} o Splu, v} & Sp{x} C Splu, v}.

Finally, we give the generalization of the concept of projective space over a vector space to a space over a
module by the help of equivalence classes. We also give the isomorphism between the space over a module
and the n— dimensional coordinate projective Klingenberg space from [1].

Structure 2: [1] Let R be a local ring with maximal ideal I and M = R"*! be an (1 + 1)-dimensional
module over the local ring R. Let us denote the submodule I"*! of M by M,. Consider the equivalence
relation on the set of M* = M\Mj, whose equivalence classes are 1-dimensional submodules of M. Thus,
if x, y € M, then x is equivalent to y if y = tx for t € R* = R\, i.e., y; = tx; for all i. The set of equivalence
classes is denoted by P(M). P(M) is called an n-dimensional space and the elements of P(M) are called points.
The equivalence class of the vector x is denoted by x. Here x is called the coordinate vector for x. In this
case, tx with t € R\I also represents X; namely, tx = x. Here, we can denote this by x = {tx|t € R\I}.

If Sp{x} is a 1-dimensional submodule of M, then x = Sp{x}\M is a point of P(M) and x = {tx|t € R*}.

The line passing through the points x and y is denoted by [x,y] = Sp{x,y} \My where x and y are
R-independent vectors. Thus

[x,y] ={ax + byla,b e R\{@'x + b’y |a’, b € I} ={a"x +b"y|Ta",b” e R"}.

Let us denote the set of points and lines of the space P(M), respectively, with P’ and L’. We define the
incidence relation as follows:

A point u € P’ is on the line [x, y] € L’ if and only if Sp{u} € {ax + byla, b € R}.

Now, the relation between the space (P’, L") whichis given in [1] and n—dimensional coordinate projective
Klingenberg space which is given in [6] is constructed with the following theorem:

Theorem 2.8. [1] The maps f : P — P’ and f : L — L’ defined by respectively f(Spix}) = x for every Sp{x} € P
and f(Spix, y}) = [x,y] for every Sp{x, y} € L, define an isomorphism from projective coordinate space (P, L) to the
the space (P’,L’).
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3. Construction of the New PK-Coordinate Space

In this section, an (n + 1)—dimensional module over the local ring K = M,;,,(R) is constructed. Then, an
n—dimensional projective coordinate space (PK-coordinate space) over this module is constructed with the
help of equivalence classes. The points and lines of this space are determined and the points are classified.
Finally, a 3—dimensional projective coordinate space is examined.

The set M = R, | is an (n + 1)—dimensional module over the local ring K = M,;,,,(R) and

o0 o0 --- 0 o 00 --- 0
o0 o0 --- 0 o0 o0 --- 0
Ei=| . . . . ., Ex= .. 1
1 00 --- O 01 0 0
oo0o0 --- 0 0 0 0 0
oo0o0 --- 0 00 0 0
Es={ . . . e Be=
0O 01T 0--- O o0 o0 --- 1

is a basis of M. Furthermore a maximal ideal of K is denoted by I = ;K.
Each element of a K-module M can be expressed uniquely as a linear combination of Ey, Ey, ..., E,41 as
follows:

X111 X120 X1m+1)
X21 X2 ot X2(n+1)
X = .
Xml Xm2 °° Xmn+1)
Xm1  X@m-11 - X11 0 00 0
0 X1 s X21 0 0 0 0
- : 0 P oo :
0 ‘e 0 xm 1 0 0 0
Xm+1)  Xn-1)m+1) "0 X1+ o 00 --- 0
0 Xmne1) "0 X2(n4) o000 -- 0
+ oo + . .
: 0 . : oL
0 ‘e 0 Xmme1 0 00 1
Let us define the set
n+1
Mo = {ZAiE,-|A,-eI, 1 siSn+1}.
i=1
Then, we get
X11 X12 e X1(n+1)
M, = : : : : ) xi;€R
Xm-1)1  Xm-1)2 °°°  X(@m-1)(n+1)
Now, we consider equivalence relation on the elements of
X11 X12 o X1(n+1)
X21 X222 ccc X2(n+1)

M =M\M, = X . . . N<i<n+1,dx,;#0

Xml Xm2 *°  Xm(n+1)
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whose equivalence classes are the one-dimensional submodules of M with the set M, deleted. Thus, if
X,Y € M, then X is equivalent to Yif Y = AX for A € K* = K\ I. The set of equivalence classes is denoted
by P(M). Then P(M) is called an n—dimensional projective coordinate space and the elements of P(M) are
called points; the equivalence class of vector X is the point X. Consequently, X is called a coordinate vector
for X or that X is a vector representing of X. In this case, AX with A € K* also represents X; that is, by
AX = X. Thus, X can be expressed as follows:

ap a1 Am—-1 X11  X12 X1(n+1)
_ 0 ag A2 Xo1 X2 X2(n+1)
X =

: 0 .

0o - 0 ao Xm1l  Xm2 Xm(n+1)

m—1 m—1 m—1

Y AiX(i+1)1 by AiX(i+1)2 by AiX(i+1)(n+1)

i=0 i=0 i=0

m-2 m-2 m-2

= )y AiX(i+2)1 Y AiX(i+2)2 Y AiX(i+2)(n+1)
i=0 i=0 i=0
a0Xm1 apXm2 A0Xm(n+1)
whereay #0 A 1<i<n+1, dx,; #0.

Let X, l_f, -+ be m + 1 points such that any two of them are K — independent. Then the set IL, =
Sp{)_(, Y, \Mp is called a subspace of dimension m or m—space.

In P(M), a point is a subspace of dimension 0 and a line is a subspace of dimension 1.

For X € M*, the set X = {AX|A € K*} is a 0—dimensional subspace of P(M). So, Xisa point of P(M).

Now, we investigate the condition of being K—independent for two different points X and Y of P(M).

Firstly, let us denote the coordinate vectors for the points X and Y by X and Y, respectively. We form a
linear combination as

ap a1 Am-1 X11 X12 X1(n+1)

0 ao A2 X21  X» Xo(n+1)

S0 : :

0 0 ao Xml  Xm2 Xin(n+1)

by by by Y11 Y12 YVim+1)

0 by by Yor Y2 Ya(n+1)

0 : : : :

0 --- 0 b Ymi  Ym2 Ym(n+1)
m—1 m—1 m—1 m—1
Y aiXiry1 + 2 biyiein 2 AiX(+1yn+1) T 2 DiYiirtyme)
0 =0 =0 =0
2 2 o 2

=| X axgon + X biyvison Y X+ 2)n+1) T 2 DiYr2)me)
=0 =0 =0 20
a0Xm1 + boym A0Xm(n+1) + DoYmn+1)

If this matrix is an element of M, then we can write

aoXm1 +boym = 0,
aoXm2 + boymz = 0,
: (1)
A0Xm(n+1) + boym(n+1) = 0
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Let us denote the coefficient matrix of (1) by

Xm1 Ym

Xm2 Xm2
A=

Xmn+1)  Xm(n+1)

If rankA = 2, then we get ag = by = 0. So this shows that

0 a; - dpyq 0 by - by

0 0 - auo 0 0 - by

. . . A . . el
0 - : 0 - :

o --- 0 0 o --- 0 0

In that case, the coordinate vectors X and Y for the points X and Y, respectively, are K — independent if and

only if the rank of the coefficient matrix is equal to 2. That is, last rows of the coordinate vectors X and Y
are linearly independent vectors.

Let the set Sp{X, Y} = {/\X +yY |3 Ay eK } be a 1-dimensional subspace of P(M) such that X and Y are
K — independent elements. Then Sp{X, Y} is a line of P(M). It is denoted by

ap ar - Am-1 X11 X120 Xi@m+1)
0 a - amo X21 X220 X2(n+1)
0 : : : :
Y Vv 0 - 0 ap Xml Xm2 *°° Xm(n+1)
Sn{X,Y} =
P{ } bo b1 - by Vi Y2 o Yim+)
0 by - by Y21 Y2t Yomsd)
+| . . . . . . . ’
: 0 : : : : :
0 -« 0 b Yl Ym2 0 Y

whereay #0A1<i<n+1,3x, #00rby #0A1<i<n+1, Ay, #0.

We know that for every coordinate vector X € M* of the point X € P(M), X can be written uniquely as a

n+1
linear combination of the vectors Ej, Ey, - - -, Ey+1. So the matrix X is expressed as X = ), x;E; or as

i=1

X = (X1/X2/ e /XH) € K?H'l’

where
Xm1  X@m-11 -0 X11 Xm2  Xm-12 -0 X12
0 Xm1  ccc Xo1 0 Xm2  cr X2
X1: . . . /X2= 7
: 0 B : : 0 B :
0 0 Xm 0 0 xm
Xmn+1)  Xm-1)(m+1) -~ X1n+1)
0 Xmel) 0 Xo(nel)
s X1 = .
0 :
0 0 Xm(n+1)

There are two cases:
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Case 1: For the first component of the coordinate vector X of the point X, if x,n # 0, then X; ¢ I and

Xm1  X@m-11 0 X1l
0 Xl X2
Xy = )
0 .
0 0 Xm1

is a unit element so there is an inverse of X;. If we multiply both sides of the equation with the inverse
matrix X;', we get

0 xi2 -+ Ximsn)

0 xp - X2(n+1)
XZ(IM/XZI"' /Xn+1) = .

1 Xm2 0 Xmn+1)

Thus, this type of points are called proper points.

Case 2: For the first component of the coordinate vector X of the point X, if x,1 = 0, then X; € I. So, the
inverse of the matrix X; does not exist. Thus we call the points of P(M) whose coordinate vectors are in the
form

X111 X120 vt Xim
X211 X22 ot Xom
0 X2 -+ Xum

as ideal points.
Following expressions are valid for s—dimensional subspaces I'l; fors = -1,0,1,---, (n — 1):
An s—space is the set of points whose representing vectors

X11 X12 c X1(n+1)
X1 X22  cct Xo(n+1)
Xml Xm2 = Xm(n+1)

of the points X satisfy the equations XA = 0, where A is an (n + 1) X (n — s) matrix of rank n — s with
coefficients in K.

Now, we examine a 3—dimensional projective coordinate space P(M) by taking m = 2 and n = 3. For the
3—dimensional projective coordinate space, we determine the incidence matrix of a line that goes through
the given points. Also we determine all points of a line by the Maple programme whose incidence matrix
is given.

Example 3.1. In the 3—dimensional projective coordinate space P(M), any line, namely 1-dimensional subspace I'y
X111 X122 X13 X14 )

X1 X2 X23  X24

where A is a 4 X 2 matrix of rank 2 with coefficients in K. Thus I'ly = {? |XA =0,A¢€ K‘zl\l‘zl } is obtained. Now, we

is the set of points whose representing vectors of the points X satisfy the equations XA = 0,
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identify all points of a line whose incidence matrix is

[ (a0 m € € ]
0 ap 0 €0

a e ( by b ) (fo fi )

b 0 b 0 f

i g =1 7. . € K;\I.
0 1 go 71

e ) (e

dy dq hy m
|\ 0 do 0 ho | |
As a consequence of the incidence matrix, it is trivial to see that 3ay, by, co, do, €, fo, 9o, ho # 0.
For XA = 0, we have the following cases:

Case 1: For the coordinate vector X of the point X, if x1 # 0, then X = (I, X», X3, Xs) € K*. Thus we obtain the
following equations from XA = 0:

cap + XszQ + Xp3Co + X24d()

~

(2)

a + X22b1 + Xlzbo + Xp3C1 + X13Co + X24d1 + X14do
eo + x22 fo + X2390 + X24hg
e1 + x fi + x12fo0 + X391 + xX1390 + Xoah1 + x15hy =

~

~

o oo o

If we solve (2) by using the Maple programme, we get the following solutions:

’

a
X2 = g————F
(bogo — cofo)*
bl
X3 = - ’
2 2 2.2
bOgO — 2C0f0b0g0 + fO (o
Cl
X»n = -
bogo — co fo
dl
X3 = T,
bo!]o - Cofo
X14 = X14,X24 = X4,

where

(cog1.foao + gofocomr — goco fra0 — gobicoeo — goci foao + bogocoer
+bog()C1€() - boCogleo - f()CéEl + f1€%€0 + géblllo - boggﬂ1)+
a = (—foCSho - boggdo + go focodo + bogocoho)x14
+(cog1fodo — focgh + ficiho + gibrdo — bogadi + go focod1—
goco f1do — goc1 fodo — gobicoho + bogociho + bogocoh1 — bocogiho)xaa

(bogn foao + ficoboeo + fobocieo — fobogoar + fogobiao—
fobicoeo — bogo frao — focoboer — bjgieo + bigoer — c1f3ao + ficoar)
o= +(f02C0d0 + b(z,goho - focoboho - fobogodo)xm ’
+(—béglh0 — C1f02d0 + fOZC()dl + bggohl — bogofldo — fOCObOhl
+bogi fodo + ficoboho + fogobido + fobociho — fobogodi — fobicoho)xoa

(goao — coeo) + (—coho + godo)x2a,d” = (=boeo + foao) + (fodo — boho)x2s.

~

CI

Thus, we get

0 @ - u X

— Dodo— 2 7 7 72 14

= ( (_MO - - fo% Zcoa{’l)bogﬁfoco X |x14, %24 €ER §.
by J0—Co f(] b[)go —Co f 0 24
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Case 2: For the coordinate vector X of the point X, if xp1 = 0, then X is an ideal point of the form

_ 0 xp | X2 X12
=0 e 32
_ | X23 X13 | X4 X4
X3_( 0 X23 )’X4_( 0 X24 )

Here, we know that 3 x5, x23, x4 # 0. Let xpo # 0, then there is an inverse of X,. If we multiply both sides of the
equation with the inverse matrix X1, we get X = (Xy,12, X3,X4) € K*. Thus we obtain the following equations from
XA=0:

bo + xp3¢0 + Xp4dy = 0,

X1149 + b1 + X301 + X13C0 + Xoady + x14dy = O, (3)
fo+x23g0 + x24hg = 0,

x11€0 + fi + X391 + X1390 + Xoah1 + x13hp = 0.

If we solve (3) by using the Maple programme, we get the following solutions:

X1 = X1,
al/
X3 = @m0,
(coho — godo)?
bl/
X14 = ’
2 212
—Zgod()CohO + godoz + COhO
xp3 = ', xu=4d",
where

hodogibo + hocido fo — hogodobr — dohigobo — g1ds fo + gods f1)+
(col3ao — cohodoeo — hogodoao + godgeo)x11

[ (—Coh%fl + gocohobr + Céhlfo + cohogibo — gédolh + godoco f1— ]

[ (C()hébl - Coh0d0f1 - C()]’l()dlf() + COdOhlfO — C1b0h2 + h0d1g0b0+ ]

coh1gobo — g1doco fo — gohocibo — gocods fo + d1gibo + gocido fo)+
(—c3hoeo + godocoeo + gocohoo)x11
, _ —hobo —dofo

- b
o = _Thbo—dofo . —Cofot gobo
—cohp — godo cohg — godo

Thus, we get

" I~
< xm 0 - 7 ‘ AV 2 27,2
- - “2godocoho+g2de? +C2h
X = {( 0 1 (co 2,,90 o) godoco 2;;70 P+ J|x; € R b
Now conversely, we have a new situation. We determine the incidence matrix of a line whose points are given. This
also has two cases:

Case 1: Let us take the coordinate vectors

X = 0 x12 x13 X4 and Y = 0 yio Vi3 Yus
1 xp x3 xu4 1 y» vyn yu
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of proper points X and Y, respectively. Then we search the incidence matrix of the form

UL TR

ap M e € ]
0 ap 0 €0

e (bo by (fo fl)
0 b 0
fl- 0 fo € KiNI.
) Co €1 Jgo T
(G (%)
50

dy
o 4

(e}
=
<)

If we take coordinate vectors of these points as

o
Y=<<

and

1 0 X2 X172 X23  X13 X24  X14
0 1/ 0 xp )’V 0 x3 )\ 0O x4

10 Y Y12 Y23 Y13 Y24 Y14
0 1)’V 0 wyn '\ 0 wyu )'\ 0 yu

=

we obtain the following equations from XA = 0and YA =0:

a + x22b1 + x12b0 + X301 + X13C9 + .X24d1 + x14d0 =
e1 + X fi + X12f0 + X2391 + X1390 + X241 + X14h9 =
a1 + Ynbi + yiobo + yosc1 + yizco + Youadt + yuado =

e1 + Yy fi + yiofo + Y291 + Yizgo + Yosh1 + yasho

ap + .'X22b0 + Xp3Co + XZ4d0 =

~

~

eo + X fo + x2390 + Xoshy =

~

ap + Yxbo + yo3co + Yyudy =

~

~

(=R e R e e  —  =]

~

eo + Yo fo + Y2390 + Yashy =

Il
e

If we solve (4) by using the Maple programme, then we get the following solutions:

ao

bo
Co

€

fo

’ ’

S R N
7 - 7
=Y + X2 (=Y + X22)?
’ ’
bo bl

s V1 = ’
— Yooy + 2 2
Y22 + X22 X3 + Yo — 2Y22X22

co, c1=c1, do =do, dh =ds,
4 /

€ €
—— =,
Y22 + X2 ’ (=y» + X22)?
fo fi

7 1 = 7
—Y + X0 X2+ Y2, — 2ynxn
go, 91 = 91, ho =ho, h1 = hy,

(x22Y23 — Y22X23)Co + (X202 Y24 — ]/223624)510,

2 2
(x22y14 + X22Y12Y24 — X22Y12X24 — Y22X22X14 — Y22X22 Y14 + Y5, X147+

2
Y22X12X24 — y22X12y24)d0 + (x22y24 — Y22X22Y24 — Y22X22X24 + Y5 X24)dq

2
+(x22y13 — Y22X22X13 — Y22X22Y13 — X22Y12X23 + X22Y12Y23 + Y5,X13
2 1
—Y22X12 + Y20X12X23)C0 + (X5, Y23 — Y22X22X23 — Y22X22X23 + Y, X23)C1

(23 = Y23)co + (X24 — Yoa)do,

950

(4)
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(=x22X13 + Y20X13 — X12Y23 + X12X23 — Y22 Y13 + Y12Y23 + X22Y13 — Y12X23)Co

bi _ +(=Y22Y23 + Y22X23 — X22X23 + X2223)C1

+(X12X04 — X12Y24 + Y20X14 — X20X14 + Y12Yo4 — Y22 Y14 + X22Y14)do
+(y22x24 — X22X24 — Y22lY24 t+ X22X24)d1

ey = (x22Y23 — Y2x23)g0 + (X22Y24 — Y22X24)h0,

(x§2y13 — Y22X22Y13 + X22Y12Y23 — X22Y12X23 — Y22X22X13 — Y22X12Y/23
+Y20X12X23 + Y3,X13)90 + (X3,23 = Y22X22 23 — Y22 X22X03 + Y3, X23) 01
+(X§2y14 — Y22X22X14 — Y22X22Y14 + X22Y12Y24 — X22Y12X24 + Y22X12X24
—Y22X12Y24 + y§2x14)ho + (x§2y24 — Y22X22X24 — Y22X22X24 + y§2x24)h1
fo = (x2a = y2a)ho + (x23 = Y23)90,
(x12X24 — X12Y24 + Y22X14 — X22X14 + Y1224 — Y22 Y14 + X22Y14 — Y12X24)lg
f’ +(]/22x24 — X22X24 — Y22Y24 + X22]/24)h1

1 +(Y20X13 — X20X13 — X12Y23 + X12X23 — Y22 Y13 + Y1223 + X22Y13 — Y12X23)90
+(Y22Y23 + Y20X23 — X20X23 + X20Y23) 1

Case 2: Let us take the coordinate vectors

X = 0 x12 x3 x4 and Y = Y11 Y12 Y13 Y
1 x»n x3 x4 0 y» Y3 Yu

of proper and ideal points X and Y, respectively. Here for the point Y, we know that 3y, y3, yos # 0. So let yx # 0,
then coordinate vectors can be expressed as

X = 10 X2 X12 X3 X13 Xo4  X14
- 0o 1) 0 X22 ! 0 X23 ! 0 X24
Y = 0 yn 10 Y23 Y13 You Y4
“Wo o Jlo1)l0 vu/)l o vl

We obtain the following equations from XA = 0and YA =0:

and

ap + X22b0 + X23Co + XQ4d0 =

~

a + szbl + xlzbo + X301 + X13Co + .X'24d1 + .X14d0 =
eo + x22fo + x23g0 + X24ho =

e1 + X fi + X120 + X391 + X1390 + Xoah1 + x14h0 =
bo + ya3co + Yudy =

y11do + by + yxc1 + y13co + Youdy + yuado =

fo + y23g0 + yasho

y11€o + fi + Ya3g1 + Y13go + Yaah + y1sho

< N N < <
—~
U1
=

~

S o o000 oo o

If we solve (5) by using the Maple programme, then we get the following solutions:

’’ ’” 1’ ’7
ap = a()/ ﬂlzﬂl, b():b()/ bl:bll
co = co, c1=c1, do=dy, di=dy,

’’ ’’ 44 4
eor 61231, f(): 0 f1= 17

€o
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where
ﬂ(/), = (X2Y23 — X23)C0 + (X22Y24 — X24)do,
2
4 = (y11x22y23 — X22Y11X23 + X222y13 + X12Y23 — X13)C0 + (X22Y23 — X23)C1 )
1 +(X22Y14 — X22Y11%04 + Y11X5,Y24 — X14 + X12Y24)d0 + (X22Y24 — X24)d1
b = —yco— Yaudo,
by = (—ynxay2s + Y11X23 — Y13)C0 — Y2361 + (—Y1a + Y11X24 — Y11X02Y24)do — Yoads,
6’6’ = (x2Y23 — x23)g0 + (X202Y24 — X24) 0,
2
o = (y11%5, Y23 — X22Y11X23 +2X22]/13 + X12Y23 — X23)90 + (X22Y23) 91 ,
1 +(x22Y/14 — X22Y11X24 + Y11X5, Y24 — X14 + X12Y24)h0 + (X22Y24 — X24)1
fo' = =Y390 — Yaho,

fi" = (=ynxays + yuxas — y13)go — Y231 + (=Y1a + Y11Xo4 — Y11X20Y24)ho — yoahy.

oS oW
S oo

Consequently, let a = ( 8 g ), e = ( 8 8 ), 0= ( 8 8 ) and A = , then it is obvious that all ideal

points satisfy the equation XA = 0. This equality shows that matrix representation is not necessary for an ideal line.

4. Conclusion

In this study, PK-coordinate space is constructed for the special case m = 2 and n = 3. Similar studies
can be done for different values of m and n. However it is seen that as m and n get greater values, the
operations can no longer be done by hand. So the calculations must be done via computer.

Furthermore, in our study we consider only the points and lines of the PK-coordinate space which is
obtained via the new method. Examination of other subspaces and finding some combinatorial results for
the PK- coordinate space, are still open problems for interested researchers.

Note: The main results of the present paper are given in “AIP Conf. Proc. 1676, 020014 (2015);

http://dx.doi.org/10.1063/1.4930440” without proof as an extended abstract.
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