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Existence and Uniqueness Results for a Class of Fractional Differential
Equations with an Integral Fractional Boundary Condition

Asghar Ahmadkhanlu?

“Dept. of Math. Azarbaijan Shahid Madani University
35 Km Tabriz-Maragheh Road, Tabriz, IRAN

Abstract. The aim of this work is to study a class of boundary value problem including a fractional order
differential equation. Sufficient and necessary conditions will be presented for the existence and uniqueness
of solution of this fractional boundary value problem.

1. Introduction

In this paper, the existence and uniqueness of solution for a class of nonlinear fractional boundary
value problem will be discussed. this problem includes a nonlinear fractional differential equation of order
a € (0,1] and a fractional integral boundary conditions. In fact the following boundary value problem of
fractional differential equation is considered.

‘Dry(t) = ft, y®), 0O<a<1, te]=][0,1], o
y(0) = nlfy(1), 0<7<1.

where ‘D* denotes the Caputo fractional derivative of order «, f : | X R — IR that will be specified later,
1 € Ris such thatn # I'(8+1)/7#, T is the Euler Gamma function and I?, 0 < § < 1, is the Riemman-Liouville
fractional integral of order .

Recently, factional differential equations have been proved to be valuable tools in modelling of many
phenomena in various fields of engineering, physics, chemistry and economics. We can find numerous
applications in viscoelasticity, electrochemistry, control and electromagnetic. For some recent development
on the topic see [1-4]. There has been a significant development in fractional differential equations. One
can see the monographs of Kilbas et al.[5], Miller Ross [9], Lakshmikantham et al.[6], Podlubny][8].

The existence of solution for the BVP (1) has been studied by Ntouyas [7]. Let us mention, however,
the assumption on f are strong (f is continuous and satisfies uniformly Lipschitz condition or uniformly
bounded). In this paper the new existence and uniqueness results will be presented for the boundary
value problem (1) by virtue of fractional calculus and fixed point method under some weak conditions.
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Compared with the results appeared in [7], there are some differences. The most important of them is that
the assumptions on f are more general and easy to check, but here the f is not continuous necessarily.

The rest of this paper is organized as follows. In section 2, some notations will be given also some
concepts and preparing results will be recalled. In section 3, a generalized singular type Granwall inequality
which can be used to establish the estimate of fixed point set {y = AFy, A € (0, 1)} will be given. In section
4, two main results will be presented, the first result based on Banach contraction principle, the second
result based on Shaefer’s fixed point theorem and in section 5 one example will be given that satisfies in
hypothesis of our results.

2. Preliminaries and Linear Problem

In this section, notations, definitions and preliminary facts which are used throughout this paper are
introduced. At first, we use the notation of C as a Banach space of all continuous functions from | into IR
with the norm ||yl := sup{|y(t)| : t € J}. For measurable function m : | = R, define the norm

(f] Im(t)lpdt)’l’, 1<p<oo,

Imllergry =14
inf {sup [m(t)l}, p = oo,
HD=0 417

where y(f) is the Lebesgue measure of J. LetL? (J/R) be the Banach space of all Lebesgue measurabel
functions m : | —» R with ||m||rr(r) < 0.

We need some basic definitions and properties of fractional calculous theory which are used in this paper.
For more details, see [5, 8].

Definition 2.1. The Riemann-Liouville fractional integral of order a>0 of a Lebesgue-measurable function f : R* —
R is defined by (the Abel-integral operator)

1 t
I*f(t) = @ fo (t—8)" f(s)ds )

provided that the integral exist.

Definition 2.2. The fractional derivative (in the sense of Caputo) of order 0 < a < 1 of a function f : R* — Ris
defined as the left inverse of the fractional integral of f

ey _ —ai

DA f) =14 £t ®)
That is

ey _ 1 t g

D'f) = s [ (=9 s o @

provided that the right side exists.
For proving the existence and uniqueness solution of the problem (1), we need some fixed point theorems.

Theorem 2.3. (Schaefer’s fixed point theorem) Let | = [to,to + T] and F : C(J,R) :— C(J,R) be a completely
continuous operator. If the set

E(F) = {x € C(J,R) : x = AFx for someA € [0, 1]}

is bounded, then F has at least a fixed point.
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Lemma 2.4. [7] Let § # % Then for g € C, the solution of the fractional differential equation

‘Dyt)=g(t), O0<ac<l (5)
subject to the boundary condition
y(0) = nl'y(), )
is given by
(s N +1) T (1 —s)th1
y(t) = ) r(—ag(s)ds + TG+ 1) = fo @+ p) g(s)ds, te[0,1]. (7)

As a consequence of Lemma 2.4, we have the following result which is useful in what follows.
Lemma 2.5. A function y € C is a solution of the fractional integral equation
(t—s)*" nreg +1) ‘(T s
t) = ———f(s, y(s))ds + s,y(s))ds, te]0,1], 8
W) = oy f v + e | R 6 ) ®)

if and only if y is a solution of the fractional BVP (1).

3. A Special Singular Type Gronwall Inequality

In order to apply the schaefer fixed point theorem to show the existence of solutions, we need a new
generalized singular type Granwall inequality with mixed type singular integral operator. It may play an
essential role in the study of fractional boundary value problem.

Lemma 3.1. Let y € C satisfy the following inequality

ly®l <a+b fot(t =) y(s)I'ds + CfOT(T — )" (o)l ds, ©)

where a, p € (0,1), A € [0,1 - %]for somel < p <
M* > 0 such that

ly()l < M.

ﬁ,a, b,c > 0 are constants. Then there exists a constant

1
PT’OOf. LetM = (b + C) [m]p and

NERTCES
“”‘{ma y(B) > 1.

t T
ly®l < x@®l<a+1+ bf (t = )" Yx(s)[Mds + cf (T = 5)¥P L x(s)| ds
0 0
t T
< (@+1)+b f (t = s)" B x(s)|*ds + ¢ f (T — 5)¥Px(s)| ds
0 0
t 117 t % T % T %
_ gyplatp-D) 4 _ gyplatp-D) 24
< (a+1) +b(f(; (t—ys) ds) (j(; |x(s)| ds) +c(‘f(; (T —5) ds) (j(; |x(s)] ds)
1 :7 t Ap. 1 % T Ap
< (a+1)+b[—p(0¢+ﬁ—l)+1] fo [x(s)|"Tds + ¢ p—(zx+ﬁ—1)+1] fo |x(s)|7 ds
1 P Ay
< (S + 1) + (b + C) [m] L |X(S)|V‘1 ds

T 1
- (a+1)+Mf |x(s)|vA-pldss(a+1)+Mf ()T ds <
0 0
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1
< (@a+1)+ Mf |x(s)|ds.
0
Therefor by the standard Granwall inequality, we have

ly(t)| < [x()| < (a + 1)eM := M.

4. Main Results
In this section we shall present and prove our main result. First, consider the following hypotheses:

(H1) The function f : ] X R — R is Lebesgue measurable with respect to ¢ on J.

(H2) There exists a constant p € [0, «) and real valued function h(t) € L%(], R+) such that |f(t, y)| < h(t) for
eacht € Jandall y € R.
(H3) There exists a constant g € [0, &) and real valued function m(t) € L (J,R,) such that
[f(t, u1) — f(t, u2)| < m(t)luq — uyl
foreacht € Jand all u;,u, € R.

(H4) There exists constant A € [0,1 — —] for some 1 < p < ;= and N > 0 such that
[f(t,u)l < N(1 +|ul*) foreachte Jandallu € R.

= Il 4

LP (), IR) Lq( R)’
Our first result is based on the Banach fixed point theorem.

For convenience, let M = ||m]|

Theorem 4.1. Assume that (H1)-(H3) hold. If

M N MinIC(B +1)

Quq(t
07 Naxe DT+ 1) - nefi(e + B)(HED)

<p<l (10)

then the system (1) has a unique solution.

Proof. For eacht € |, we have

t t 1-p t p
gt oE !
fo = 51 f(s, y(s)lds < ( fo (t—s) ds) ( fo (h(s)) ds)
t L NPt LV
< (j(; (t—s)lr’ds) (fo (h(s))fds)
< H

a—, —
(rZ)l b

Thus |(t — 8)*71f(s, y(s))| is a Lebesgue integrable with respect to s € [0,t] for all t € ] and y € C. Then
(t — s)*1 (s, y(s)) is a Bochner integrable with respect to s € [0, ] for all ¢ € J.
Hence the fractional BVP (1) is equivalent to the following fractional integral equation

_ gt ME+1) [ (= sy
T(a )f(t ST S y(s))ds+r(ﬁ+1)—mﬁ , T@+p)

) = (5, y(s))ds
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Let

L H @+ H
@) TE+ 1) =0T + gy Ltyi-r

Now we define the operator F on B, := {y € C : ||yll» < r} as follows

nrg +1) f (r —s)**F !
rB+1)—nth I'(a+p)

0 = s [ =9 s, o+ 65y, a

Therefore the existence of a solution of the fractional BVP (1) is equivalent to that the operator F has a fixed
point in B,. The Banach contraction principle will be used to prove that F has a fixed point. The proof will
be presented in two steps.

Step 1. Fy € B, for every y € B,
In fact, for every y € B, and all ¢ € |, It is verified that F is continuous on J, i.e., Fy € C, and

[n[(B + 1) T (1 — 5)x+h1
IT@+1)—-ntfl Jo  T(a+p)
_ a1 LB +1) T (T — s)thl
T(a) fo (t—5)*"h(s) + el A e

1 ¢ o1 1-p
m(l{;(t—s) Vds) (f h(s)%'ds)

|77|r(,3 +1) 1 T zrﬁi;] 1-p T % p
"IT@+ 1) - qef T+ p) (fo (T=9) dS) (fo h(s) ds)

H @+ H -
L)) 0B+ 1) = 7P+ py(EE)r ~

A

EDO) < ﬁ fo (£ = 51U If(s, y(s)lds + £, y(6))lds

IA

h(s)ds

IA

which implies that ||[Fy|le < r. Thus, Itis concluded thatforall y € B,, Fy € B,. i.e.,F : B, — B, is well defined.

Step 2. F is contraction mapping on B,.
For x,y € B, and any ¢t € | using (H3) and Holder inequality, we can get

I(Ex)(t) = (Fy)(®)]

< ﬁ fo t(t—s)“‘llf(s,x(s))—f(s,y(S))Ids+lr([';{(fiJrl’)?'Tlgl f « _asf;ﬁ)llf(s,x(s))— (5, y(s))\ds
< w (= 9 Im(El(E) — s + lr(?i(’i;_l;'ﬁ' [ (Tr;;f;f)1m<s>|x<s>—y<s)|ds
< Bt f (t = 5"~ m(s)ds +”x|r_(ﬁy“+°°¥)7r_(ﬁn;|l)| OT (Trzasf;_lm(s)ds
N I (RERRTY
_ " : :
+|r<|ﬁnz([i>+—lv)7lfﬁ||llf(a ﬂ; (f -9 ds) (fo m(s);ds)
B S Gl e

r@Gy Hur) T T+ D =1l e + Ly LR
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M, MinIT(B + 1)
T(@)(F=D'1 (B +1) - ne|l(a + B)(HED

¢ = Ylloo-

So we have
IFx = Fylloo < Qug(B)llx = Ylloo-

By banach contraction principle, It is concluded that F has an unique fixed point which is just the unique
solution of fractional BVP (1). O

Our second result is based on the well-known Schaefer’s fixed point theorem.
Theorem 4.2. Assume that (H3) - (H4) are hold. Then boundary value problem (1) has at least one solution on [0, 1].

Proof. Transform the fractional boundary value problem (1) into a fixed point problem. Consider the
operator F : C — C defined as (11). It is obvious that F is well defined due to (H4).

Step 1 F is a continuous operator.
Let {y,} be a sequence such that i, — y in C. Then for each t € ], we have

I(Fya)(®) = (Fy)(®)|

S fo t(t—S)“‘llf(s,]/n(S))—f(Sry(S))Ids+lr(gf(f)tl’;ﬁl ;“&;ﬁ;l (5, ) = £, y()lds
< fo t(t—S)“_lm(S)lyn(S)—y(S)Ids+|F(Ig|£(f)t117)Tﬁl T(Trf):;f)1m(s>|yn<s>—y(s>|ds

< ﬁ fo t(t—s)“‘lm(s)sglyn(s)—y(s)lds+lr(lglf(f) 1nfﬁl f S as):zlm(s)sslglyn(s)— y(s)lds
< e = |r(glf(f>+—ln)fﬁ| Toig [ a=rrmo

lyn = ylleo o\ Y
F(a) (f(t—s) tlds) (j; (s)lds)

T +1) IIyn—yllm( e )q( t : )q
+|F(ﬁ +1) —ntf| T(a+p) f (v—s) T ds I} m(s)7ds

! ! M N M [T +1) )
Y=o\ T@) " Ta+p) T +1) - 7|

Since y, — y, we have

M M If@+D )_)

Iy = Fylloo < 11y = Ylloo (r( ) T@+p) TE+1) -

asn — oo.
Step 2. F maps bounded set into bounded set in C.
Indeed, it is enough to show that for any 7+ > 0, there exists a [ > 0 such that for each y € B, = {y € C :

Iyllo <17}, we have ||Fylle < I.

For eacht € |, we get



A. Ahmadkhanlu / Filomat 31:5 (2017), 1241-1249 1247

NIT(B + 1) T (1 —s)*HhL

t
FOO1 = o5 [ -9e v+ m s | T 6, yeIds
N IniC(B + 1) . \
< F( )f(t—s) 1(1+|_1/(s)| )ds + |r(ﬁ+1)—T]T5|F(0(+ﬁ f (T —5) B- 1(1+|y( )| )ds
N (.. IE+D e
< W fo AR TS g Fas P f (v = ey ds
N t a— A mlr(ﬁ + 1) a+p-1 A
+oo fo (=9 o + o 5 (1 - P y(e)lds
N _rg+n N
- F(a +1)  TB+1)—ntf| T(a+p+1)
a-1 A InT(g +1) N o a+p-1 A
r( ) f s + el e fo (x - 9 ly(s)ds
. WrE+D N Net | rE+D N
- T(O(+1) |F(ﬁ+1)—T]Tﬁ|T(O(+ﬁ+1) IFa+1) |F(ﬁ+1)—T]T:8|T(0(+ﬁ+1)
CNAH@Y R+ N+ ()Y
 T(a+1) TB+1)—ntf| T(a+p+1)
which implies that

N1+ (") . C(B+1) NQA+ ()"
T(a+1) TB+1)—ntf| T@+p+1)

IFylleo <

Step 3. F maps bounded sets into equicontinuous sets of C. Let 0 < t; <t, <1,y € B;y. Using (H4), we
have

I(Fy)(t2) — (Fy)(t1)| =
ty |
‘% f (t2 =)' f(s, y(s))ds — L f (tr = 5)* 71 f(s, y(s))ds

< ‘r( f [(t2 = )" = (11 — )" 1f(s, y())ds| + F() tz(tz—s)“_lf(S,y(s))ds
. m f h[<tz-s>”‘1—<t1—s)”‘11|f<s,y<s>)|ds+% (= 9", y(o)lds
) f [(t2 =) = (t1 = 9)* 1](1+|y(S)IA)ds+r() tz(tz—S)“_1(1+|y(s)|A)ds

N(1 + (77 )A)
I'(a)

3N+ (1))t = 1)*

1=t +2(t — 11)Y] <
[t = 51+ 2(t2 — t1)*] < Ta+1)

As t; — t;, the right hand side of the above inequality tends to zero, therefore F is equicontinuous. As a
consequence of Step1-3 together with Arzela-Ascoli theorem, we can conclude that F : C — C is continuous
and completly continuous.
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Step 4.A priori bounds.
Now it remains to show that set

E(F)={yeC:y=AFy, A€ (0,1)}

is bounded.
Let y € E(F), then y = AFy for some A € (0,1), Thus for each t € ], we have

(t- )“ 1 nr@B+1) (1 — 5)¥+B-1
y(t) = (f ———f(s,y(s))ds + TG+ -y f Tasp) fs, y(s))ds)

For each t € |, we have

- e + 1) .
WOl < s [ = s+l e [ s o

nC@+1)  NA ‘

A

—s)*! A _oya+p-1 A
St f et - [ e
_ O NA . _hg+D  NA
T Ta+1) TE+1)-nteI(a+p+1)

NA (T g Inir(B +1) -

+Wfo (t =) yC)'ds + ey - T]Talr(a+ﬁ)f (T =)yl ds.

By Lemma 3.1, there exists a M* > 0 such that
ly(Ol <M, te].

Thus for every t € |, we have
Iyllo <M

This shows that the set E(F) is bounded.
As a consequence of Shaefer’s fixed point theorem we deduce that F has a fixed point which is a solution
of the fractional BVP (1). O

5. Example

In this section we give an example to illustrate our main results. Consider the following fractional
boundary value problem

1 |yl

\/71+|y|

¥(0) = xfslfmg)

—1+sin’t, te[0,1] (12)

‘s y(t) =

Hence,a = =1,n1= V3, 7=1and f(t,y) = — M1 4sin’t Asn = V3 # T +1)/7F :1"(%)/(%)%

24/ 14l
and for all i1, y» € [0, 00), t € [0,1], We have
_ 1 o »
o= fewl = - \/:H el W

1 — Yol

1 I
2 e < /— =l
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Obviously, for all y € [0, 00) and each t € [0, 1],

—1+sin’t

If(t, »)l

1 lyl
| <

1 ly 1
o Ji-t 1 ot

IA

For t € [0,1],9 € (0,a), let m(t) = h(t) = —= € L%(], Ry),M = ||%|I 1 . Choosing suitable g € (0, @),

=

t-3 LTUR,)

one can arrive at the following inequality

22 V3r

Qpg = + M
a,q (11—__2;)1—17 2(\/5_1)

<1.

Thus all the assumption in Theorem 4.1 are satisfied, our results can be applied to the problem 12.
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