N
&

Filomat 31:5 (2017), 1331-1338
DOI 10.2298/FIL1705331Z

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

N

>
I
iy s

%

T1pupor®

Monotone Iterative Method for a Class of Nonlinear Fractional
Differential Equations on Unbounded Domains in Banach Spaces

Lihong Zhang?, Bashir Ahmad®, Guotao Wang?

?School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, People’s Republic of China
YDepartment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract. In this paper, we investigate the existence of minimal nonnegative solution for a class of nonlinear
fractional integro-differential equations on semi-infinite intervals in Banach spaces by applying the cone
theory and the monotone iterative technique. An example is given for the illustration of main results.

1. Introduction and Terminology

Fractional differential equations are now recognized as an excellent source of models to many phe-
nomena observed in control theory, mechanics, electricity, chemistry, biology, economics, signal and image
processing, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, etc. For some
recent details and examples, see [1]-[15] and the references therein.

The monotone iterative technique can be successfully applied to obtain existence results for fractional
differential problems, see book [3] and papers [16]-[31]. In these papers, by employing the technique,
authors obtained the existence results of fractional differential problems on bounded domains. In our
paper, we also apply this technique to fractional differential problems on unbounded domains in Banach
Spaces.

Boundary value problems of integer order on infinite intervals arise in the study of radially symmetric
solutions of the nonlinear elliptic equations and have received considerable attention, for instance, see [32]-
[40] and references therein. However, there are few papers dealing with nonlinear fractional differential
equations on an unbounded domain [41]-[48]. In this paper, by using a method entirely different from the
ones employed in [41]-[48], we discuss the existence of the minimal nonnegative solution on an unbounded
domain in an ordered Banach space E for the following boundary value problem (BVP for short) of a
fractional nonlinear integro-differential equation

D*u(t) + f(t,u(®), Tu(t),Su(t)) =6, 1l<a<2, 1
u(0) =6, D*lu(co) =, 1)

2010 Mathematics Subject Classification. Primary 26A33; Secondary 34G20,34B40

Keywords. Nonlinear fractional integro-differential equations; Ordered Banach spaces; Cone theory and partial ordering; Monotone
iterative technique; Infinite interval.

Received: 09 Feburary 2015; Accepted: 03 April 2015

Communicated by Naseer Shahzad

Corresponding author: Guotao Wang

Research supported by NNSF of China (No. 11501342) and Scientific and Technologial Innovation Programs of Higher Education
Institutions in Shanxi (No. 2014135, No. 2014136).

Email addresses: zhanglih149@126.com (Lihong Zhang), bashirahmad_gau@yahoo.com (Bashir Ahmad), wgt2512@163. com
(Guotao Wang)



L. Zhang, B. Ahmad, G. Wang / Filomat 31:5 (2017), 1331-1338 1332
where t € ] =[0,4+00), f € C[[ X Px P x P, P], Pis a cone of E which defines a partial ordering in E: x < y if

and only if y — x € P. D* is the Riemann-Liouville fractional derivatives.

¢ o0
(Tu)(t):j;k(t,s)u(s)ds, (Su)(t):j(; h(t, s)u(s)ds.

k(t,s) € C[D,R*], h(t,s) € C[Do,R*], D = {(t,s) e R2 |0 < s < t}, Do = {(t,5) € [ X J}, R* = [0, +00). Let

t 0o
1
k' =su f k(t,s)ds < oo, W =su —f h(t,s)(1 +s*)ds < oo
teF 0 teF (1 + ta_l) 0
and lim J7 I, s) = h(t, (1 + 5% ds =0, tt €],
Now, we denote the space

llu@®ll

FC(],E) Ll € C(] E) tE] 1 + ta-1

with norm
IIu(f)II

ta-1°

llullr =

PIy
te]
It is easy to see that FC(J, E) is a Banach space. Denote FC(J,P) = {u € FC(J,E) : u(t) > 6, Vt € J}. A map
u(t) € FC(J, P) with its Riemann-Liouville derivative of order a existing on | is called a nonnegative solution
of (1) if u(t) € FC(J, P) satisfies (1).
2. Several Lemmas

In this section, we recall some definitions and present some preliminary lemmas.

Definition 2.1. [1] The Riemann-Liouville fractional derivative of order 0 for a continuous function f is defined by

n t
)(%) fo (t—s)"f(s)ds, n=[0]+1,

provided the right hand side is defined pointwise on (0, c0).

, 1
D°f(t) = T

Definition 2.2. [1] The Riemann-Liouville fractional integral of order 6 for a continuous function f is defined as

s _ gyt
I°f(t) F(é)f(t s)°" f(s)ds, 6>0,
provided that the integral exists.

For the forthcoming analysis, we need the following assumptions:

(H1) there exist nonnegative functions a(t), b(t) € C(J,R") and positive constants cj, ¢3, c3 such that
ILf(t, u,0,w)|l < a(t) + bE)(cllull + calloll + csllwll), t € J,u,v,w € P.
Furthermore, we set a* = fow a(t)dt < co, b* = fow(l + 9 Db(H)dt < co.
(Ha2) f(t,u,v,w)is increasing in u, v, w € P, that is,

ft,u,0,w) < f(LT,T,T), te], A>2uz0,720=0,T=w20.



L. Zhang, B. Ahmad, G. Wang / Filomat 31:5 (2017), 1331-1338 1333

Lemma 2.3. Assume (Hj) holds. Then u(t) € FC(J, P) with its Riemann-Liouville derivative of order a existing on
] is called a nonnegative solution of problem (1) if and only if u(t) € FC(J, P) is a solution of the integral equation

u(t) = r(a; + fo " Gt )5, 009, (Tu)(s), (Su) s, @
where
1 trl—(t—s)*1, 0<s<t,
G(tls) = @{ ta—ll 0<t<s. (3)

Proof. We can reduce (1) to the integral equation

t
u(t) = c1t* !+ oot 2_ m fo (t- s)“‘lf(s,u(s), (Tu)(s), (Su)(s))ds, 4)

where constants ¢y, ¢, € R.
By the conditions #(0) = 6 and D* u(co) = u*, we can get

= ﬁ(j:o f(s,u(s), (Tu)(s), (Su)(s))ds + u*), c=0.

Substituting ¢; and ¢, into (4), we have
uHa-l ta 1
I'(a)

1
T(a)

u*ta—l f‘”

= + G(t,8)f(s,u(s), (Tu)(s), (Su)(s))ds,

T ) G, 0, S1)6)

where G(t, s) is defined by 3. The converse follows by direct computation.
0

u(t) = f f(s,u(s), (Tu)(s), (Su)(s))ds

i (t = 5)*7 f(s, u(s), (Tu)(s), (Su)(s))ds )

Gt,s) _ 1

R k 2.4. 2 :
emar Notice that G(t,s) > 0 an d 1 S T()

Define the operator A by

*ta—l

(Au)(t) = ur(a) + fo G(t,s)f (s, u(s), (Tu)(s), (Su)(s))ds. (6)

Lemma 2.5. If (H) is satisfied, then the operator A is from FC(J, P) to FC(J, P).

Proof. Let u(t) € FC(J, P), thatis u(t) > 0 and ||ul|r < co. Since f € C[] X P x P X P, P] and G(t,s) > 0, therefore
(Au)(t) = 6. By the condition (H;), we have

a—1 00
lAu@l < 1 '(';) ; fo G(t, 915, 1(s), (Tu)(s), (Su)(s))lds
”u “ta 1 1 + - 1
R f [a(s) + b()Cullu@)l + cal TS + csll(Su)E)IDIds %
*|[pa—1 a—1
< ||ufl(|ctk) + 1 ;(;) [a* + b*(c1 + cok™ + csh™)||ullg],
which implies that
AW
lAullr = StE] ET= < 0o,

that is, A is FC(J, P) — FC(J, P). This completes the proof. [
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3. Main Results
Theorem 3.1. Let P be a fully regular cone and the assumptions (Hi), (Ho) are satisfied. Furthermore,

_ b*(Cl + Czk* + C3]’l*)
r= T(@) <1 (8)

Then there exists a nondecreasing sequence {u,} C FC(J, P) converges uniformly on | to the minimal solution u. That
is, for any solution u(t) of (1), we have u(t) > u(t), ¥t € J. Moreover, |[ullp < 1= where d = %—a-;f and
a', b, k*, I, c1, ca, c3 are given by (Hy) and (Hy).

Proof. Letup(t) = 0, u,(t) = Auy—1(t),n=1,2,3,---, where

uHa-l
T(a)

By Lemma 2.5, we have u,(t) € FC(J, P). Thus u,(t) > 0.
On one hand, using (H;) and the fact that f € C[J X P X P X P, P] and G(t,s) > 0, we have

un(t) = + \fO‘ G(t, S)f(S, un—l(s)/ (Tun—l)(s)/ (Sun—l)(s))ds- (9)

0 =u(t) Sur(t) Sup(t) <--- <up(t) <+, te] (10)
Now, from the iteration formula (9), we can get

lunlle = NAun-allr < d + rllitnalle < d +1(d + rliun—2llr)

<d+rd+r(d+rlu,sllp) < - <dQ+r+77 47 + -+ " luglle) (11)

< 7 :112131'../
S1-; n

where r and d are given in the statement of Theorem 3.1.
It follows from (11) and the fully regularity of P that

lim u,(#) = T0(t), t € . (12)
Since u,(t) € FC(J,P) and FC(J,P) is a closed convex set in space C(J,E), therefore, by (11), we have
% € FC(J, P) and |[illlr < 1i_r.
Moreover, we have
f(s, un(s), (Tun)(s), (Sun)(s)) = f(s,u(s), (Tu)(s), (Su)(s)) (13)
and

1/ (s, un(s), (Tun)(s), (Stn)(s)) = f (s, u(s), (Tu)(s), (Su)(s))ll

. w4 (14)
< 2a(s) + 2b(s)(c1 + c2k* + c3h )m, se,n=12,---.
Taking the limit 7 — oo in (9), and using (13) and (14), we obtain
wra—1 00
)=+ [ G,/ 9, () (STENS (15)
0

which, by Lemma 2.3, implies that u € FC(J, P) is a nonnegative solution of problem (1).

Finally, we prove the minimal property of the solution u(t). Let u(t) € FC(J, P) be any solution of (1). By
Lemma 2.3, u(t) satisfies (2). Also, we have that u(t) > 0 = uy(t) for t € J. Assuming that u(f) > u,_1(t) holds
for t € ], it follows from (2), (9) and (H;) that u(t) > u,(t). Hence, by induction, taking the limit n — oo, we
get u(t) > u(t) for t € J. This implies that u(t) is the minimal solution of (1). This completes the proof. 0O



L. Zhang, B. Ahmad, G. Wang / Filomat 31:5 (2017), 1331-1338 1335

Theorem 3.2. Let P be a regular cone and the conditions (H1), (Hy) hold. If there exists a w € FC(J, P) with its
Riemann-Liouville derivative of order a existing on | such that

{ Dw(t) + f(t, w(t), Tw(t), Sw(t)) < 6, (16)

w(0) =6, D¥lw(co) > ur,
then (1) has a minimal nonnegative solution u. Moreover, u € FC(J, P) and u < w(t), Vt € J.

Proof. From (16) and Lemma 2.3, we have

w(t) 2 F( + _[) G(t,s)f (s, w(s), (Tw)(s), (Sw)(s))ds (17)

= (Aw)(®),

where G(t, s) is given by 3 and the operator A is defined by (6).
Let ug(t) = 0, u,(t) = (Auy—1)(t),n =1,2,3--- . As in the proof of Theorem 3.1, (10) holds. Furthermore,
up(t) < w(t). Assuming u,_1(t) < w(t) for t € |, we find by (H3) and (17) that

u(t) = (Auy1)(t) < (Aw)(t) < w(t), VEe ]

Also, from (10), (17) and the regularity of P, (12) holds and we have that u(t) < w(t), Vt € J. Thus, it follows
that
(Il < Nllw(®ll, ¥t € ],

where N denotes the normal constant of the cone P. As in the proof of Theorem 3.1, it can be shown that
{u, ()} converges to u(t) uniformly on J. Hence u(t) € FC(J, P). Further, we have that u(t) satisfies (15) and u
is the minimal nonnegative solution of (1). This completes the proof. [

Concluding Remarks. It is imperative to note that our method of proof is entirely different from the one
employed in ([41]-[48]). In case f does not depend on Volterra integral operator Tu(t) and Fredholm integral
operator Su(t), our problem reduces to the one considered in [44], where the existence of the solution for
the problem (1) with nonlinearity f(¢, u(t)) was shown by requiring a condition of the form:

(H) there exists a nonnegative function I(t) € L'(]) such that a(f(t, B)) < I(t)a(B), t € ], where B is any
bounded subset of E and fow(l + D)t < T(a).
In the present work, we not only remove the condition (H) on f, but also obtain minimal nonnegative
solution of the problem (1). Thus, our results generalize and improve the work presented in [44].

4. Example
Consider the problem
3 ety e 21 + 2uy, + oy g3t ! (1) 3
D2u,(t) + o5 + — . + 5 [1 + e uz,,(s)ds]
5(1+ ) 21+3(1 + i) 10(1 + Vi) 0

[f un(S) 2 3 -, 0<t<oo, (18)
2n+2(1+ Vi) 1+t+s

1y(0) =0, Dy (o0) =

We will prove that the problem (18) has a minimal nonegative solution u,(f) satisfying Y, u,(f) < co
for t > 0.

LetE=1"={u=(uy,- ) Yoq lthy] < oo} withnorm |jul| = Yo7, luyland P = {u = (u1, -+ ,up, ) €
I":u,>0,n=1,2,---}. Then P is a normal cone in E. Since I' is weakly complete, from Theorem 2.2 in [49],
the normality of P implies the regularity of P, it's easy to show that P is fully regular.
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Now (18) can be considered as a boundary value problem of form (1) in E, where u = (11, - - , uy,
(vlr' ©yOny ')/w = (wlr' cc, Why e '),k(t,S) = e_(Hl)s/h(trS) = (1 +i+ 52)_1/f = (fl/' o /fnl o ')1

—t -2t —3t
e Uy e V1 + 2uy, + upyi e
f?’l(tl u/ U/ w) = — + ! -~ +

1
1+02,)
51+ VD5 2731+ VB 101+ \/E)z( )
o2t .
+—w;,
22(1 + VB
1
and 0 = {0, /0/"'}/ ut = {1, ’g’...}'
Clearly, f € C(J x P X P x P, P), where | = [0, ), and 6, u* € P. Then, the condition (H;) holds.
Note that
t 1 — e+t 00 00
k= supf e ds = sup ———ds <1, h' = supf (1+t+5>)7lds < f (1+5%)7ds =
te] Jo ey E+1 te] Jo 0 2
and | |
. 1 1 . t—t
li | - 'd = li
Pt 0o M+t +s> 1+4+t+¢? =

_ ’
lim ds=0, t',te]

o0 (A+t+s)A+1t +52)
By a simple computation, we have

etu e 2t 1 et 1
0< fn(t, u,o, ZU) 55(1 " ”\‘;1;)5 + 2n+3(1 N \/2)3 (1 +u, + §u2n+1) + m(l + EUQH)
N L(% +Lu,)
2421+ V1) '3 3
< €_2t + e_t [1Lln+1 + Lun + L1/lzn+1 + lUZn + ;w,,]
10(1 + \E) (l + \ﬁ) 5 on+3 on+4 50 3 x Qn+2

So,
|memw$w§j®+anMQW+QW+%wwéﬂw+%wﬂ
-— (f: 5 - \ﬁ)[%uun + gloll + 25 ko]
anda’ = [~ a(hdt = [ w(f_—j\ﬁ)dt < 21—0 b= ["(1+ Vhb(t)dt = [ e™'dt = 1. Then (H;) holds.

In addition,

1. 1. ¢m
etk tel) 80 50 24 g cnrg15 <1,
I'(a) \r
2

Hence, all conditions of Theorem 3.1 hold. Thus, our conclusion follows from Theorem 3.1.
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