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Available at: http://www.pmf.ni.ac.rs/filomat

The Transmuted Generalized Modified Weibull Distribution

Gauss M. Cordeiroa, Abdus Saboorb, Muhammad Nauman Khanb, Serge B. Provostc, Edwin M.M.
Ortegad

aDepartamento de Estatı́stica, Universidade Federal de Pernambuco, 50740-540, Recife, PE, Brazil
bDepartment of Mathematics, Kohat University of Science & Technology, Kohat, Pakistan 26000

cDepartment of Statistical & Actuarial Sciences, the University of Western Ontario, London, N6A5B7 Canada
dDepartamento de Ciłncias Exatas, Universidade de São Paulo, 13418-900, Piracicaba, SP Brazil.

Abstract. A profusion of new classes of distributions has recently proven useful to applied statisticians
working in various areas of scientific investigation. Generalizing existing distributions by adding shape
parameters leads to more flexible models. We define a new lifetime model called the transmuted general-
ized modified Weibull distribution from the family proposed by Aryal and Tsokos [1], which has a bathtub
shaped hazard rate function. Some structural properties of the new model are investigated. The param-
eters of this distribution are estimated using the maximum likelihood approach. The proposed model
turns out to be quite flexible for analyzing positive data. In fact, it can provide better fits than related
distributions as measured by the Anderson-Darling (A∗) and Cramér-von Mises (W∗) statistics, which is
illustrated by applying it to two real data sets. It may serve as a viable alternative to other distributions for
modeling positive data arising in several fields of science such as hydrology, biostatistics, meteorology and
engineering.

1. Introduction

The Weibull distribution is a popular lifetime model in reliability engineering. However, this distribution
does not have a bathtub or upside–down bathtub shaped hazard rate function (hrf), and thus cannot be
used to model the lifetime of certain systems. To overcome this shortcoming, several generalizations of
the classical Weibull distribution have been discussed by different authors in recent years. Many authors
introduced flexible distributions for modeling complex data and obtaining better fits. Extensions of the
Weibull distribution have been developed for one or more of the following reasons: providing a physical
or statistical theoretical interpretation to explain the mechanism whereby the data is generated, improving
on a model that has previously been used successfully, and introducing a model whose empirical fit better
suits a particular data set.
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The research of Gauss Cordeiro and Abdus Saboor have been supported by CNPq agency, Brazil and by the Higher Education

Commission of Pakistan under NRPU project No 3104, respectively.
Email addresses: gausscordeiro@gmail.com (Gauss M. Cordeiro), saboorhangu@gmail.com; dr.abdussaboor@kust.edu.pk

(Abdus Saboor), zaybasdf@gmail.com (Muhammad Nauman Khan), provost@stats.uwo.ca (Serge B. Provost), edwin@usp.br
(Edwin M.M. Ortega)



G.M. Cordeiro et al. / Filomat 31:5 (2017), 1395–1412 1396

The generalized Weibull distributions arise in numerous areas of research as can been seen for instance
from the papers of Aryal and Tsokos [1], Lai et al. [2], Ghitany et al. [3], Carrasco et al. [4], Saboor et al. [5],
Cordeiro et al. [6], Cordeiro et al. [7], Peng and Yan [8], Khan [9], Tojeiro et al. [10], Almalki and Yuan [11] and
Saboor et al. [12]. Many extended Weibull models have upside–down bathtub shaped hazard rates, which
is the case for the extensions discussed by Carrasco et al. [4], Jiang and Murthy [13] and Silva et al. [14],
among others. Certainly, one of the most important extensions is the modified Weibull (MW) distribution
introduced by Lai et al. [2]. Let GL(x;α, γ, λ) be the MW cumulative distribution function (cdf) with the
three parameters α > 0, γ > 0 and λ ≥ 0. Carrasco et al. [4] proposed the generalized modified Weibull
(GMW) distribution by raising G(x;α, γ, λ) to the power ϕ > 0, say G(x) = GL(x;α, γ, λ)ϕ. Thus, its cdf is
given by

G(x) = [1 − exp{−αxγ exp(λx)}]ϕ. (1)

The cdf (1) is sometimes referred to as that of the exponentiated modified Weibull distribution. Its associated
probability density function (pdf) is

1(x) =
αϕxγ−1 (γ + λx) exp{λx − αxγ exp(λx)}

[1 − exp{−αxγ exp(λx)}]1−ϕ
, x > 0. (2)

The parameter α is a scaling parameter, whereas the parameters γ and ϕ affect the shape of the distribution.
The parameter λ is a sort of accelerating factor with respect to time which is acting increasingly as a fragility
factor in the survival of a unit. The MW distribution corresponds to ϕ = 1. The Weibull distribution is a
special model of (2) with λ = 0 and ϕ = 1. If Z is a random variable with density function (2), we write
Z ∼GMW(α, γ, λ, ϕ).

Adding new shape parameters to expand a model into a larger family of distributions that can be
significantly skewed and heavy-tailed plays a fundamental role in distribution theory. More recently, new
univariate continuous distributions have been defined by introducing additional shape parameters to a
baseline model. Indeed, there has been an increased interest in defining new generators for univariate
continuous distributions by making use of this technique. The introduction of additional parameter(s) has
proved useful in exploring tail properties and for improving the goodness-of-fit of the proposed generator
family as well. Aryal and Tsokos [1] pursued this approach by proposing an interesting method for adding
a new parameter to an existing distribution. The resulting distribution provides more flexibility to model
various types of data. It can be defined as follows: If the baseline distribution has the cdf G(x) and pdf 1(x),
the cdf and pdf (for |η| ≤ 1) of the transmuted extended distribution are given by

F(x) = (η + 1) G(x)− ηG(x)2 (3)

and

f (x) = (1 + η) 1(x)− 2 ηG(x) 1(x), (4)

respectively.
Note that η = 0 in equation (4) corresponds to the baseline distribution. Further details can be found in

Shaw and Buckley [15].
Some distributions belonging to this class have recently been introduced. For example, Aryal and Tsokos

[1] defined the transmuted Weibull for modeling the tensile fatigue characteristics of a polyester/viscose
yarn. We now generalize that model by applying the transmuted technique [1] to equation (2), which
defines the so-called transmuted generalized modified Weibull (TGMW) distribution. Then, the cdf, survival
function, pdf and hrf of this distribution are obtained, respectively, from equations (3) and (4) (for x > 0, α >
0 , γ > 0 , λ > 0 , ϕ > 0 , |η| ≤ 1) as

F(x) =
[

1 − exp {− exp (xλ)xγα}
]ϕ

(

1 + η − η
[

1 − exp {− exp (xλ)xγα}
]ϕ

)

, (5)

S(x) = 1 −
[

1 − exp {− exp (xλ)xγα}
]ϕ

(

1 + η − η
[

1 − exp {− exp (xλ)xγα}
]ϕ

)

, (6)
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f (x) = αϕxγ−1(xλ + γ) exp {xλ − αxγ exp (xλ)}
[

1 − exp {−αxγ exp (xλ)}
]ϕ−1

×
(

1 + η − 2η
[

1 − exp {−αxγ exp (xλ)}
]ϕ

)

(7)

and

h(x) = αϕxγ−1(xλ + γ) exp {xλ − αxγ exp (xλ)}
[

1 − exp {−αxγ exp (xλ)}
]ϕ−1

×

(

1 + η − 2η
[

1 − exp {−αxγ exp (xλ)}
]ϕ

)

1 −
[

1 − exp {− exp (xλ)xγα}
]φ

(

1 + η − η
[

1 − exp {− exp (xλ)xγα}
]ϕ

)
. (8)

Henceforth, a random variable X having density function (7) is denoted by X ∼TGMW(α, ϕ, γ, λ, η). We
note that the parameters of the GMW model in equation (1) are identifiable, i.e., if θ1 = (α1, γ1, λ1, ϕ1)T and
θ2 = (α2, γ2, λ2, ϕ2)T are such that if θ1 , θ2 then Gθ1

(x) , Gθ2
(x) for all x > 0. Due to the identifiability of the

GMW distribution, the transmuted extended generator (3) guarantees the identifiability of the proposed
distribution. A further motivation for the TGMW model is to test its adequacy versus several sub-models
on a data set using the classical likelihood ratio statistics.

The paper is organized as follows. Some special models of the new distribution are provided in Section
2. Plots of the parameter effects on the pdf (7) are given in Section 3. Useful expansions for (5) and (7) are
derived in Section 4. Explicit expressions for certain statistical functions of X are obtained in Section 5. The
estimation of the model parameters is addressed in Section 6. In Section 7, we illustrate the usefulness of
the TGMW distribution for modeling lifetime data by applying it to two real data sets originating from the
engineering and biological sciences, and comparing this new model to some other related distributions.
Finally, Section 8 offers some concluding remarks.

2. Special Distributions

The TGMW distribution includes as sub-models the following known distributions:

• Generalized Modified Weibull distribution

For η = 0, equation (7) yields (2).

• Weibull distribution

For λ = 0, ϕ = 1 and η = 0, equation (7) yields

f (x) = αγxγ−1 exp(−αxγ), x > 0,

which is the classical two-parameter Weibull density. If γ = 1 and γ = 2 in addition to λ = 0 and
ϕ = 1, it gives the exponential and Rayleigh distributions, respectively.

• Extreme-value distribution

For γ = 0, ϕ = 1 and η = 0, equation (7) gives

f (x) = αλ exp
{

λx − α exp(λx)
}

, x > 0,

which is a type I extreme-value (also known as the log-gamma) density.

• Exponentiated Weibull distribution

For λ = 0 and η = 0, the TGMW density reduces to

f (x) = αϕγxγ−1 exp(−αxγ)
{

1 − exp(−αxγ)
}ϕ−1
, x > 0,
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which is the EW density introduced by Mudholkar et al. [16] and Mudholkar et al. [17]. If γ = 1 in
addition to λ = 0 and η = 0, the TGMW distribution becomes the exponentiated exponential due to
Gupta and Kundu [18] and Gupta and Kundu [19]. If γ = 2 in addition to λ = 0 and η = 0, it reduces
to the generalized Rayleigh distribution [20].

• Modified Weibull distribution

For ϕ = 1 and η = 0, the TGMW density becomes

f (x) = αxγ−1(γ + λx) exp
{

λx − αxγ exp(λx)
}

, x > 0,

which is the MW density introduced by Lai et al. [2].

• Beta integrated distribution

The beta integrated distribution was defined by Lai et al. [21] and its survival function is

S(x) = exp
{

− αxγ(1 − dx)c
}

, α, γ, d > 0, c < 0.

Setting d = 1/n and c = −nλ and letting n→∞ , one has

(1 − dx)c =
(

1 −
x

n

)−λn
→ exp(λx)

and, in the limit,

S(x) ≈ exp
{

− αxγ exp(λx)
}

,

which is the survival function (6) of the TGMW distribution when ϕ = 1 and η = 0.

3. The Effect of the Parameters on the pdf and hrf

Plots of the pdf (7) and hrf (8) of the TGMW distribution are displayed in Figures 1-4 for selected
parameter values.
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Figure 1: Plots of the TGMW density function. (a) α = 1.5; ϕ = 1.6; γ = 1.3; λ = 1.4 and η = −1 (dotted line), η = −0.3 (dashed line),
η = 0.3 (solid line), η = 1 (thick line). (b) ϕ = 1.2; γ = 1.3; λ = 1.4; η = 1 and α = 1 (dotted line), α = 2 (dashed line), α = 3 (solid
line), α = 4 (thick line).
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Figure 2: Plots of the TGMW density function. (c) α = 1.2; γ = 1.3; λ = 1.4; η = 1 and ϕ = 1 (dotted line), ϕ = 1.5 (dashed line), ϕ = 3
(solid line), ϕ = 5 (thick line). (d) α = 0.1; ϕ = 0.5; λ = 10; η = 0.13 and γ = 0.3 (dotted line), γ = 0.8 (dashed line), γ = 1.2 (solid
line), γ = 1.6 (thick line).
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Figure 3: Plots of the TGMW density function. (e) α = 1.2; γ = 1.4; ϕ = 1.3; η = 1 and λ = 1 (dotted line), λ = 1.5 (dashed line), λ = 3
(solid line), λ = 5 (thick line). (f) The TGMW hazard rate function. α = 1.2; ϕ = 3.3; γ = 0.7; λ = 0.2; η = 0.1 (increasing hrf) and
α = 0.5; ϕ = 1.5; γ = 0.14; λ = 0.25; η = 1 (decreasing hrf).
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Figure 4: Plots of the TGMW hrf. (g) α = 1.8; λ = 5.2; η = 0.9 and γ = 0.7; ϕ = 0.7 (dotted line), γ = 0.07; ϕ = 1.7 (dashed line),
γ = 0.01; ϕ = 3.0 (thick line). (f) The TGMW hazard rate function. α = 15; λ = 0.25; η = 0.01; γ = 0.4 and ϕ = 10 (dotted line), ϕ = 30
(dashed line), ϕ = 90 (thick line).
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The plots in Figures 1, 2 and 3 (e) reveal how the parameters α, ϕ, γ, λ and η affect the TGMW density.
They illustrate the flexibility of the new distribution. The plots in Figures 3 (f) and 4 indicate that the hrf
of the TGMW distribution can take the most common forms in real applications: increasing, decreasing,
bathtub and upside-down bathtub shapes.

4. Useful Expansions

In this section, we demonstrate that the TGMW density (7) can be expressed as a linear mixture of MW
densities.

The cdf (5) of the TGMW distribution can be written as

F(x) = (1 + η)
[

1 − exp {− exp (xλ) xγ α}
]φ
− η

[

1 − exp {− exp (xλ)xγα}
]2φ . (9)

It is then seen that this cdf is simply a linear combination of two GMW cdf’s. Similarly, the corresponding
pdf is a linear combination of two GMW pdf’s.

In light of the generalized binomial expansion

(1 − x)α =

∞
∑

k=0

(−1)k

(

α

k

)

xk ,

equation (9) can be further rewritten as

F(x) =

∞
∑

k=0

ek exp {−kα exp (xλ)xγ}, (10)

where

ek = (−1)k

[

(1 + η)

(

φ

k

)

− η

(

2φ

n

)]

.

Let Sk+1(x) = exp {−[k + 1]α exp (xλ)xγ} (for k ≥ 0) be the survival function of the MW([k + 1]α, γ, λ)
distribution and hk+1(x) be the corresponding density function. By differentiating (10), we obtain

f (x) =

∞
∑

k=0

dk+1 hk+1(x), (11)

where dk+1 = −ek+1 for k ≥ 0, which constitutes the main result of this section. It can be used to obtain some
mathematical properties of the TGMW distribution from those of the MW properties.

5. Statistical Functions

5.1. Moments

In this section, we explain how to evaluate the positive, negative, central and factorial moments of a
TGMW random variable denoted by X. The rth ordinary real moment of X, say µ′r = E(Xr), follows from (7)
as

µ′r = αϕ

∫ ∞

0

xr xγ−1(xλ + γ) exp {xλ − αxγ exp (xλ)}
[

1 − exp {−αxγ exp (xλ)}
]ϕ−1

×
(

1 + η − 2η
[

1 − exp {−αxγ exp (xλ)}
]ϕ

)

dx.

This expression can be rewritten as

µ′r = αϕ (1 + η)

∫ ∞

0

xr+γ−1 (xλ + γ) exp {xλ − αxγ exp (xλ)} ×
[

1 − exp {−αxγ exp (xλ)}
]ϕ−1

dx

− 2αϕη

∫ ∞

0

xr+γ−1 (xλ + γ) exp {xλ − αxγ exp (xλ)} ×
[

1 − exp {−αxγ exp (xλ)}
]2ϕ−1

dx . (12)
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We recommend making use of numerical integration to evaluate these moments. In our experience, such
calculations are quick and accurate. Moreover, they should be less prone to computational errors than
complicated analytical truncated closed-form representations. Table 1 provides some numerical values
for the first four moments, as well as the skewness and kurtosis of X based on equation (12) for selected
parameter values.

Table 1: Moments, Skewness and Kurtosis of X for selected parameter values

Moments→ µ′1 µ′2 µ′3 µ′4 Skewness Kurtosis

η ↓ α = 0.2 ϕ = 1.3 γ = 0.6 λ = 0.5

-0.8 2.59897 7.76566 25.2754 87.6567 -0.15981 2.68669
-0.2 2.21679 6.14381 19.1001 64.2293 0.021102 2.36019
0.2 1.962 5.06258 14.9832 48.6111 0.217101 2.37599
0.5 1.77091 4.25166 11.8956 36.8974 0.352412 2.51519
0.8 1.57982 3.44073 8.80791 25.1837 0.420885 2.64489

λ ↓ α = 0.5 ϕ = 0.3 γ = 1.6 η = 0.4

0.2 0.441272 0.476839 0.716051 1.29834 1.71278 6.0032
0.8 0.344198 0.252273 0.240564 0.266139 1.25911 4.03014
1.4 0.293484 0.171431 0.126824 0.107217 1.0615 3.39105
1.8 0.269978 0.140661 0.091753 0.067963 0.973929 3.14709
3.0 0.222773 0.090003 0.044537 0.024730 0.800812 2.7331

γ ↓ α = 2.5 ϕ = 0.7 λ = 0.1 η = −0.4

0.2 0.202613 0.478456 1.83756 9.06083 5.40426 40.1645
0.7 0.292455 0.23941 0.313669 0.552059 2.54536 12.0798
1.5 0.451737 0.302441 0.253996 0.250493 0.923425 3.81448
3.0 0.623854 0.448197 0.353979 0.300299 0.052411 2.6342
5.0 0.736295 0.576583 0.472684 0.401894 -0.404401 2.97977

ϕ ↓ α = 0.9 γ = 0.4 λ = 2.1 η = −0.7

0.1 0.056051 0.021173 0.010601 0.006174 3.05372 12.8168
0.5 0.211323 0.090457 0.047919 0.028817 0.963809 3.13018
1.1 0.340613 0.164441 0.092710 0.057909 0.348364 2.42396
1.7 0.417044 0.217833 0.128553 0.082714 0.117802 2.50887
2.5 0.482564 0.270831 0.167252 0.111013 -0.01088 2.70552

α ↓ ϕ = 3.3 γ = 2.0 λ = 0.9 η = 0.5

0.1 1.71328 3.02534 5.49102 10.2218 -0.02385 3.06834
0.7 0.929461 0.904557 0.91756 0.966692 0.149935 3.05741
2.5 0.57937 0.355553 0.229803 0.155734 0.273581 3.12829
5.0 0.438001 0.204438 0.101053 0.052642 0.337649 3.19065
7.0 0.380448 0.154668 0.066759 0.030441 0.366921 3.22503

The hth negative real moment can be determined by replacing r with −h in equation (12).
Further, the central moments (µn) and cumulants (κn) of X are easily determined from (12) as

µn =

n
∑

k=0

(−1)k

(

n

k

)

µ′k1 µ
′
n−k and κn = µ

′
n −

n−1
∑

k=1

(

n − 1

k − 1

)

κk µ
′
n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ
′2
1

, κ3 = µ′3 − 3µ′2µ
′
1
+ 2µ′3

1
, etc. Clearly, the skewness and

kurtosis of X can be obtained from the ordinary moments using well-known formulae.
Finally, the nth descending factorial moment of X (for n = 1, 2, . . .) is

µ′(n) = E[X(n)] = E[X(X − 1) × · · · × (X − n + 1)] =

n
∑

j=0

s(n, j)µ′j,
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where s(n, j) = ( j!)−1 [d j j(n)/dx j]x=0 is the Stirling number of first kind.

5.2. Reliability

In the area of stress-strength models, there has been a large amount of work as regards the estimation
of the reliability R = Pr(X2 < X1) when X1 and X2 are independent random variables belonging to the
same univariate family of distributions. The algebraic form for R has been worked out for the majority of
the well-known standard distributions. We now derive the reliability R when X1 and X2 are independent
TGMW random variables with the same parameters except for the parameters η1 and η2, respectively.

Theorem 5.1. The reliability R = Pr(X2 < X1) is the solution of the equation

R =

∫ ∞

0

f1(x;α, γ, λ, ϕ, η1) F2(x;α, γ, λ, ϕ, η2)dx , (13)

which is given in equation (15).

Proof. Substituting (5) and (7) in equation (13), we obtain

R = αϕ

∞
∫

0

xγ−1(xλ + γ) exp {xλ − αxγ exp (xλ)}
[

1 − exp {−αxγ exp (xλ)}
]ϕ−1

×
(

1 + η1 − 2η1
[

1 − exp {−αxγ exp (xλ)}
]ϕ

)

[

1 − exp {− exp (xλ)xγα}
]ϕ

×
(

1 + η2 −
[

1 − exp {− exp (xλ)xγα}
]ϕ η2

)

dx.

Letting u = exp(−αxγ exp(λx)), 1
u du = −αxγ exp(λx)[(γ + λx)/x]dx and we have

R = −ϕ

1
∫

0

(1 − u)2ϕ−1{1 + η1 − 2η1(1 − u)ϕ}{1 + η2 − η2(1 − u)ϕ}du . (14)

Solving the integral in (14), we obtain

R =
η1 − η2 − 3

6
. (15)

5.3. Order statistics

The density of the ith order statistic Xi:n, fi:n(x) say, in a random sample of size n from the TGMW
distribution is given by

fi:n(x) =
1

B(i, n − i + 1)
f (x) F(x)i−1 [1 − F(x)]n−i, i = 1, . . . , n, (16)

where B(·, ·) is the beta function.

Theorem 5.2. The density of Xi:n can be expressed as the mixture of MW densities specified by equation (19).

Proof. The derivation is based on an equation of Section 0.314 of Gradshteyn and Ryzhik [23] for a power
series raised to a positive integer j















∞
∑

s=0

as us















j

=

∞
∑

s=0

c j,s us, (17)
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where c j,0 = a
j

0
and the coefficients c j,s (for s ≥ 1) are obtained from the recurrence equation

c j,s = (s a0)−1
s

∑

m=1

[m( j + 1) − s] am c j,s−m. (18)

The coefficients c j,s can be evaluated numerically from (18) and the constants a0, . . . , as, by using any
computing software packages such as Matlab, Maple or Mathematica.

We can rewrite (16) as

fi:n(x) =
1

B(i, n − i + 1)
f (x)

i−1
∑

k=0

(−1)k [1 − F(x)]n−i+k.

We define as = ds+1 (for s ≥ 0) and u = u(x) = exp
{

−α xγ exp(λx)
}

as in Section 5.2. Since S(x) =
∑∞

s=0 as us+1,
the above sum becomes

i−1
∑

k=0

(−1)k
(

∞
∑

s=0

as us+1
)n−i+k

=

i−1
∑

k=0

(−1)k
∞
∑

s=0

cn−i+k,s u(n−i+k)+s,

where the constants cn−i+k,s can be determined from the as’s using (18).
Based on the mixture form (11), we can write

fi:n(x) =
1

B(i, n − i + 1)

∞
∑

j,s=0

i−1
∑

k=0

(−1)k a j cn−i+k,s ( j + 1)α xγ−1 (γ + λx)

× exp
{

λx − α [n − i + k + 1 + s + j] xγ exp(λx)
}

.

Finally, we obtain

fi:n(x) =

i−1
∑

k=0

∞
∑

j,s=0

pk, j,s hn−i+k+1+s+ j(x), (19)

where hn−i+k+1+s+ j(x) is the MW([n − i + k + 1 + s + j]α, γ, λ) density function and

pk, j,s = pk, j,s(a, b, i, n) =
(−1)k ( j + 1) a j cn−i+k,s

(n − i + k + 1 + s + j)
.

Some mathematical properties of the TGMW order statistics can be obtained from (19) and the properties
of the MW distribution.

5.4. Quantile Function

The quantile function (qf) is useful for determining various mathematical properties of a distribution.
In some cases, it is possible to invert the cdf. However, for some other distributions, the inverse function
cannot be obtained in closed-form. In the case at hand, we shall resort to power series methods, which are
at the heart of many solutions in applied mathematics and statistics. The qf QX(p) of the random variable
X ∼ F is defined from the generalized inverse of its cdf for a fixed probability p, namely

QX(p) = inf{x ∈ R+ : p ≤ F(x)}, p ∈ (0, 1).

For the TGMW distribution, one has the following result:
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Theorem 5.3. Let X ∼TGMW(α, ϕ, γ, λ, η). Then the related quantile function QX(p) is the unique positive solution
of the equation

1 − exp{−α xγ exp (λx)} = (A1,2)
1
φ ,

which is given in equation (21).

Proof. We have to invert the equation F(x) = p for some fixed p ∈ (0, 1) with respect to x. Setting

A =
[

1 − exp{−α xγ exp (λx)}
]φ ,

the problem reduces to solving the quadratic equation ηA2 − (1 + η)A + p = 0. Thus,

A1,2 =
1 + η ±

√

(1 + η)2 − 4pη

2η
.

We look for an explicit solution x = QX(p) of the nonlinear equation

1 − exp{−α xγ exp (λx)} = (A1,2)
1
φ .

Since the left-hand side of this equation is less then one, both solutions A1,2 cannot be satisfactory for this
model. Actually, we have the restriction A < 1 on the whole range of parameters min(α, γ, λ, φ) > 0 in
conjunction with p ∈ (0, 1). Since

A1 − 1 =
1 − η +

√

(1 + η)2 − 4pη

2η
<

1 − η + 1 + η

2η
=

1

η
, η > 0 ,

and

A2 − 1 =
1 − η −

√

(1 + η)2 − 4pη

2η
<

1 − η − (1 − η)

2η
= 0 , η > 0 ,

we obtain

1 − exp{−α xγ exp (λx)} = A
1
φ =













1 − η −
√

(1 + η)2 − 4pη

2η













1
φ

, η > 0 , (20)

to be solved in x. Further, we need the Lambert W-function, the inverse function of W 7→ W exp(W). Its
principal branch WP is the solution of W exp(W) = x for which WP(x) ≥ WP{− exp(−1)}. This function is
implemented in Mathematica as ProductLog[z]. We are interested in WP exclusively for x > 0, where it is
single–valued and monotone increasing, see [22].

Next, it follows that

exp{−α xγ exp (λx)} = 1 − A
1
φ , xγ exp (λx) = log

(

1 − A
1
φ

)− 1
α

,

(λx)γ exp (λx) =
λγ

α
log

1

1 − A
1
φ

,
λx

γ
exp

(

λx

γ

)

=
λ

γα
1
γ

[

log

(

1

1 − A
1
φ

)] 1
γ

,

and then

λx

γ
=WP















λ

γα
1
γ

{

log
1

1 − A
1
φ

} 1
γ















.
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Finally, we have

QX(p) =
γ

λ
WP















λ

γα
1
γ

{

log
1

1 − A
1
φ

}
1
γ















, p ∈ (0, 1), (21)

where

A = A(p) =
1 − η −

√

(1 + η)2 − 4pη

2η
, η > 0 .

Letting H(·) be any integrable function on the positive real line, we can write
∫ ∞

0

H(x) f (x)dx =

∫ 1

0

H
(

QX(p)
)

dp. (22)

In fact, for specific H(·) functions, the integral on the right-hand side of (22) can be more easily evaluated
using the ProductLog[z] in Mathematica than that one on the left-hand side.

6. Estimation

Several methods have been proposed in the literature for parameter estimation but the maximum
likelihood approach is the most employed. The maximum likelihood estimators (MLEs) enjoy desirable
properties and can be used to obtain confidence intervals for the model parameters. In this section, we
consider the maximum likelihood estimation of the unknown parameters of the proposed distribution on
the basis of complete samples. In order to estimate the parameters of the TGMW density function defined
in equation (7), the log-likelihood function, given the observed sample xi (for i = 1, . . . , n), is maximized
with respect to these parameters. It is given by

ℓ(θ) = n{log(α) + log(ϕ)} +

n
∑

i=1

{

λxi − αx
γ

i
exp (λxi)

}

+ (ϕ − 1)

n
∑

i=1

log
[

1 − exp{−αx
γ

i
exp (λxi)}

]

+ (γ − 1)

n
∑

i=1

log (xi) +

n
∑

i=1

log
(

γ + λxi
)

+

n
∑

i=1

log
[

1 + η − 2
{

1 − exp(−α exp{λxi}x
γ

i
)
}ϕ
η
]

.

We assume that the following standard regularity conditions for ℓ = ℓ(θ) = ℓ(α, ϕ, γ, λ, η) hold: i) The
parameter space, say Θ, is open and ℓ has a global maximum in Θ; ii) For almost all x, the fourth-order
log-likelihood derivatives with respect to the model parameters exist and are continuous in an open subset
of Θ that contains the true parameter; iii) The support of X does not depend on unknown parameters;
iv) The expected information matrix is positive definite and finite. These regularity conditions are not
restrictive and hold for the models cited in this paper.

The nonlinear system of the log-likelihood equations resulting from equating the derivatives of ℓ(θ)
with respect to each parameter to zero is

∂ℓ(θ)

∂α
=

n

α
−

n
∑

i=1

exp (λxi)x
γ

i
− (1 − ϕ)

n
∑

i=1

exp{λxi − exp (λxi)αx
γ

i
}x
γ

i

1 − exp{− exp (λxi)αx
γ

i
}

−

n
∑

i=1

2 exp (λxi) − αx
γ

i
exp(λxi)

[

1 − exp{− exp(λxi)αx
γ

i
}
]−1+ϕ

ηϕ x
γ

i

1 + η − 2 η
[

1 − exp{− exp(λxi)αx
γ

i
}
]ϕ = 0,

∂ℓ(θ)

∂ϕ
=

n

ϕ
+

n
∑

i=1

log
[

1 − exp{−α x
γ

i
exp(λxi)}

]

− 2 η
n

∑

i=1

[

1 − exp{−αx
γ

i
exp(λxi)}

]ϕ
log

(

1 − exp{− exp(λxi)α x
γ

i
}
]

1 + η − 2 η
[

1 − exp{− exp(λxi)α x
γ

i
}
]ϕ = 0,
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∂ℓ(θ)

∂γ
=

n
∑

i=1

log (xi) +

n
∑

i=1

1

γ + λxi
+

n
∑

i=1

− exp (λxi)α log (xi) x
γ

i

+ (−1 + ϕ)

n
∑

i=1

exp{(λxi) − αx
γ

i
exp (λxi)}α log (xi) x

γ

i

1 − exp{− exp (λxi)α x
γ

i
}

−

n
∑

i=1

2 exp{λxi − αx
γ

i
exp(λxi)}

[

1 − exp{− exp(λxi)α x
γ

i
}
]−1+ϕ

αηϕ log (xi) x
γ

i

1 + η − 2 η
[

1 − exp{−αx
γ

i
exp(λxi)}

]ϕ = 0,

∂ℓ(θ)

∂λ
= (−1 + ϕ)

n
∑

i=1

exp{λxi − αx
γ

i
exp(λxi)}αx

1+γ

i

1 − exp{−αx
γ

i
exp(λxi)}

+

n
∑

i=1

xi

γ + λxi
+

n
∑

i=1

[

xi − αx
1+γ

i
exp(λxi)

]

−

n
∑

i=1

2 exp{λxi − αx
γ

i
exp(λxi)}

[

1 − exp{−αx
γ

i
exp(λxi)}

]−1+ϕ
αηϕ x

1+γ

i

1 + η − 2η
[

1 − exp{−αx
γ

i
exp(λxi)}

]ϕ = 0,

∂ℓ(θ)

∂η
=

n
∑

i=1

1 − 2
[

1 − exp{−αx
γ

i
exp(λxi)}

]ϕ

1 + η − 2 η
[

1 − exp{−αx
γ

i
exp(λxi)}

]ϕ = 0. (23)

Although these equations cannot be solved analytically, a numerical solution can be determined by
using computing packages. Iterative techniques such as Newton–Raphson type algorithms can be adopted

to obtain θ̂. We employed the NLMixed procedure in SAS. The global maxima of the log-likelihood can
be investigated by setting different starting values for the initial parameters. The information matrix is
required for interval estimation. Expressions for the elements J(θ) = {Jrs(θ)} for r, s = α, γ, λ, ϕ, η as the
opposite of the 5 × 5 Hessian matrix of ℓ(θ) are derived. As they are quite lengthy, the fifteen distinct
elements of J(θ) are not included in the present paper. They can be obtained by differentiating ℓ(θ) with
respect to pairs of parameters and multiplying the results by -1, which can be readily achieved by making
use of any symbolic computing packages. Alternatively, the results are available upon request from the

second author. Under the aforementioned regularity conditions, the asymptotic distribution of (θ̂ − θ)
is N5(O,K(θ)−1), where K(θ) = E{J(θ)} is the expected information matrix. The approximate multivariate

normal N5(O, J(θ̂)−1) distribution, where J(θ̂)−1 is the inverse of the observed information matrix, can be
used in practice to construct approximate confidence intervals for the parameters.

The following results pertain to the existence and uniqueness of the maximum likelihood estimates of
ϕ and η.

Theorem 6.1. Let us suppose that the parameters α, λ, γ and η are known. If η ∈ (0, 1), then there exists a unique
MLE of the parameter ϕ.

Proof. To simplify the proof we will use the notation

yi = 1 − exp{−αx
γ

i
exp(λxi)}.

Then, we obtain that

∂2ℓ(θ)

∂ϕ2
= −

n

ϕ2
− 2η

(

1 + η
)

n
∑

i=1

y
ϕ

i

{

log
(

yi
)}2

(

1 + η − 2ηy
ϕ

i

)2
.

Since η ∈ (0, 1), it follows that
∂2ℓ(θ)
∂ϕ2 < 0, which means that

∂ℓ(θ)
∂ϕ is a decreasing function. Also we have that

limϕ→0
∂ℓ(θ)
∂ϕ = ∞ and limϕ→∞

∂ℓ(θ)
∂ϕ =

∑n
i=1 log

(

yi
)

< 0,which proves the uniqueness.

Theorem 6.2. Let us suppose that the parameters α, λ, γ and η are known. If η ∈ (−1, 0), then there exists at least

one MLE of the parameter ϕ which lies in the interval
[

n
−2

∑n
i=1 log(yi)

, n
−

∑n
i=1 log(yi)

]

.
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Proof. First, we have that

∂ℓ(θ)

∂ϕ
=

n

ϕ
+

n
∑

i=1

log
(

yi
)

− 2 η
n

∑

i=1

y
ϕ

i
log

(

yi
)

1 + η − 2 ηy
ϕ

i

;

since 0 < yi < 1 and −1 < η < 0,we obtain that −2 η
∑n

i=1

y
ϕ
i

log(yi)
1+η−2ηy

ϕ

i

< 0,which implies that

∂ℓ(θ)

∂ϕ
<

n

ϕ
+

n
∑

i=1

log
(

yi
)

.

Thus, when ϕ > n
−

∑n
i=1 log(yi)

, it follows that
∂ℓ(θ)
∂ϕ is negative.

Next, since 0 <
−2 η y

ϕ
i

1+η−2η y
ϕ

i

< 1, it follows that

−2 η y
ϕ

i
log

(

yi
)

1 + η − 2 η y
ϕ

i

> log
(

yi
)

,

which implies that

∂ℓ(θ)

∂ϕ
>

n

ϕ
+ 2

n
∑

i=1

log
(

yi
)

.

Finally, for ϕ < n
−2

∑n
i=1 log(yi)

, we obtain that
∂ℓ(θ)
∂ϕ is positive. So, the proof follows from the continuity of the

function
∂ℓ(θ)
∂ϕ .

Further, let us assume that the parameters α > 0, γ > 0, λ > 0 and ϕ > 0 are known. The log-likelihood
for η can be expressed as

ℓ(η) =
n

∑

i=1

log(1 + η − 2 η y
ϕ

i
), η ∈ [−1, 1],

where y1, . . . , yn can be considered known values in (0, 1).
Under what conditions does the MLE η̂ of η exist? The existence of the MLE η̂ is intimately related to

the yi’s, and so it is very difficult to establish some necessary and sufficient conditions. However, we can
obtain sufficient conditions (depending on the observations) such as those cited in Theorem 6.3.

For example, η̂ does not exist when n = 1. In this case, the function

1(η) = 1 + η − 2 η y
ϕ

1
= 1 + (1 − 2 y

ϕ

1
)η

is a straight line with slope 1 − 2 y
ϕ

1
, which is strictly increasing or decreasing if y1 <

(

1
2

)1/ϕ
or y1 >

(

1
2

)1/ϕ
,

respectively. Since log(x) is strictly increasing, we have that ℓ(η) = log[1(η)] is strictly increasing or
decreasing, which implies that ℓ(η) does not have a maximum in the open interval (−1, 1).

For n > 1, the problem is more complex and η̂may or may not exist.

Theorem 6.3. If

n
∏

i=1

(1 − y
ϕ

i
) <

1

2n
and

n
∏

i=1

yi <
1

2n/ϕ
, then the MLE η̂ exists.
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Proof. We have limη→1 ℓ(η) =
∑n

i=1 log[2(1 − y
ϕ

i
)] and limη→−1 ℓ(η) =

∑n
i=1 log(2 y

ϕ

i
). So, the conditions given

in Theorem 6.3 imply that limη→1 ℓ(η) < 0 and limη→−1 ℓ(η) < 0. Since ℓ(0) = 0 and ℓ(η) is continuously

differentiable and strictly concave
(

∂2ℓ(η)

∂η2 < 0
)

, there exists a unique maximum point in the interval (−1, 1).

Henceforth, let y(1) = min{y1, . . . , yn} and y(n) = max{y1, . . . , yn}. In what follows, we present results for
the existence (or lack thereof) of the MLE η̂ in terms of y(1) and y(n).

The following result is a corollary of Theorem 6.3.

Corollary 6.4. If y(1) <
1

2n/ϕ
and y(n) >

(

1 −
1

2n

)1/ϕ

, then η̂ exists.

Since yi ∈ (0, 1), for i = 1, . . . , n, we obtain

n
∏

i=1

y
ϕ

i
< y

ϕ

(1)
,

n
∏

i=1

(1 − y
ϕ

i
) < 1 − y

ϕ

(n)
.

Then, y(1) <
1

2n/ϕ and y(n) >
(

1 − 1
2n

)1/ϕ
imply that the conditions given in Theorem 6.3 hold, which

guarantee the existence of η̂.

Theorem 6.5. If y(n) <
(

1

2

)1/ϕ

or y(1) >
(

1

2

)1/ϕ

, then η̂ does not exist.

Proof. In fact, in these instances, the straight lines

1i(η) = 1 + (1 − 2 y
ϕ

i
) η, i = 1, . . . , n

are strictly increasing if y(n) <
(

1
2

)1/ϕ
or strictly decreasing if y(1) >

(

1
2

)1/ϕ
. Then, ℓ(η) =

∑n
i=1 log[1i(η)] will

be strictly increasing or decreasing, which implies that ℓ(η) has no maximum point in (−1, 1).
Finally, it is easy to check that Uη tends to 0.5

∑

1/y
ϕ

i
− n when η goes to −1 and that Uη tends to

∑ (1−2y
ϕ
i

)

2(1−y
ϕ

i
)

when η goes to 1. The first derivative of the score function is negative, and so the score function is

decreasing. By performing some simulations of the yi’s, we could verify that, in certain instances, Uη > 0
when η → −1 and Uη < 0 when η → 1, which implies the uniqueness of η̂. However, there are some
situations, where both limits are negative or positive, and then there is no MLE of η.

In terms of approximation, the previous results indicate that conditions for the existence of the MLE η̂
are y(1) ≈ 0 and y(n) ≈ 1.

The Anderson-Darling (A∗) and Cramér-von Mises (W∗) statistics are adopted to compare the fitted
models. These statistics are widely used to determine how closely a specific cdf fits the associated empirical
distribution for a given data set. The smaller these statistics are, the better the fit is.

7. Applications

In this section, we compare the TGMW model with other related lifetime models, namely: the trans-
muted exponential–Weibull (TEW) [5], generalized modified Weibull (GMW) [4], Mcdonald Lomax (McLo-
max) [25], beta modified Weibull (BMW) [14] and transmuted exponentiated Weibull geometric (TEWG)
[12] distributions. To do so, we make use of two real data sets: first, the carbon fibre data [7] and, secondly,
the bladder cancer data [24]. More specifically, the fitted models are:

• The TEW density function [5]

f (x) =
(

λ + β k xk−1
)

exp
{

−2
(

λx + β xk
)} {

2α + (1 − α) exp
(

λx + β xk
)}

, x > 0;
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• The GMW density function [4]

f (x) = ϕα xγ−1 (γ + λx) exp
{

λx − αxγ exp(λx)
} [

1 − exp{−α xγ exp(λx)}
]ϕ−1 , x > 0;

• The McLomax density function [25]

f (x) =
cαβα (β + x)−(α+1)

Beta (a c−1, b)

{

1 −

(

β

β + x

)α}a−1 [

1 −

{

1 −

(

β

β + x

)α}c]b−1

, x > 0;

• The BMW density function [14]

f (x) =
α xγ−1 (γ + λx) exp (λx)

[

1 − exp
{

−αxγ exp (λx)
}]a−1

exp
{

−bα xγ exp(λx)
}

Beta(a, b)
, x > 0;

• The TEWG density function [12]

f (x) = θβαθ (1 − p) xθ−1 exp
{

−(αx)θ
} [

1 − exp
{

−(αx)θ
}]β−1

[

1 − p
{

1 − exp
{

−(αx)θ
}}β

]−2

×



















(1 + λ) − 2λ



















(1 − p)
(

1 − exp
{

−(αx)θ
})β

1 − p
(

1 − exp
{

−(αx)θ
})β





































, x > 0.

7.1. The Carbon fibre data

The first data set which is uncensored pertains to the breaking stress of carbon fibres (in Gba) as reported
in Cordeiro et al. [7].

7.2. The bladder cancer data

The second data set represents the remission times (in months) of a random sample of 128 bladder
cancer patients as reported in Lee and Wang [24].

The estimated pdf’s and cdf’s of the TGMW model are plotted in Figures 4 and 5 for the carbon fibres
and cancer data, respectively. The estimates of the parameters as well as the values of the Anderson-Darling
(A∗) and Cramér-von Mises (W∗) statistics are listed in Tables 2 to 5. We note that the TGMW model provides
the best fit for both data sets.

Table 2: MLEs (standard errors in parentheses) for the carbon fibres

Distributions Parameter estimates

TEW (λ, β, k, α) 0.01297 0.00581 4.11180 0.67244
(0.01376) (0.00397) (0.50670) (0.37129)

GMW (ϕ, α, γ, λ ) 5.49894 0.43639 0.14811 0.51628
(8.02208) (0.64986) (0.53839) (0.16932)

McLomax (α, β, a, b, c) 4.01844 44.9998 3.37645 1499.98 5.43418
(16.155) (177.75) (0.79071) (7941.2) (3.49922)

BMW (α, γ, λ, a, b) 0.44730 0.13899 0.49618 5.87258 1.12967
(0.72868) (0.54698) (0.46150) (12.2267) (2.95269)

TEWG (α, θ, β, p, λ) 59.2556 0.45587 1.42577 0.99991 -0.44753
(27.5648) (0.03366) (1.60102) (0.00937) (0.49717)

TGMW (α, ϕ, γ, λ, η) 0.19212 3.31948 0.27486 0.58561 0.67440
(0.40783) (4.54722) (0.82386) (0.23501) (0.37119)
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Table 3: Goodness-of-fit statistics for the carbon fibres

Distributions A∗ W∗

TEW (λ, β, k, α) 0.33372 0.05325
GMW(ϕ, α, γ, λ) 0.38543 0.06279
McLomax (α, β, a, b, c) 0.49648 0.08398
BMW (α, γ, λ, a, b) 0.38423 0.06261
TEWG (α, θ, β, p, λ) 0.77199 0.12016
TGMW (α, ϕ, γ, λ, η) 0.33211 0.05279
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Figure 5: Left panel: The fitted TGMW density superimposed on the histogram for the carbon fibres data. Right panel: The estimated
TGMW cdf and empirical cdf.
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Figure 6: Left panel: The estimated TGMW density superimposed on the histogram for the bladder cancer data. Right panel: The
estimated TGMW cdf and empirical cdf.
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Figure 7: Left panel: The estimated TGMW hrf for the carbon fibres data set. Right panel: The estimated TGMW hrf for the bladder
cancer data set.

Table 4: MLEs (standard errors in parentheses) for the bladder cancer data

Distributions Parameter estimates

TEW (λ, β, k, α) 1.08 × 10−10 0.04783 1.13331 0.74492
(0.07844) (0.07216) (0.14413) (0.20247)

GMW(ϕ, α, γ, λ ) 2.79601 0.45369 0.65441 5.8 × 10−13

(1.85772) (0.37182) (0.24811) (0.00628)
McLomax (α, β, a, b, c) 0.8085 11.2929 1.5060 4.1886 2.1046

(3.364) (15.818) (0.243) (25.029) (3.079)
BMW (α, γ, λ, a, b) 0.46965 0.66613 5.8 × 10−13 2.73477 0.90825

(0.47875) (0.31225) (0.00639) (2.02018) (1.52196)
TEWG (α, θ, β, p, λ) 1119.9 0.20963 23.2028 0.91371 -0.87193

(574.98) (0.01021) (37.768) (0.14151) (0.21604)
TGMW (α, ϕ, γ, λ, η) 0.25215 2.24129 0.72431 3.4 × 10−11 0.72252

(0.31749) (1.74023) (0.38549) (0.00795) (0.35566)

Table 5: Goodness-of-fit statistics for the bladder cancer data

Distributions A∗0 W∗
0

TEW (λ, β, k, α) 0.56339 0.08825
GMW(ϕ, α, γ, λ ) 0.27198 0.04050
McLomax (α, β, a, b, c) 1.81435 0.3550
BMW (α, γ, λ, a, b) 0.27197 0.04051
TEWG (α, θ, β, p, λ) 0.40445 0.05427
TGMW (α, ϕ, γ, λ, η) 0.18733 0.02732

8. Conclusions

There has been a growing interest among statisticians and applied researchers in constructing flexible
lifetime models in order to improve the modeling of survival data. As a result, significant progress
has been made towards the generalization of the traditional Weibull model. In this paper, we propose
a five–parameter model named the transmuted generalized modified Weibull (TGMW) distribution, which
is obtained by applying the transmuted generalized technique to the exponentiated modified Weibull
modified model. The new model extends several important lifetime distributions. We studied some of
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its statistical properties and obtained representations of the positive, negative and factorial moments, as
well as the reliability, quantile function and the density of the order statistics. The proposed distribution as
applied to two actual data sets turned out to provide better fits than other competing lifetime models. The
computing code is available from the second author upon request. The distributional results developed in
this paper should find numerous applications in various fields of scientific investigation such as reliability
theory, hydrology, biostatistics, meteorology, engineering and survival analysis.
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