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Abstract. The q-digamma function ψq(x) and the q-polygamma functions ψ(r)
q (x), r ∈ N = {1, 2, · · · } are

defined for all x > 0 and 0 < q < 1. In this paper, the neutrices and the neutrix limit are used to define the
q-digamma function ψq(x) and the q-polygamma functions ψ(r)

q (x), r ∈ N for all x ∈ R. Moreover, further
results are given.

1. Introduction

In the second half of the twentieth century there was a significant increase of activity in the area of the
q-calculus due to applications of the q-calculus in mathematics, statistics and physics. This kind of calculus
recently began to have an effective utility in quantum mechanics, because its intimate connection with the
relation of commutativity and Lie algebra. Due to this significance, many of the classical facts (Stirling
formula, Raabe’s formula, Multiplication theorem,...,etc) about the ordinary gamma function and related
functions (q-digamma, q-polygamma and q-beta functions) have been extended to the q-gamma function and
related functions. Neutrices are additive groups of negligible functions that do not contain any constants
except zero. Their calculus was developed by van der Corput [1] in connection with asymptotic series
and divergent integrals. We note that, Jack Ng and van Dam applied the neutrix calculus, in conjunction
with the Hadamard integral to the quantum field theories, in particular, to obtain finite results for the
coefficients in the perturbation series. They also applied neutrix calculus to quantum field theory, and
obtained finite renormalization in the loop calculations [2, 3]. Recently, the concepts of neutrix and neutrix
limit have been used widely in many applications in mathematics, physics and statistics. The technique
of neglecting appropriately defined infinite quantities was devised by Hadamard and the resulting finite
value extracted from the divergent integral is usually referred to as the Hadamard finite part. Fisher used
the neutrices and the neutrix limit to define gamma, beta and incomplete gamma functions [5–7]. Ozcag
et al. [8, 9] applied the neutrix limit to extend the definition of the incomplete beta function and its partial
derivatives for negative integers. Also the digamma function has been generalized for negative integers by
Jolevska-Tuneska et al [10]. Salem and Kilicman [11] generalized the definition of polygamma functions for
negative integers. The concepts of the neutrix and neutrix limit are used at the first time in the q-calculus
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field by Salem [12, 13] who applied their concepts to define the q-analogue of the gamma and the incomplete
gamma functions and their derivatives for negative values of x. In continuation, we apply the concepts of
the neutrix and neutrix limit to generalize the definitions of the q-digamma and the q-polygamma functions
for all their real variables.

2. Some Concepts in q-Calculus and Neutrces

Throughout this paper, the quantum deformation q is taken to be 0 < q < 1 and the definitions of
q-calculus will be taken from the well known books in this field [14, 15]. For any x ∈ C and n ∈N, the basic
number [x]q and the q-factorial [n]q! are defined by

[x]q =
1 − qx

1 − q
, [n]q! = [n]q[n − 1]q · · · [2]q[1]q

with [0]q! = 1 and the q-shifted factorials are defined as

(x; q)0 = 1, (x; q)n =

n−1∏
k=0

(1 − xqk).

The limit, lim
n→∞

(x; q)n, is denoted by (x; q)∞.
The exponential function ex has many different q-extensions, one of them is defined as

Eq(x) =

∞∑
n=0

q(n
2)xn

[n]q!
= (−(1 − q)x; q)∞, x ∈ C.

The q-integration of Jackson is defined for a function f defined on a generic interval [a, b] to be∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx

where ∫ a

0
f (x)dqx = a(1 − q)

∞∑
n=0

f (aqn)qn

provided the sum converges absolutely.
The q-gamma function is defined as

Γq(x) =

∫ 1
1−q

0
tx−1Eq(−tq)dqt, x > 0. (2.1)

Moreover, it has the representation

Γq(x) = (1 − q)1−x
∞∏

n=0

1 − qn+1

1 − qn+x =
(q; q)∞
(qx; q)∞

(1 − q)1−x, x <N0. (2.2)

An important function related to the q-gamma function is the so-called the q-digamma functionψq(x) which
defined as the logarithmic derivative of the q-gamma function

ψq(x) =
d

dx
(ln Γq(x)) =

Γ′q(x)

Γq(x)
. (2.3)

The q-digamma functionψq(x) appeared in the work of Krattenthaler and Srivastava [16] when they studied
the summations of basic hypergeometric series. Some of its properties presented and proved in their work.
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They proved that ψq(x) tends to the digamma function ψ(x) when letting q → 1. Some properties and
expansions associated with the q-digamma function have been provided by Salem [17]. Among these
results, we need the q-integral representation

ψq(x) =
ln q

1 − q

[
γq −

∫ q

0

1 − tx−1

1 − t
dqt

]
, x > 0 (2.4)

where γq =
1−q
ln qψq(1) is the q-analogue of the Euler-Mascheroni constant, and the recursive formula

ψq(x + n) = ψq(x) − ln q
n−1∑
k=0

qx+k

1 − qx+k
, n ∈N. (2.5)

The rth derivatives of the q-digamma function are the so-called the q-polygamma functions and can be
represented as

ψ(r)
q (x) =

ln q
1 − q

∫ q

0

tx−1 lnr t
1 − t

dqt, x > 0, r ∈N. (2.6)

A neutrix N is defined as a commutative additive group of functions f (ξ) defined on a domain N′ with
values in an additive group N′′, where further if for some f in N, f (ξ) = γ for all ξ ∈ N′, then γ = 0. The
functions in N are called negligible functions.

Let N be a set contained in a topological space with a limit point a which does not belong to N. If f (ξ)
is a function defined on N′ with values in N′′ and it is possible to find a constant c such that f (ξ) − c ∈ N,
then c is called the neutrix limit of f as ξ tends to a and we write N − lim

ξ→a
f (ξ) = c.

In this paper, we let N be the neutrix having domain N′ = {ε : 0 < ε < ∞} and range N′′ the real numbers,
with the negligible functions being finite linear sums of the functions

ελ lnr−1 ε, lnr ε (λ < 0, r ∈N)

and all functions o(ε) which converge to zero in the normal sense as ε tends to zero [1].

3. The q-Digamma Function

It was proved in [12] that

Γ(r)
q (x) = N − lim

ε→0

∫ 1
1−q

ε
tx−1Eq(−tq)dqt (3.1)

for all x ∈ R and r ∈ N0. This proof came by applying the concepts of the neutrix and the neutrix limit to
the the q-gamma function (2.1). In this section, we are seeking to apply the concepts of the neutrix and the
neutrix limit on the q-digamma function (2.4) to define it for all x ∈ R.

Theorem 3.1. For all x ∈ R and x , 0,−1,−2, · · · , we have

ψq(x) =
ln q

1 − q

[
γq −N − lim

ε→0

∫ q

ε

1 − tx−1

1 − t
dqt

]
. (3.2)

Proof. Let −n < x < −n + 1 and n ∈N, we get∫ q

ε

1 − tx−1

1 − t
dqt =

∫ q

ε

1 − tx+n−1

1 − t
dqt −

∫ q

ε

1 − tn

1 − t
tx−1dqt

=

∫ q

ε

1 − tx+n−1

1 − t
dqt −

∫ q

ε

n−1∑
k=0

tx+k−1dqt

=

∫ q

ε

1 − tx+n−1

1 − t
dqt −

n−1∑
k=0

qx+k

[x + k]q
+

n−1∑
k=0

εx+k

[x + k]q
.
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Taking the neutrix limit of the both sides with taking into account the equations (2.4) and (2.5) to obtain the
desired result.

Theorem 3.2. The neutrix limit, as ε tends to zero, of the q-integral∫ q

ε

1 − t−n−1

1 − t
dqt (3.3)

exists for all n ∈N0 and

N − lim
ε→0

∫ q

ε

1 − t−n−1

1 − t
dqt = (1 − q)

1 +

n∑
k=1

1
1 − qk

 , n ∈N0. (3.4)

Proof. When n = 0, using Lemma 4.3 in [12] gives∫ q

ε

1 − t−1

1 − t
dqt = −

∫ q

ε
t−1dqt =

1 − q
ln q

(ln q − ln ε).

Since ln ε is negligible function, then by taking the neutrix limit gives

N − lim
ε→0

∫ q

ε

1 − t−1

1 − t
dqt = 1 − q.

When n ∈N, using the geometric sequence rule and also Lemma 4.3 in [12] give∫ q

ε

1 − t−n−1

1 − t
dqt = −

∫ q

ε

t−n−1(1 − tn+1)
1 − t

dqt

= −

n−1∑
k=0

∫ q

ε
tk−n−1dqt −

∫ q

ε
t−1dqt

= −

n−1∑
k=0

qk−n

[k − n]q
+

n−1∑
k=0

εk−n

[k − n]q
+

1 − q
ln q

(ln q − ln ε).

Taking into account the neutrix limit with noting that the second sum consists of (linear sums of ελ; λ < 0)
negligible functions to obtain

N − lim
ε→0

∫ q

ε

1 − t−n−1

1 − t
dqt = (1 − q)

1 −
n−1∑
k=0

qk−n

1 − qk−n

 .
Replacing n − k by k to obtain the desired result.

The two Theorems 3.1 and 3.2 suggest the following definition and corollary.

Definition 3.3. The q-digamma function ψq(x) can be defined by

ψq(x) =
ln q

1 − q

[
γq −N − lim

ε→0

∫ q

ε

1 − tx−1

1 − t
dqt

]
(3.5)

for all x ∈ R.

Corollary 3.4. The value of the q-digamma function ψq(x) at x = 0 is given by

ψq(0) =
ln q

1 − q
γq − ln q (3.6)

and for negative integers as

ψq(−n) =
ln q

1 − q
γq − ln q

1 +

n∑
k=1

1
1 − qk

 , n ∈N. (3.7)
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Remark 3.5. It is worth mentioning that when q→ 1 , the equation (3.7) approaches to

ψ(−n) = −γ +

n∑
k=1

1
k
, n ∈N. (3.8)

which was proven in [10].

4. The q-Polygamma Functions

In the present section, we are seeking to define the q-polygamma functions ψ(r)
q (x) defined as in (2.6) for

all x ∈ R and r ∈ N. The results on the q-trigamma function ψ′q(x) as q → 1 were obtained in [10] and the
results on ψ(r)(x), r ≥ 2 were shown in [11].

Lemma 4.1. ([18]) The neutrix limit, as ε tends to zero, of the q-integral∫ 1

ε
tα−1 lnr tdqt (4.1)

exists for all values α ∈ C and r ∈N and

N − lim
ε→0

∫ 1

ε
tα−1 lnr tdqt =


lnr q
[α]q

r∑
k=1

(
qα

1 − qα

)k k∑
i=1

(−1)k−i
(
k
i

)
ir, α , 0,

0, α = 0

(4.2)

see [18]. Furthermore, if q→ 1, we get

N − lim
ε→0

∫ 1

ε
tα−1 lnr tdt =

(−1)r

αr+1

r∑
i=1

(−1)r−i
(
r
i

)
ir =

(−1)rr!
αr+1 , α , 0. (4.3)

Lemma 4.2. The q-polygamma function ψ(r)
q (x) defined as in (2.6) can be expressed as

ψ(r)
q (x) =

ln q
1 − q

∫ 1

0

tx−1 lnr t
1 − t

dqt −
qx lnr+1 q

1 − q
, x > 0, r ∈N. (4.4)

Proof. It is not difficult to see from the definition of q-integral that∫ aq

0
f (t)dqt =

∫ a

0
f (t)dqt − a(1 − q) f (a)

which can be exploited to complete the proof.

Theorem 4.3. The neutrix, limit as ε tends to zero, of the q-integral∫ 1

ε

tx−1 lnr t
1 − t

dqt (4.5)

exists for all values of x ∈ R and r ∈N.

Proof. In this proof, we consider three cases.
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The first case: When −n < x < −n + 1 and n ∈N, using the geometric sequence sum rule gives∫ 1

ε

tx−1 lnr t
1 − t

dqt =

∫ 1

ε

tx−1 lnr t(1 − tn)
1 − t

dqt +

∫ 1

ε

tx+n−1 lnr t
1 − t

dqt

=

n−1∑
k=0

∫ 1

ε
tx+k−1 lnr tdqt +

∫ 1

ε

tx+n−1 lnr t
1 − t

dqt.

Taking the neutrix limit as ε→ 0 yields

N − lim
ε→0

∫ 1

ε

tx−1 lnr t
1 − t

dqt =

n−1∑
k=0

(
N − lim

ε→0

∫ 1

ε
tx+k−1 lnr tdqt

)
+

∫ 1

0

tx+n−1 lnr t
1 − t

dqt.

Lemma 4.1 tells that the neutrix limit of the q-integral

N − lim
ε→0

∫ 1

ε
tx+k−1 lnr tdqt

exists for all −n < x < −n + 1 and so does the q-integral (4.5).
The second case: When x = 0, we get∫ 1

ε

t−1 lnr t
1 − t

dqt =

∫ 1

ε
t−1 lnr tdqt +

∫ 1

ε

lnr t
1 − t

dqt. (4.6)

Also, Lemma 4.1 tells that the neutrix limit of the first q-integral equals zero and so we get

N − lim
ε→0

∫ 1

ε

t−1 lnr t
1 − t

dqt =

∫ 1

0

lnr t
1 − t

dqt.

The last case: When x = −n and n ∈N, we find∫ 1

ε

t−n−1 lnr t
1 − t

dqt =

∫ 1

ε

t−n−1(1 − tn+1) lnr t
1 − q

dqt +

∫ 1

ε

lnr t
1 − t

dqt

=

n∑
k=0

∫ 1

ε
tk−n−1 lnr tdqt +

∫ 1

ε

lnr t
1 − t

dqt

=

n−1∑
k=0

∫ 1

ε
tk−n−1 lnr tdqt +

∫ 1

ε
t−1 lnr tdqt +

∫ 1

ε

lnr t
1 − t

dqt.

Taking the neutrix limit as ε→ 0 yields

N − lim
ε→0

∫ 1

ε

t−n−1 lnr t
1 − t

dqt =

n−1∑
k=0

(
N − lim

ε→0

∫ 1

ε
tk−n−1 lnr tdqt

)
+

∫ 1

0

lnr t
1 − t

dqt. (4.7)

Using Lemma 4.1 ends the proof.

The above theorem leads us to introduce the following definition.

Definition 4.4. The q-polygamma function ψ(r)
q (x) can be defined by

ψ(r)
q (x) =

ln q
1 − q

(
N − lim

ε→0

∫ 1

ε

tx−1 lnr t
1 − t

dqt − qx lnr q
)

(4.8)

for all x ∈ R and r ∈N.
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Theorem 4.5. The value of q-polygamma function ψ(r)
q (x) at x = 0 is given by

ψ(r)
q (0) = ψ(r)

q (1) − lnr+1 q (4.9)

and for negative integers as

ψ(r)
q (−n) = ψ(r)

q (1) − q−n[n + 1]q lnr+1 q −
n∑

k=1

qk lnr+1 q
1 − qk

r∑
j=1

(
1

1 − qk

) j j∑
i=1

(−1)i
(

j
i

)
ir. (4.10)

In particular, when r = 1, we have

ψ′q(−n) = ψ′q(1) − q−n[n + 1]q ln2 q +

n∑
k=1

qk ln2 q
(1 − qk)2

. (4.11)

Proof. In view of (4.2), (4.4), (4.6) and (4.7), we can easily get the proof.

Remark 4.6. When q→ 1, we get
ψ(r)(0) = ψ(r)(1) (4.12)

and for negative integers as

ψ(r)(−n) = ψ(r)(1) +

n∑
k=1

1
kr+1 . (4.13)

which were obtained in [11].
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