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Abstract. In this paper we study the conservation laws of modified Korteweg-de Vries-Kadomtsev Petvi-
ashvili equation (mKdV-KP). As the considered equation is of evolution type, no recourse to a Lagrangian
formulation is made. However, we show that using the partial Lagrangian approach and the multiplier
method one can obtain a number of local and nonlocal conservation laws for underlying equation.

1. Introduction

As stated in [22] conservation laws are very important tools in the study of differential equations from
mathematical as well as physical point of view. If the under study system has conservation laws then its
integrability is quite possible [2, 6]. They are also used for existence, uniqueness and Lyapunov stability
analysis and construction of numerical schemes. Moreover, conservation laws are used in obtaining the
new nonlocal symmetries, nonlocal conservation laws and linearization [10].

The first study in the literature for obtaining the conservation laws is given by E. Noether [21]. In this
study, Noether states that for Euler–Lagrange differential equations, to each Noether symmetry associated
with the Lagrangian there corresponds a conservation law which can be determined explicitly by a formula.
The application of Noether’s theorem depends upon the knowledge of a suitable Lagrangian ([18, 21]).

There are some new approaches in the literature about construction of conservation laws such as
direct method, partial Lagrangian method, the characteristic method, the variational approach (multiplier
approach), nonlocal conservation theorem method ([5, 12, 14–16, 19, 22, 23]). Moreover there are some
sofwares for constructing the conservation laws [9, 27].

The celebrated Korteweg-de Vries (KdV) equation [1, 17]

ut + 6uux + uxxx = 0

governs the dynamics of solitary waves. It was derived to describe shallow water waves of long wavelength
and small amplitude. It is an important equation from the view point of integrable systems because it has
infinite number of conservation laws, gives multiple soliton solutions, has bi-Hamiltonian structures, a Lax
pair, and has many other physical properties [25].
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Kadomtsov and Petviashivilli obtained the Kadomtsov-Petviashivilli (KP) equation [4, 13] as an im-
provement of the KdV equation

(ut + 6uux + uxxx)x + uyy = 0.

Using the idea of Kadomtsev and Petviashvili, who relaxed the restriction that the waves be strictly one-
dimensional in the Korteweg-de Vries (KdV) equation, leads to the (2+1)-dimensional modified KdV–KP
equation [8, 26]:

utx −
3
2

uxx + 12u2
xu + 6u2uxx + uxxxx + uyy = 0 (1)

This equation was investigated in the literature because it is used to model a variety of nonlinear
phenomena. In recent years, the exact travelling wave solutions of the Eq. (1) have been studied by many
authors [3, 4, 8, 20, 24, 26].

In this paper, we aim to construct the conservation laws of Eq. (1) with two distinct methods. First, we
use the partial Lagrangian approach. We resort to this method when the underlying equation does not has
a Lagrangian or finding the Lagrangian is the difficult. Second, we use the multiplier method with the help
of homotopy operator.

The organization of the paper is as follows: In Section 2, we give the necessary operators and definitions.
In Section 3, we give the brief description of the partial Lagrangian and it’s application to Eq. (1) . Section 4
is devoted to the multiplier method and finding the conservation laws of Eq.(1) . In Section 5, we give some
concluding remarks.

2. Fundemental Operators

We first present notation to be used and recall basic definitions and theorems which can be found in
the literature cited [9, 11, 18]. The summation convention is adopted in which there is summation over
repeated upper and lower indices. Consider a s-th-order system of partial differential equations (PDEs) of
n independent variables x = (x1, x2, ..., xn) and m dependent variables u = (u1,u2, ...,um)

Eα(x,u,u(1), ...,u(s)), α = 1, ...,m, (2)

where u(1),u(2), ...,u(s) denote the collections of all first, second,...,s-th-order partial derivatives. The deriva-
tives of uα with respect to xi are uαi = Di(uα), ui j = D jDi(uα) where

Di =
∂

∂xi + uαi
∂
∂uα

+ uαi j
∂
∂uαj

+ ...

is the total derivative operator with respect to xi. The collection of sth-order derivatives, s ≥ 1, is denoted
by u(s). As usualA is the vector space of differential functions of finite orders. The basic operators defined
inA are stated below.

The Euler-Lagrange operator given by

δ
δuα

=
∂
∂uα

+

∞∑
s≥1

(−1)s Di1 . . .Dis
∂

∂uαi1...is
, α = 1, ...,m.

and The Lie-Backlund operator is

X = ξi ∂
∂xi

+ ηα
∂
∂uα

, ξi, ηα ∈ A (3)

The operator (3) is an abbreviated form of the infinite formal sum

X = ξi ∂
∂xi

+ ηα
∂
∂uα

+
∑
s≥1

ζαi1i2...is

∂
∂uαi1i2...is

,
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where the additional coefficients are determined uniquely by the prolongation formulae

ζαi = Di (Wα) + ξ juαji
ζαi1...is = Di1 . . .Dis (Wα) + ξ juαji1...is , s > 1,

in which Wα is the Lie characteristic function

Wα = ηα − ξ juαj .

The Noether operators associated with a Lie–Bäcklund operator X is given by

Ni = ξi + Wα δ
δuαi

+

∞∑
s=1

(−1)sDi1 ...Dis (W
α)

δ
δuαii1...is

.

The n−tuple vector T =
(
T1,T2, ...,Tn

)
, T jεA, j = 1, ...,n is a conserved vector of eq(2) if Ti satisfies

DiTi
∣∣∣
(2)

= 0. (4)

Equation (4) defines a local conservation law of system (2).

3. Partial Noether Approach

If the standard Lagrangian does not exist or is difficult to find, then we write its partial Lagrangian and
derive the conservation laws by the partial Noether approach introduced by Kara and Mahomed [15].

Suppose that the system of Eq.(2) are written as

Eα = E0
α + E1

α = 0. (5)

If there exists a function L = L(x,u,u(1),u(2), ...,u(l)), l ≤ s and nonzero functions f βα ∈ A such that (5) can be
written as δL

δuα = f βαE1
β provided E1

β , 0 for some β. L is known as a partial Lagrangian of (5), otherwise it is
the standard Lagrangian.

The differential equations of the form δL
δuα = f βαE1

β are called a system of partial Euler–Lagrange equations.
The partial Noether operator X corresponding to a partial Lagrangian L(x,u(1),u(2), ...,u(n−1)) of Eq.(2) is
determined from

XL + L(Diξ
i) = Wα δL

δuα
+ Di(Bi), i = 1, ...,N, (6)

for a suitable gauge terms B = (B1,B2, ...,Bn), Bi
∈ A.

Theorem 3.1. The conserved vector of the Eq. (2) associated with a partial Noether operator X corresponding to the
partial Lagrangian L is determined from

Ti = Bi
−NiL = Bi

− ξiL −Wα δL
δuαi
−

∞∑
s=1

(−1)sDi1 ...Dis (W
α)

δL
δuαii1...is

where Wα are the characteristics of the conservation law.

Eq. (1) has a partial Lagrangian

L =
−utux

2
+

3
4

u2
x +

1
2

u2
xx −

1
2

u2
y − 3u2u2

x
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whose partial Noether operators X = ξ
∂
∂x

+φ
∂
∂y

+τ
∂
∂t

+η
∂
∂u

satisfy (6) and the partial Euler–Lagrange-type

equation is given by

δL
δu

= utx −
3
2

uxx + 6uu2
x + 6u2uxx + uxxxx + uyy (7)

so that Eq.(7) can be written as

δL
δu

= −6uu2
x.

Determining equations for the partial Noether symmetry are given, by (6),

X[2]L+ (ξx +uxξu +τt +utτu +φy +uyφu)L = (B1
t +B1

uut +B2
x +B2

uux +B3
y +B3

uuy)+
δL
δu

(η−τut−ξux−φuy). (8)

Eq.(8) for L = −utux
2 + 3

4 u2
x + 1

2 u2
xx −

1
2 u2

y − 3u2u2
x give rise to

−
ut
2 η

x
−

ux
2 η

t + 3
2 uxηx + uxxηxx

− uyηy
− 6uu2

xη − 6u2uxηx

+(ξx + uxξu + τt + utτu + φy + uyφu)
(
−utux

2 + 3
4 u2

x + 1
2 u2

xx −
1
2 u2

y − 3u2u2
x

)
= (B1

t + B1
uut + B2

x + B2
uux + B3

y + B3
uuy) − 6uu2

x(η − τut − ξux − φuy)
(9)

where B1 = B1(x, y, t,u), B2 = B2(x, y, t,u) and B3 = B3(x, y, t,u) are the gauge terms. Separating Eq.(9) with
respect to derivatives of u yield the following overdetermined linear system

ux : −B2
u −

1
2ηt + 3

2ηx − 6u2ηx
uy : −B3

u − ηy

ut : −B1
u −

1
2ηx

uxut : −ηu + 6u2τx −
3
2τx −

1
2φy

uxuyut : 1
2φu

u2
xut : 3u2τu − 6uτ + 1

2ξu −
3
4τu

uxuy : 6u2φx + 1
2φt −

3
2φx + ξy

u2
xuy : 3u2φu − 6uφ − 3

4φu

u2
x : 1

2ξt + 3
2ηu −

3
4ξx + 3

4τt + 3
4φy − 6u2ηu + 3u2ξx − 3u2τt + 3u2φy

u2
t : 1

2τx
u3

x : −
3
4ξu + 3u2ξu − 6uξ

u2
y : −ηu + 1

2φy −
1
2τt −

1
2ξx

u3
y : 1

2φu

uxu2
t : 1

2τu

utuy : 1
2φx + τy

u2
yut : 1

2τu

uxu2
y : 1

2ξu

u2
xxuy : −

1
2φu

uxxutu2
x : −τuu

uxxuyu2
x : −φuu

uxxuxyux : −2φu
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uxxutxux : −2τu
uxxuxuy : −2φux
uxxuxut : −2τux

u2
xx : ηu −

3
2ξx + 1

2τt + 1
2φy

uxx : ηxx
uxxuxy : −2φx
uxxutx : −2τx
uxxux : 2ηxu − ξxx
uxxu2

x : −2ξux + ηuu
uxxuy : −φxx
uxxut : −τxx
uxxu3

x : −ξuu
u2

xxux : −
5
2ξu

u2
xxut : −

1
2τu

1 : −B1
t − B2

x − B3
y.

The solution of this system yields the following partial Noether operator and gauge terms:

X = η(x, y, t)
∂
∂u

with ξ(x, y, t,u) = φ(x, y, t,u) = τ(x, y, t,u) = 0, η = f (x, y, t)

where η satisfies the equation ηxx = 0, and

B1(x, y, t,u) = −
1
2

fxu + α(x, y, t), B2(x, y, t,u) = −
1
2

ftu +
3
2

fxu − 2u3 fx + β(x, y, t),

B3(x, y, t,u) = − fyu + γ(x, y, t).

We set α(x, y, t) = β(x, y, t) = γ(x, y, t) = 0 as they contribute to the trivial part of the conserved vector.
The formula for conserved vectors for the second order partial Lagrangian are

Tx = B2
− ξL −W

[
∂L
∂ux
−Dx

∂L
∂uxx

]
−Dx(W)

∂L
∂uxx

(10)

Ty = B3
− φL −W

∂L
∂uy

(11)

Tt = B1
− τL −W

∂L
∂ut

(12)

Using the Eqs. (10)-(12) yield the following independent conserved vectors for Eq.(1):

Tx = −
1
2

ftu +
3
2

fxu − 2u3 fx − f
[
−ut

2
+

3
2

ux − 6u2ux − uxxx

]
− fxuxx,

Tt = − 1
2 fxu + ux

2 f , Ty = − fyu + f uy.

The corresponding conservation law is the following:

DxTx + DyTy + DtTt = f
(
utx −

3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy

)
where f is the characteristic of the partial Noether symmetry operator X. Thus, if we take for instance
f (x, y, t) = x then one can obtain the following conserved vector whose components are given by

Tx = 3
2 u − 2u3 + xut

2 −
3
2 xux + 6xu2ux + xuxxx − uxx,

Ty = xuy,
Tt = − u

2 + xux
2 .
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4. The Multiplier Method

Another approach to determining conserved flows involves the well known result that the Euler–
Lagrange operator δ/δuα annihilates the total divergence [5, 9, 10, 22]. A multiplier Λα(x,u,ut, ...) has the
property that

ΛαEα = DiTi (13)

holds identically. Here we get multipliers of fourth order, that is

Λα = Λα(x, y, t,u,ux,uxt,uyy,uxx,uxxxx).

By calculating the variational derivative of (13) the determining equations for the multipliers

δ(ΛαEα)
δuα

= 0

are obtained. Solving the above over-determined system, multipliers are found. Then using the multipliers
conservation laws are obtained systematically.

Now, we will derive the conservation laws of the mKdV-KP equation by the multiplier method. The
fourth order multiplier for (1) is,

Λ(x, y, t,u,ux,uxt,uyy,uxx,uxxx,uxxxx)

and the corresponding determining equation is

Λu(utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ(12u2

x + 12uuxx) (14)

−Dx(Λux (utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ(24uux))

+Dxx(Λuxx (utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ(−

3
2

+ 6u2))

+Dxt(Λuxt (utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ)

+Dyy(Λuyy (utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ)

+Dxxxx(Λuxxxx (utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) + Λ) = 0

After expansion and lengthy calculations of (14), with respect to different combinations of derivatives of u
and solving the over determined system, we find with the aid of Maple package program [9] the following
six multipliers:

Λ1 = xy,
Λ2 = x,

Λ3 = −
1
6

y(6F(t)x − Fty2),

Λ4 = −F(t)x +
1
2

Fty2,

Λ5 = F(t)y,
Λ6 = F(t).
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where F(t) is arbitrary function of t. Corresponding to the above multipliers we obtain six local conserved
vectors of (1).

For instance, we can find the conserved vectors corresponding to Λ1 = xy. Separating to total derivatives,
we get

(xy)(utx −
3
2

uxx + 12uu2
x + 6u2uxx + uxxxx + uyy) = Dx(6xyuxu2

− 2yu3
−

3
2

xyux +
3
2

yu + xyuxxx − yuxx)

+Dy(−xu + xyuy) + Dt(xyux).

Therefore, we can easily write following conserved vector corresponding to the multiplier of Λ1:

Tx
1 = 6xyuxu2

− 2yu3
−

3
2 xyux + 3

2 yu + xyuxxx − yuxx,

Ty
1 = −xu + xyuy,

Tt
1 = xyux.

Repeating the similar procedures in other multipliers respectively, five conserved vectors are found. We
give the results in the following:

Tx
2 = 6xuxu2

− 2u3
−

3
2 xux + 3

2 u + xuxxx − uxx

Ty
2 = xuy

Tt
2 = xux

Tx
3 = 1

12 y[−72uxu2F(t)x + 12uxu2Fty2 + 24F(t)u3 + 18xF(t)ux + 3uxFty2

+12xuFt − 2uFtty2
− 18uF(t) − 12uxxxF(t)x + 2uxxxFty2 + 12uxxF(t)]

Ty
3 = xuF(t) − 1

2 Fty2u − uyF(t)xy + 1
6 uyF(t)y3

Tt
3 = −

1
6 yux(6F(t)x − Fty2)

Tx
4 = -6uxu2F(t)x + 3uxu2Fty2 + 2F(t)u3 + 3

2 uxF(t)x − 3
4 uxFty2

+uFtx − 1
2 uy2Ftt −

3
2 uF(t) − uxxxF(t)x + 1

2 uxxxFty2 + uxxF(t)

Ty
4 = −uFty − uyF(t)x + 1

2 uyFty2

Tt
4 = −

1
2 ux(2F(t)x − Fty2)

Tx
5 = −

1
2 y

(
−12uxF(t)u2 + 3uxF(t)

)
+ 2uFt − 2uxxxF(t)

Ty
5 = −uF(t) + uyF(t)y

Tt
5 = uxF(t)y

Tx
6 = 6uxF(t)u2

−
3
2 uxF(t) − uFt + uxxxF(t)

Ty
6 = uyF(t)

Tt
6 = uxF(t)
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where F(t) is arbitrary function of t. Thus, we obtained nontrivial six conserved vectors for the mKdV-KP
equation.

5. Concluding Remarks

In this study we have constructed conservation laws of the mKdV-KP equation which is not derivable
from a variational principle. We obtained an infinitely nonlocal conservation laws using the the partial
Lagrangian method. Also we applied the multiplier method on mKdV-KP equation. We yield six multipliers
and thus six local conserved vectors were obtained.

The conserved vectors obtained here can be used in reductions and solutions of the underlying equation
[7]. In future work, with the aid of conservation laws of the equation, nonlocal symmetries such as
potential and nonclassical potential symmetries will be obtain. As these symmetries enable one to obtain
new interesting solutions of the considered equation.
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