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Abstract. In this paper, we introduce a new notion of completely semi-weakly hyponormal operator which
is a special case of polynomially hyponormal operator. For an one-step backward extension of the Bergman
weighted shift, we show that completely semi-weakly hyponormal weighted shifts need not be subnormal.
In addition, we provide an example which can serve to distinguish the semi-weak m-hyponormality from
the semi-weak m-hyponormality with positive determinant coefficients for such a shift. Finally we discuss
flatness on semi-weakly m-hyponormal weighted shifts.

1. Preliminaries

Let H be a separable infinite dimensional complex Hilbert space and let L(H) be the algebra of all
bounded linear operators on H . For bounded operators A and B, we denote [A,B] := AB − BA. A k-tuple
T = (T1, ...,Tk) of bounded operators onH is called hyponormal if the operator matrix ([T∗j ,Ti])k

i, j=1 is positive
on the direct sum ofH⊕· · ·⊕H with k copies. Also an operator T ∈ L(H) is said to be (strongly) k-hyponormal
if (I,T, ...,Tk) is hyponormal ([3],[4],[5],[7],[8]). It is well known that an operator T is subnormal if and only
if T is k-hyponormal for all k ≥ 1 via Bram-Halmos criterion ([1]).

An operator T ∈ L(H) is said to be polynomially hyponormal if p(T) is hyponormal for all complex
polynomials p. For a positive integer k, an operator T is weakly k-hyponormal if for every polynomial p of
degree k or less, p(T) is hyponormal ([4],[7],[8]). It holds that every subnormal operator is a polynomially
hyponormal operator and a k-hyponormal operator is a weakly k-hyponormal operator for each positive
integer k. For k = 1, 1-hyponormality and weak 1-hyponormality of T are equivalent to the hyponormality
of T.

Recently in [9], the classes of semi-weakly k-hyponormal operators have been studied in an attempt to
bridge the gap between subnormality and hyponormality. An operator T is called semi-weakly k-hyponormal
if T + sTk is hyponormal for all s ∈ C ([9]). It is trivial that semi-weak 2-hyponormality is equivalent
to weak 2-hyponormality. In particular, T is said to be completely semi-weakly hyponormal if T is semi-
weakly k-hyponormal for all k ≥ 2. We can easily show that every polynomially hyponormal operator is
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a completely semi-weakly hyponormal operator. Also it is obvious that weakly k-hyponormality implies
semi-weakly k-hyponormality for each positive integer k. However it is known that converse implications
are not always true ([9],[12]). Sometimes weak 2-, 3- and 4-hyponormality are referred to as quadratic, cubic
and quartic hyponormality, respectively, and also semi-weak 3-hyponormality is referred to as semi-cubic
hyponormality.

It is one of the old problems in operator theory to determine whether every polynomially hyponormal
operator is subnormal. Curto-Putinar ([7]) proved that there exists an operator that is polynomially
hyponormal but not 2-hyponormal. Although the existence of a weighted shift which is polynomially
hyponormal but not subnormal was established in [7] and [8], concrete example of such weighted shifts
has not been found yet.

Since Curto ([3]) began to study criteria for distinguishing weak n-hyponormality from n-hyponormality,
the weighted shifts have played very important roles in various research areas containing these classes.
Recall that α = {αi}

∞

i=0 denotes a weight sequence in the set of positive real numbers R+. The weighted shift
Wα acting on `2(N0), with an orthonormal basis {ei}

∞

i=0, is defined by Wαe j = α je j+1 for all j ∈N0 := N ∪ {0}.
It follows instantly from simple computations that Wα is hyponormal if and only if α is an increasing
sequence.

The study of flatness for weighted shifts is a good approach to detect gaps between subnormality and
hyponormality. Stampfli ([13]) showed that a subnormal Wα with αk = αk+1 for some k ∈ N0 is flat, i.e.,
α1 = α2 = · · · . Stampfli’s result has been used to attempt the construction of nonsubnormal polynomially
hyponormal weighted shifts (cf. [2],[3],[9]). In [2], it is proved that every polynomially hyponormal
weighted shift with any two equal weights has flatness. It is shown in [4] that flatness need not hold for
quadratic hyponormality; for example, if α :

√
2/3,

√
2/3,

√
(n + 1)/(n + 2) (n ≥ 2), then Wα is quadratically

hyponormal but not 2-hyponormal. Recently, authors in [11] proved that a cubically hyponormal weighted
shift with first two equal weights has flatness. Also in [9], they proved that a semi-cubically hyponormal
weighted shift with αk = αk+1 for some k ≥ 1 is flat. Hence it is worthwhile to determine whether weakly m
[or semi-weakly m]-hyponormal weighted shifts for m ≥ 4 have flatness.

This paper consists of five sections. In Section 2 we recall some terminology and notations concerning
semi-weakly m-hyponormal weighted shifts. We can explicitly obtain an interval I in x such that a weighted
shift Wα(x) is completely semi-weakly hyponormal but not subnormal on I (see Theorem 2.3 below). In
Section 3 we produce an interval on x in the positive real line for semi-weak m-hyponormality but not semi-
weak m-hyponormality with positive determinant coefficients for such a shift. In Section 4, we show some
properties of flatness for a completely semi-weakly hyponormal and semi weakly m-hyponormal weighted
shifts. In Section 5, we give the rigorous proof for Theorem 2.1 which used some different methods from
proofs in results [9].

Some of the calculations in this paper were aided by using the software tool Mathematica ([14]).

2. Characterizations

We recall some standard terminology and definitions about semi-weakly m-hyponormal weighted shifts
([9]). Throughout this paper we consider m ≥ 3.

Let Wα be a weighted shift with a weight sequence α = {αi}
∞

i=0 and let Pn denote the orthogonal projection
onto ∨n

k=0{ek}.
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For n ∈N0, define D[m]
n by

D[m]
n := D[m]

n (s) = Pn
[(

Wα + sWm
α

)∗ ,Wα + sWm
α

]
Pn

=



qm,0 0 · · · 0 zm,0 0 · · ·

0 qm,1
. . .

. . . 0 zm,1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0
. . .

. . . qm,m−2 0
. . .

. . . zm,n+1−m

zm,0 0
. . . 0 qm,m−1

. . .
. . . 0

0 zm,1
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . . qm,n−1 0

0 zm,n+1−m 0 · · · 0 qm,n



(2.1)

for all s ∈ C, where

qm,n := um,n + vm,n|s|2, zm,n :=
√

wm,ns̄, um,n := α2
n − α

2
n−1,

vm,n := α2
nα

2
n+1 · · ·α

2
n+m−1 − α

2
n−mα

2
n−m+1 · · ·α

2
n−1, wm,n := α2

nα
2
n+1 · · ·α

2
n+m−2(α2

n+m−1 − α
2
n−1)2, (2.2)

with α−m = α−m+1 = · · · = α−1 = 0 for our convenience. It is obvious that Wα is semi-weakly m-hyponormal
if and only if D[m]

n (s) ≥ 0 for every s ∈ C and every n ≥ 0. By changing the basis of Cm+1, we can see that
D[m]

n (t) in (2.1) is unitarily equivalent to ⊕m−2
j=0 D[m]

`, j (t) for t := |s|2 and ` := [ n
m−1 ], where

D[m]
`, j (t) =



q̌0, j ž0, j 0
ž0, j q̌1, j ž1, j 0

0 ž1, j q̌2, j ž2, j
. . .

0 ž2, j
. . .

. . . 0
. . .

. . . q̌k−1, j žk−1, j
0 žk−1, j q̌k, j


(2.3)

and k is an integer ` or ` − 1 satisfying k(m − 1) + j ≤ n ( j = 0, 1, ...,m − 2),

q̌i, j ≡ qm,i(m−1)+ j = um,i(m−1)+ j + vm,i(m−1)+ jt ≡ ǔi, j + v̌i, jt,

ži, j ≡ zm,i(m−1)+ j =
√

wm,i(m−1)+ jt ≡
√

w̌i, jt (i = 0, 1, ..., k). (2.4)

It is clear that D[m]
`, j (t) ≥ 0 for every 0 ≤ j ≤ m − 2 and n ≥ 0 is equivalent to Dn(t) ≥ 0 for n ≥ 0. To detect the

positivity of each matrix D[m]
`, j (t) in (2.3), we will use Sylvester’s Criterion (which is sometimes called the

Nested Determinants Test, see [4]). Denote

d[m]
`, j (t) := det D[m]

`, j (t) =

n+1∑
i=0

c[m]
j (n, i)ti.

If we follow the method in [3], then we can obtain that

c[m]
j (0, 0) = ǔ0, j, c[m]

j (0, 1) = v̌0, j,

c[m]
j (1, 0) = ǔ0, jǔ1, j, c[m]

j (1, 1) = ǔ0, jv̌1, j + ǔ1, jv̌0, j − w̌0, j, c[m]
j (1, 2) = v̌0, jv̌1, j,

c[m]
j (n, i) = ǔn, jc

[m]
j (n − 1, i) + v̌n, jc

[m]
j (n − 1, i − 1) − w̌n−1, jc

[m]
j (n − 2, i − 1), (2.5)

c[m]
j (n,n + 1) = v̌0, jv̌1, j · · · v̌n, j, for all n ≥ 2 and 0 ≤ i ≤ n,
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with c[m]
j (−n,−i) := 0 for all n, i ∈N.

We recall that a hyponormal weighted shift Wα has positive determinant coefficients (≡ p.d.c.) of order m
for some m ≥ 2 if all coefficients in d[m]

`, j for all j = 0, 1, ...,m − 2 are nonnegative and at least one (in each)
is positive ([9]). It is obvious that for a weighted shift Wα, if Wα is semi-weakly m-hyponormal with p.d.c,
then Wα is clearly semi-weakly m-hyponormal.

Now we consider an one-step backward extension of (Bergman) weighted shift Wα(x) with a weight
sequence α(x),

α(x) :
√

x,

√
3
4
,

√
4
5
, · · · ,

√
k + 2
k + 3

(k ≥ 1). (2.6)

From simple computations via (2.2) and (2.4), we have

ǔn+1, jv̌n, j = u(n+1)(m−1)+ jvn(m−1)+ j = wn(m−1)+ j = w̌n, j (n ≥ 2; 0 ≤ j ≤ m − 2),

which induces the recurrence formula of coefficients c[m]
j (n, i) for n ≥ 3:

c[m]
j (n, i) =


v̌n, jc

[m]
j (n − 1, i − 1), if 3 ≤ i ≤ n + 1,

v̌n, jc
[m]
j (n − 1, i − 1) + ǔn, j · · · ǔ3, jh

[m]
j,i , if i = 1, 2,

ǔ0, j · · · ǔn, j, if i = 0,
(2.7)

where h[m]
j,i := ǔ2, jc

[m]
j (1, i) − w̌1, jc

[m]
j (0, i − 1) for i = 1, 2. In particular for the cases of i = 2 and j , 0, 1, from

definitions in (2.4), we have

ǔ2, jv̌1, j = um,2(m−1)+ jvm,(m−1)+ j =
m2

(2m + j)(m + j + 1)(2m + j + 1)2 = w̌1, j,

which forces that h[m]
j,2 = 0 for all j = 2, ...,m − 2.

Now using (2.7), if we follow similar methods in [4] via a little monotonous computations, then we
can have the following result which plays a crucial role in the proof of Theorem 2.3. (see Section 5 for the
rigorous proof.)

Theorem 2.1. Let Wα(x) be a weighted shift with α(x) in (2.6). Then Wα(x) is semi-weakly m- hyponormal with p.d.c.
if and only if 0 < x ≤ min{ 34 , f (m)}, where

f (m) :=
3(m5

−m4 + 4m2 + 24m + 8)
2(2m5 −m4 − 4m3 + 3m2 + 54m + 18)

.

Corollary 2.2. Let Wα(x) be a weighted shift with α(x) in (2.6).
(i) If Wα(x) is m-hyponormal, then Wα(x) is semi-weakly m- hyponormal with p.d.c.
(ii) If 0 < x ≤ min{ 34 , f (m)}, then Wα(x) is semi-weakly m-hyponormal for m ≥ 3.
(iii) Wα(x) is hyponormal if and only if Wα(x) is semi-weakly 3-hyponormal [or with p.d.c.] and also is equivalent to
Wα(x) is semi-weakly 4-hyponormal [or with p.d.c.].

Proof. (i) It follows from the result in [6] that Wα(x) is m-hyponormal is equivalent to the condition

0 < x ≤
2(m + 1)2(m + 2)2

3m(m + 3)(m2 + 3m + 4)
≡ H(m) (m ≥ 1).

From a computation, we have

f (m) −H(m) =
(m − 1)(m8 + 2m7 + m6 + 68m5 + 328m4 + 848m3 + 1200m2 + 1152m + 288)

6m(m + 3)(m2 + 3m + 4) (2m5 −m4 − 4m3 + 3m2 + 54m + 18)
> 0,
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for all m ≥ 3, which induces the conclusion.
(ii) It is obvious from (i).
(iii) We note that Wα(x) is hyponormal⇔ 0 < x ≤ 3

4 . By a computation, we get f (3) = 139
168 > f (4) = 78

101 >
3
4 ,

which induces the results. �

Theorem 2.3. Let Wα(x) be a weighted shift with α(x) in (2.6). If 0 < x ≤ 13 259
18 228 , then Wα(x) is completely semi-weakly

hyponormal. Moreover, if 2
3 < x ≤ 13 259

18 228 , then Wα(x) is not subnormal but completely semi-weakly hyponormal.

Proof. We consider the function f (m) on an interval [3,∞). It is easy to see that there is a unique δ0(≈ 8.9645)
such that f (x) is decreasing on [3, δ0], and f (x) is increasing on [δ0,∞). Since f (8) = 21 846

30 017 > f (9) = 13259
18228 ,

f (m) ≥ f (9) for all m ≥ 3. From the result in [6], Wα(x) is subnormal if and only if 0 < x ≤ 2
3 . Hence if

2
3 < x ≤ 13 259

18 228 , by Theorem 2.1, Wα(x) is semi-weakly m-hyponormal with p.d.c. for all m ≥ 3, so Wα(x) is
completely semi-weakly hyponormal but not subnormal. �

3. Gaps Between Semi-Weak m-Hyponormality and Semi-Weak m-Hyponormality with p.d.c.

In this section we give an example of weighted shifts with Bergman tail, which separates semi-weak
m-hyponormality from semi-weak m-hyponormality with p.d.c. for some m ≥ 5 due to Theorem 2.1. First,
we give the useful result in [9] as follows.

Lemma 3.1. ([9,Corollary 3.3]) Let α(x, y) :
√

y,
√

x,
√

(k + 1)/(k + 2) (k ≥ 2) with 0 < y ≤ x ≤ 3/4 and let
n ≥ 4. Then Wα(x,y) is semi-weakly n-hyponormal with p.d.c. if and only if it holds that

0 < x ≤ min{1(n), 3/4} and 0 < y ≤ min{x, f [n]
1 (x) , f [n]

2 (x)},

where 1(n) =
3(n5
−n4+4n2+24n+8)

4n5−2n4−8n3+6n2+108n+36 , and

f [n]
1 (x) =

4n + 2 + x
(
n4
− 2n2 + 1

)
(n + 2) (n3 + 4n2 + 5n + 2 − x (12n2 + 18n + 6) + x2 (6n2 + 15n + 6))

,

f [n]
2 (x) =

x
(
n4
− 2n3 + 2n2 + 2n + 9

)
n4 + 4n3 + 5n2 + 2n − x (12n3 + 18n2 + 6n) + x2 (6n3 + 15n2 + 6n + 27)

.

Remark 3.2. In Lemma 3.1, if we consider the cases n ≥ 5, then the function 1 is exactly same to the function
f on Theorem 2.1. In particular, for cases of n ≥ 5, if we take y = 0 in Lemma 3.1, we obtain the same result
in Theorem 2.1. However we note that two models, α(x, y) in Lemma 3.1 and α(x) in (2.6) show a little
different sides, subnormality or semi-weak 3 [or semi-weak 4]-hyponormality of corresponding weight
shifts Wα(x,y) and Wα(x). In fact, Wα(x,y) is subnormal if and only if 0 ≤ y ≤ 1

2 and x = 2
3 (cf. [10]), but Wα(x)

is subnormal if and only if 0 ≤ x ≤ 2
3 . Also we can see from Corollary 2.2 that the hyponormality of Wα(x)

with α(x) in (2.6) is equivalent to the semi-cubic [and semi-quartic] hyponormality.

From the method in Lemma 3.1, we have the following results.

Proposition 3.3. Let Wα(x,x) be a weighted shift with α(x, x) :
√

x,
√

x,
√

3
4 ,

√
4
5 , · · · . Then the followings hold:

(i) Wα(x,x) is semi-weakly 5-hyponormal with p.d.c. ⇐⇒ 165−
√

433
197 ≤ x ≤ 1023

1372 .
(ii) Wα(x,x) is semi-weakly 6-hyponormal with p.d.c. ⇐⇒ 0 < x ≤ 1694

2307 .

Proof. Without loss of generality, we assume that 0 < x ≤ 3
4 . First, from a direct computation, it holds that

1(m) < 3
4 for m ≥ 5, which can reduce the range of x, 0 < x ≤ 1(5) for (i) and x ≤ 1(6) for (ii), respectively. In

order to use Lemma 3.1, we show the inequality f [m]
i (x) ≥ x for m = 5, 6 and i = 1, 2 on an interval of x.
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(i) It follows from some computations that for 0 < x ≤ 3/4,

f [5]
1 (x) − f [5]

2 (x) = −
2(3093x3

− 9691x2 + 8418x − 2310)
21(77x2 − 132x + 84)(197x2 − 330x + 210)

> 0.

Also we have

f [5]
2 (x) − x = −

x(197x2
− 330x + 136)

197x2 − 330x + 210
≡
−xp1(x)

q1(x)
.

Since q1(x) > 0 for all x > 0 and p1(x) has two roots 165∓
√

433
197 , we have f [5]

2 (x) ≥ x for 165−
√

433
197 (≈ 0.7319) ≤ x ≤ 3

4 .

Using the first reduction of x, i.e. 0 < x ≤ 1(5) = 1023
1372 , we can see that f [5]

2 (x) ≥ x for 165−
√

433
197 ≤ x ≤ 1023

1372 ,
which induces our result.

(ii) To show (ii), we follow the previous method. From some calculations,

f [6]
1 (x) − f [6]

2 (x) = −
20799x3

− 72150x2 + 68376x − 20384
16(156x2 − 273x + 196)(633x2 − 1092x + 784)

> 0,

f [6]
2 (x) − x = −

3x(211x2
− 364x + 155)

633x2 − 1092x + 784
≡
−3xp2(x)

q2(x)
.

Since q2(x) > 0 for x > 0 and p2(x) > 0 for 0 < x ≤ 3
4 , we have f [6]

2 (x) < x. From the range of x,
0 < x ≤ 1(6) = 1694

2307 , we proves this result. �

Corollary 3.4. Let θ be any value in the interval
[

165−
√

433
197 , 1023

1372

]
and let Wα(x,θ) be a weighted shift with α(x, θ) :

√
x,
√
θ,
√

3/4,
√

4/5, · · · . Then the followings are equivalent:
(i) Wα(x,θ) is semi-weakly 5-hyponormal with p.d.c.;
(ii) Wα(x,θ) is semi-weakly 5-hyponormal;
(iii) Wα(x,θ) is hyponormal;
(iv) 0 < x ≤ θ.

Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv): These implications are trivial.
Now we sufficiently to prove that (iv)⇒ (i). Suppose 165−

√
433

197 ≤ θ ≤ 1023
1372 . Using some computations in

the proof of Proposition 3.3 (i), we have θ ≤ 1(5) = 1023
1372 and θ ≤ f [5]

2 (θ) ≤ f [5]
1 (θ). It follows from Lemma 3.1

that Wα(x,θ) is semi-weakly 5-hyponormal with p.d.c. ⇔ 0 < x ≤ θ. So our proof is completed. �

From Proposition 3.3 and Corollary 3.4, we can produce an interval of x with non-empty interior in the
positive real line for semi-weak 6-hyponormality but not semi-weak 6-hyponormality with p.d.c. for such
a shift.

Proposition 3.5. Let Wα(x) be a weighted shift with α(x) :
√

x,
√

183
250 ,

√
3
4 ,

√
4
5 , · · · . Set

s-H6 = {x : Wα(x) is semi-weakly 6-hyponormal},

s-Ĥ6 = {x : Wα(x) is semi-weakly 6-hyponormal with p.d.c.}.

Then it holds that s-H6\s-Ĥ6 =
(

14594250
20239537 ,

183
250

]
.

Proof. For 0 < x ≤ 183
250 , from Proposition 3.3 (ii), Wα(x) is semi-weakly 6-hyponormal. Since f [6]

1 ( 183
250 ) =

28834375
39876272 > f [6]

2 ( 183
250 ) = 14594250

20239537 and 1(6) = 1694
2307 , by Lemma 3.1, we obtain that Wα(x) is semi-weakly 6-

hyponormal with p.d.c. ⇔ 0 < x ≤ 14594250
20239537 . Thus the interval

(
14594250
20239537 ,

183
250

]
is a range in x for semi-weak

6-hyponormality but not semi-weak 6-hyponormality with p.d.c. of Wα(x). �
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4. Flatness

In this section we consider the flatness of semi-weakly m-hyponormal weighted shifts for m ≥ 3. First,
we note two principal submatrices in (2.3) as followings:

D1 =

 qm,0 zm,0 0
z̄m,0 qm,m−1 zm,m−1

0 z̄m,m−1 qm,2m−2

 and D2 =

(
qm,1 zm,1
z̄m,1 qm,m

)
, (4.1)

where {qm,i} and {zm,i} are given in (2.2).

Theorem 4.1. Let Wα be a hyponormal weighted shift with α = {αi}
∞

i=0 and α0 = α1 = 1. If Wα is semi-weakly
m-hyponormal, then

(
2 − α2

m−1

)
α2

m ≥ 1.

Proof. Suppose that Wα is semi-weakly m-hyponormal. It follows from D1 ≥ 0 and D2 ≥ 0 in (4.1) that

qm,m−1qm,0 − z2
m,0 ≥ 0 and qm,mqm,1 − z2

m,1 ≥ 0.

From the assumption of hyponormality of Wα,

α2
mα

2
m+1 · · ·α

2
2m−2 − α

2
1α

2
2 · · ·α

2
m−3α

4
m−2 > 0,

for all m ≥ 3, so we have

qm,m−1qm,0 − z2
m,0

α2
0

= α2
m−1−α

2
m−2+α2

1α
2
2 · · ·α

2
m−2α

4
m−1α

2
m · · ·α

2
2m−2 t2+α2

m−1

(
α2

m · · ·α
2
2m−2 − α

2
1α

2
2 · · ·α

2
m−3α

4
m−2

)
t ≥ 0,

for all t > 0. Moreover

lim
t→0+

qm,mqm,1 − z2
m,1

α2
2α

2
3 · · ·α

2
m−1t

= lim
t→0+

((
α2

mα
2
m+1 · · ·α

2
2m−1 − α

2
2 · · ·α

2
m−2α

2
m−1

)
α2

mt − α2
mα

2
m−1 + 2α2

m − 1
)

=
(
2 − α2

m−1

)
α2

m − 1 ≥ 0,

which induces that
(
2 − α2

m−1

)
α2

m ≥ 1. �

Corollary 4.2. Let Wα be a completely semi-weakly hyponormal weighted shift with α0 = α1 = 1. Then Wα is flat,
i.e., αn = 1 for all n ∈N.

Proof. Put a := limn→∞ αn. Since Wα is semi-weakly m-hyponormal for all m ≥ 3,
(
2 − α2

m−1

)
α2

m ≥ 1 for all m,

which implies that
(
2 − a2

)
a2
≥ 1, i.e.

(
a2
− 1

)2
≤ 0. Hence a = 1. Thus we have our conclusion. �

Example 4.3. Let Wα be a weighted shift with α :
√

2
3 ,

√
2
3 ,

√
3
4 ,

√
4
5 ,

√
5
6 , · · · . Then Wα is a semi-cubically

hyponormal but not semi-weakly m-hyponormal for any m ≥ 4. In fact, this result is known in [9, Proposition
3.8]. In this example, we show simple method to check the result for m ≥ 5. Denote a weight sequence

β = {βi}
∞

i=0, where βn :=
√

3
2αn (n ≥ 0). Then β0 = 1, β2

n =
3(n+1)
2(n+2) (n ≥ 1). Since

β2
m(2 − β2

m−1) − 1 =
4 −m

4(m + 2)
,

using Theorem 4.1, the corresponding weighted shift Wβ is not semi-weakly m-hyponormal with m > 4,
which induces our conclusion.
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Example 4.4. Let Wα be a weighted shift with α :
√

8
9 , 1, 1,

√
4(n+2)
3(n+3) (n ≥ 3). For m ≥ 3 and n ∈ N0, denote

d[m]
n (t) for the determinant of the matrix D[m]

n (t) in (2.1). For the cases of m = 3 and m = 4, by simple
computations, we have

d[3]
4 (t) =

320t(567 + 13812t + 143360t2)(−2062071 + 35408688t + 256901120t2)
828805165333299

,

d[4]
5 (t) =

640t(217088t − 837)(297 + 17214t + 286720t2)(11907 + 85392t + 286720t2)
604198965527974971

.

Then d[3]
4 (t) < 0 for t < δ, where δ(≈ 0.0441) is the positive solution of the equation 256901120t2 +35408688t−

2062071 = 0. So Wα is not semi-cubically hyponormal. And also d[4]
5 (t) < 0 for t < δ̃, where δ̃(≈ 0.0039) is

the solution of the equation 217088t − 837 = 0. So Wα is not semi-quartically hyponormal.
Further for cases of m ≥ 5, we use the similar methods above. Put

Φ[m]
m+1(t) := d[m]

m+1(t)/qm,3 · · · qm,m−3qm,m−2.

Then Φ[m]
m+1(t) =

(
qm,0qm,m−1 − z2

m,0

) (
qm,1qm,m − z2

m,1

) (
qm,2qm,m+1 − z2

m,2

)
. Using the definitions in (2.2), each qm,i

is strictly positive for all i ≥ 0. From some computations containing with α1 = 1 = α2, we can see

lim
t→0

Φ[m]
m+1(t)

tα2
0α

2
3α

2
4α

2
5

= (α2
m−1 − α

2
m−2)(1 − α2

0)(α2
m − α

2
m−1)φ[m],

where φ[m] = α2
6(α2

m+1 − α
2
m) − (α2

6 − 1)2. Since

φ[m] =
852 − 175m − 25m2

729(3 + m)(4 + m)
< 0 for m ≥ 4,

from αn+1 ≥ αn (n ≥ 2), Φ[m]
m+1(t) < 0 for some t > 0. Hence d[m]

m+1(t) � 0 for all t > 0, which induces that Wα is
not semi-weakly m-hyponormal for each m ≥ 5.

Example 4.5. Consider a weighted shift Wα with α :
√

8
9 , 1, 1, 1,

√
4n+8
3n+9 (n ≥ 4). Then from simple computa-

tions,

d[4]
5 (t) = det D[4]

5 =
2048t2(61 + 224t)(−837 + 235520t)(891 + 20078t + 172032t2)

1381341942222165
.

So we have d[4]
5 (t) < 0 for 0 < t < δ, where δ(≈ 0.00355) is the solution of 235520t− 837 = 0. Hence Wα is not

semi-weakly 4-hyponormal.

Theorem 4.6. Let Wα be a semi-weakly m-hyponormal weighted shift with α = {αi}
∞

i=0. If αn = αn+1 = · · · = αn+2m−5
for some n ∈N, then α1 = α2 = α3 = · · · , i.e., Wα is subnormal.

Proof. By the following Lemma 4.7 and Lemma 4.8, we prove it. �

Lemma 4.7. (Outer propagation) Let Wα be a semi-weakly m-hyponormal. If αn = αn+1 = · · · = αn+2m−5 for some
n ∈N, then αn+k = αn, for all k ≥ 1.

Proof. Since the restriction of a semi-weakly m-hyponormal operator (m ≥ 3) to an invariant subspace is
also semi-weakly m-hyponormal, we are sufficient to prove the result for the case n = 1. Suppose that
α1 = α2 = · · · = α2m−4 = 1. From the hypothesis of semi-weak m-hyponormality of Wα, we note that the first
matrix D1 in (4.1) is positive, so det D1 ≥ 0 for any t > 0. By a computation, we have

lim
t→0+

det D1

t
= −α2

0

(
α2

2m−3 − 1
)2
α2

2m−2 ≥ 0,

which induces that α2m−3 = 1, so α1 = · · · = α2m−4 = α2m−3 = 1. Continuing the above methods, we obtain
the result via mathematical induction. �
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Lemma 4.8. (Inner propagation) Let Wα be a semi-weakly m-hyponormal. If αn = αn+1 = · · · = αn+2m−5 for some
n ∈N, then α1 = α2 = · · · = αn.

Proof. Without loss of generality, we assume that n = 2, i.e., α2 = α3 = · · · = α2m−3 = 1. By Lemma 4.7, we
can have αn = 1 for all n ≥ 2. Now we are sufficient to show that α1 = 1. From the hypothesis of semi-weak
m-hyponormality of Wα, we note that the second matrix D2 in (4.1) is positive, so det D2 ≥ 0 for any t ≥ 0.
By a computation, we have

lim
t→0+

det D2

t
= −α2

0

(
α2

1 − 1
)2
≥ 0,

which implies that α1 = 1. �

Corollary 4.9. Assume that Wα is semi-cubically hyponormal. If αn = αn+1 for some n ∈ N, then α1 = α2 = α3 =
· · · , i.e., Wα is subnormal.

Corollary 4.10. Assume that Wα is semi-weakly 4-hyponormal. If αn = αn+1 = αn+2 = αn+3 for some n ∈ N, then
α1 = α2 = α3 = · · · , i.e., Wα is subnormal.

5. Proof of Theorem 2.1

Proof of Theorem 2.1. From the definitions, we will find equivalent conditions to c[m]
j (n, i) ≥ 0 for all

n ≥ 0, 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ m − 2. First, we note that by (2.5), c[m]
j (n, 0) = ǔ0, j · · · ǔn, j > 0 and

c[m]
j (n,n + 1) = v̌0, j · · · v̌n, j > 0 for all n ≥ 0 and 0 ≤ j ≤ m− 2. So we only consider cases of n ≥ 1 and 1 ≤ i ≤ n

for j = 0, 1, ...,m − 2. For our convenience, we may omit coding j ( j = 0, 1, ...,m − 2) of ǔn, j, v̌n, j and w̌n, j in
the expression of coefficients c[m]

j (n, i).

Now we consider to check the positivity of c[m]
j (n, i) for j = 2, ...,m − 2 (i.e. j , 0, 1). From easy

computations,

c[m]
j (1, 1) =

m3
− ( j + 4)m2 + ( j + 3)2m + j3 + 6 j2 + 11 j + 6

( j + 2)( j + 3)(m + j + 1)(m + j + 2)(2m + j + 1)
,

using the positivity of numerator in c[m]
j (1, 1) for m ≥ 3, c[m]

j (1, 1) > 0. It follows from a direct computation
that

v̌2ǔ1 − w̌1 =
m2(m − 1)2

(2m + j)(3m + j)(m + j + 1)(m + j + 2)(2m + j + 1)2 > 0,

which induces that c[m]
j (2, 1) = ǔ2c[m]

j (1, 1)+ ǔ0(v̌2ǔ1− w̌1) > 0. Since c[m]
j (2, 2) = h[m]

j,2 + v̌2c[m]
j (1, 1) in (2.5), using

the facts h[m]
j,2 = 0 ( j , 0, 1) in (2.7) and c[m]

j (1, 1) > 0, we have c[m]
j (2, 2) > 0. For all n ≥ 3 and 2 ≤ j ≤ m − 2,

using (2.7), we have

c[m]
j (n, 1) = v̌nc[m]

j (n − 1, 0) = v̌nǔn−1 · · · ǔ1ǔ0 > 0,

which implies that c[m]
j (n, 2) = v̌nc[m]

j (n − 1, 1) > 0 for all n ≥ 3.
For the case 3 ≤ i ≤ n (n ≥ 3), from the recurrence form (2.7),

c[m]
j (n, i) = v̌nc[m]

j (n − 1, i − 1) = · · · = v̌nv̌n−1 · · · v̌n−i+3c[m]
j (n − i + 2, 2).

Since n − i + 2 ≥ 2, c[m]
j (n − i + 2, 2) > 0. Using the mathematical induction, c[m]

j (n, i) > 0 for all n ≥ 2 with
2 ≤ i ≤ n and j = 2, 3, · · · ,m − 2.
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Now we sufficiently show that Wα(x) has positive determinant coefficients(p.d.c.) of order m⇔ c[m]
0 (n, i) ≥

0 and c[m]
1 (n, i) ≥ 0 for all n ≥ 1 with 1 ≤ i ≤ n.

Claim 1◦. c[m]
0 (n, i) ≥ 0 for all n ≥ 1 and 1 ≤ i ≤ n.

(1◦-i) i = 1: It follows from a direct computation via (2.5) that

c[m]
0 (1, 1) =

(m3
− 2m2 + 2m + 2)x

(m + 1)(m + 2)(2m + 1)
> 0,

c[m]
0 (2, 1) = ǔ2c[m]

0 (1, 1) +
ǔ0(m − 1)2

6(m + 1)(m + 2)(2m + 1)2 > 0.

For n ≥ 3, from (2.5), (2.7), and the definition of h[m]
0,1 we have

c[m]
0 (n, 1) = v̌nc[m]

0 (n − 1, 0) + ǔn · · · ǔ3h[m]
0,1

= v̌nǔ0 · · · ǔn−1 + ǔn · · · ǔ3

[
ǔ2c[m]

0 (1, 1) − w̌1c[m]
0 (0, 0)

]
= ǔ2ǔ3 · · · ǔnc[m]

0 (1, 1) + ǔ0ǔ3 · · · ǔn−1 (ǔ1ǔ2v̌n − w̌1ǔn) .

By a simple computation, we have

ǔ1ǔ2v̌n − w̌1ǔn =
(m − 1)2m(n − 1)

2(m + 1)(m + 2)(2m + 1)2(2 − n + mn)(3 − n + mn)(2 + m − n + mn)
,

so c[m]
0 (n, 1) > 0 for all n ≥ 3. Hence c[m]

0 (n, 1) > 0 for all n ≥ 1.
(1◦-ii) i = 2: From h[m]

0,2 = (ǔ2v̌1 − w̌1)v̌0 = v̌0/(2m(m + 1)(2m + 1)), we have

c[m]
0 (2, 2) = v̌2c[m]

0 (1, 1) + h[m]
0,2 > 0.

Now for n ≥ 3, using the recurrence form (2.7), we can obtain that

c[m]
0 (n, 2) = v̌nc[m]

0 (n − 1, 1) + ǔn · · · ǔ3h[m]
0,2

= v̌n

[
v̌n−1c[m]

0 (n − 2, 0) + ǔn−1 · · · ǔ3h[m]
0,1

]
+ ǔn · · · ǔ3h[m]

0,2

= ǔ3 · · · ǔn−2v̌n

[
ǔ0ǔ1ǔ2v̌n−1 + ǔn−1h[m]

0,1

]
+ ǔ3 · · · ǔnh[m]

0,2 .

Put β[m]
n := ǔ0ǔ1ǔ2v̌n−1 + ǔn−1h[m]

0,1 (n ≥ 3). Then

β[m]
n =

x
(
n(m3

− 3m2 + 4m − 2) −m3 + 4m2
− 6m + 6

)
2m(m + 1)(m + 2)(2m + 1)(mn − n + 3)(mn −m − n + 3)(mn −m − n + 4)

.

Since x > 0 and n ≥ 3, β[m]
n > 0. Hence c[m]

0 (n, 2) > 0 for all n ≥ 1. Finally we consider 3 ≤ i ≤ n for n ≥ 3.
Also, using (2.7), we have

c[m]
0 (n, i) = v̌nc[m]

0 (n − 1, i − 1) = · · · = v̌nv̌n−1 · · · v̌n−i+3c[m]
0 (n − i + 2, 2).

Since n− i + 2 ≥ 1 and c[m]
0 (n, 2) > 0 (n ≥ 1), c[m]

0 (n− i + 2, 2) > 0 for 3 ≤ i ≤ n, which induces that c[m]
0 (n, i) > 0

for all n ≥ 1 and 3 ≤ i ≤ n.
Claim 2◦. c[m]

1 (n, i) > 0 (n ≥ 1, 1 ≤ i ≤ n)⇔ 0 < x ≤ min{ 34 , f (m)}.
(2◦-i) i = 1: For the cases n = 1, 2, using (2.5), we can obtain two solutions, 11(m) and 12(m) of the linear
equations c[m]

1 (1, 1) = 0 and c[m]
1 (2, 1) = 0, respectively, where

c[m]
1 (1, 1) =

3(m3
−m2 + 4) − 2(2m + 3)(m − 1)2x

8(m + 1)(m + 2)(m + 3)
,
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c[m]
1 (2, 1) =

6(m3
− 2m2 + 2m + 1) − (8m + 3)(m − 1)2x

8 (m + 1) (m + 2) (m + 3) (2m + 1) (3m + 1)
.

Then c[m]
1 (1, 1) ≥ 0⇔ x ≤ 11(m) and c[m]

1 (2, 1) ≥ 0⇔ x ≤ 12(m), respectively.
For n ≥ 3 and i = 1, using (2.5) and (2.7), we have

c[m]
1 (n, 1) = v̌nc[m]

1 (n − 1, 0) + ǔn · · · ǔ3h[m]
1,1

= ǔ3 · · · ǔn

[
ǔ0ǔ1ǔ2v̌n/ǔn + h[m]

1,1

]
≡ ǔ3 · · · ǔnΘ[m]

n (x).

Denote η̌n for v̌n
ǔn

(n ≥ 3). From definitions in (2.4), {η̌n} is increasing. In particular, for each j, η̌n =
v̌n, j

ǔn, j

(
=

vn(m−1)+ j

un(m−1)+ j

)
↗ m2 (n→∞). From a direct computation,

Θ[m]
3 (x) = ǔ0ǔ1ǔ2η̌3 + h[m]

1,1 =
3m2
− 7m + 8 − 4(m − 1)2x

32(m + 1)(m + 2)(m + 3)(2m + 1)
,

using η̌n+1 ≥ η̌n (n ≥ 3), ǔ3 · · · ǔn > 0 and 0 < x ≤ 3
4 , we see

c[m]
1 (n, 1) ≥ 0 (n ≥ 3)⇐⇒ Θ[m]

3 (x) ≥ 0 ⇐⇒ 0 < x ≤ min{3/4, 13(m)},

where 13(m) is the solution of the equation Θ[m]
3 (x) = 0. Moreover from simple calculations, it holds that

1i(m) > 3
4 for m = 3, 4 and 1i(m) ≤ 3

4 for m ≥ 5 (i = 1, 2, 3). Further, we get the followings:

11(m) − 12(m) =
3m2(5 −m)

2(2m + 3)(8m + 3)(m − 1)3 , 13(m) − 11(m) =
m(m − 5)

4(2m + 3)(m − 1)2 ,

which induce 11(m) ≤ 12(m) and 11(m) ≤ 13(m) for all m ≥ 5.
Hence c[m]

1 (n, 1) ≥ 0 for all n ≥ 1⇔ 0 < x ≤ min{ 34 , 11(m)}.
(2◦-ii) i = 2: It is obvious that c[m]

1 (1, 2) = v̌1v̌0 > 0. Write ϕ[m](x) ≡ c[m]
1 (2, 2) for convenience. By a direct

computation via (2.5),

ϕ[m](x) =
3(m5

−m4 + 4m2 + 24m + 8) − 2(2m5
−m4

− 4m3 + 3m2 + 54m + 18)x
8(m + 1)(m + 2)(m + 3)(2m + 1)(3m + 1)

.

From the assumption of 0 < x ≤ 3
4 , we have ϕ[m](x) ≥ 0⇔ 0 < x ≤ min{ 34 , f (m)}, where f (m) is the solution

of ϕ[m](x) = 0. In fact, f (m) > 3
4 for m = 3, 4 and f (m) ≤ 3

4 otherwise. Further, elementary computations
induce that for m ≥ 5,

11(m) − f (m) =
3(3m + 1)p(m)

(m − 1)2(2m + 3)q(m)
,

where p(m) = m3
−5m2 +16m+24 and q(m) = 2m5

−m4
−4m3 +3m2 +54m+18. Indeed, p′(m) > 0 and q′(m) > 0

(m ≥ 5). Then p(m) and q(m) are strictly positive increasing functions, which implies that 11(m) > f (m) for
m ≥ 5. Hence the condition of 0 < x ≤ min{ 34 , f (m)} guarantees c[m]

1 (2, 2) ≥ 0 and c[m]
1 (n, 1) ≥ 0 for all n ≥ 1.

Next we consider n ≥ 3. Using (2.7), we can obtain that

c[m]
1 (n, 2) = v̌nc[m]

1 (n − 1, 1) + ǔn · · · ǔ3h[m]
1,2

= v̌nv̌n−1c[m]
1 (n − 2, 0) + v̌nǔn−1 · · · ǔ3h[m]

1,1 + ǔn · · · ǔ3h[m]
1,2

= ǔ3 · · · ǔn

[ ǔ0ǔ1ǔ2v̌n−1v̌n

ǔn−1ǔn
+

v̌n

ǔn
h[m]

1,1 + h[m]
1,2

]
.
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Put F[m](η̌n−1, η̌n) = ǔ0ǔ1ǔ2η̌n−1η̌n + η̌nh[m]
1,1 + h[m]

1,2 with η̌n = v̌n
ǔn

for n ≥ 3. Then

F[m](η̌n, η̌n+1) − F[m](η̌n−1, η̌n) = (η̌n+1 − η̌n)(ξ1φn + ξ2),

where ξ1 := ǔ0ǔ1ǔ2, ξ2 := h[m]
1,1 and φn := η̌n+1

(
η̌n−η̌n−1

η̌n+1−η̌n

)
+ η̌n−1.

If ξ1φn + ξ2 ≥ 0, then F[m](η̌n−1, η̌n) is increasing for n ≥ 3. So

F[m](η̌2, η̌3) ≤ F[m](η̌3, η̌4) ≤ · · · ≤ F[m](η̌n−1, η̌n) ≤ · · · .

Since

F[m](η̌2, η̌3) =
6(m3

− 2m2 + 2m + 1) − (m − 1)2(8m + 3)x
32(m + 1)(m + 2)(m + 3)(2m + 1)

,

c[m]
1 (n, 2) ≥ 0 (n ≥ 3) ⇔ F[m](η̌2, η̌3) ≥ 0 ⇔ 0 < x ≤ ϕ1(m), where ϕ1(m) is the solution of the equation

F[m](η̌2, η̌3) = 0.
If ξ1φn + ξ2 < 0, then F[m](η̌n−1, η̌n) is decreasing for n ≥ 3. Since limn→∞ η̌n = m2,

F[m](η̌2, η̌3) ≥ · · · ≥ F[m](η̌n−1, η̌n) ≥ · · · ≥ F[m](m2,m2).

From a simple computation,

F[m](m2,m2) =
m2(3(m2

− 2m + 2) − (4m2
− 7m + 3)x)

8(m + 1)(m + 2)(m + 3)(2m + 1)
,

we know that c[m]
1 (n, 2) ≥ 0 for all n ≥ 3 ⇔ F[m](m2,m2) ≥ 0 ⇔ 0 < x ≤ ϕ2(m), where ϕ2(m) is the solution

of F[m](m2,m2) = 0. From a direct computation, we have ϕi(3) > 3
4 and ϕi(4) > 3

4 for i = 1, 2. Moreover,
from the similar methods the above, we can obtain that ϕi(m) > f (m) (i = 1, 2) for all m ≥ 5. Hence by the
assumption of 0 < x ≤ 3

4 , c[m]
1 (n, 2) ≥ 0 for all n ≥ 3⇔ 0 < x ≤ min{ 34 , f (m)}.

For the final cases of 3 ≤ i ≤ n and n ≥ 3, using (2.7), we have

c[m]
1 (n, i) = v̌nc[m]

1 (n − 1, i − 1) = · · · = v̌nv̌n−1 · · · v̌n−i+3c[m]
1 (n − i + 2, 2).

Since n − i + 2 ≥ 2, using the above equivalence formula for c[m]
1 (n, 2) ≥ 0 for all n ≥ 1, we can obtain

c[m]
1 (n, i) ≥ 0⇔ 0 < x ≤ min{ 34 , f (m)} for all 3 ≤ i ≤ n (n ≥ 3). Therefore we have proved completely. �
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