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On the Steady Solutions of Fractional Reaction-Diffusion Equations

Hossein Fazli?, Fariba Bahrami?

®Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract. In this paper, we study the existence of weak solutions for stationary fractional reaction-
diffusion equations with Riemann-Liouville boundary conditions. An appropriate fractional Hilbert space
is introduced and a compact embedding theorem demonstrated. Existence results are established using
generalized Weierstrass theorem and relatively simple techniques from nonlinear functional analysis.

1. Introduction

Fractional calculus have applications in many areas including fluid flow, electrical networks, probability
and statistics, viscoelasticity, chemical physics and signal processing, and so on, see [1, 3-5, 9-11, 17, 18,
22, 24] and references therein. Over the past 30 years, many researchers paid attention to the existence
results of solutions of the initial and boundary value problems for fractional differential equations, such as
[13,23, 28].

In this paper, we want to study the existence of weak solutions to the steady fractional reaction-diffusion
equation

D (0D2y()) + oD% (:Dfy()) = f(x, y(x)), (1)

with Riemann-Liouville boundary conditions
lim oI y(x) = lim [, y(x) = 0, @)
x—0* x—1-

where 0 < a,f < 1, f : [0,1]] X R — R is Carathéodory function and (Dg, ,Dj denote left and right
Riemann-Liouville fractional derivatives of order «, respectively.

Our interest in studying problem (1) comes from the fractional reaction-diffusion equation

dy(t,
y(at 9. <D (oDt ) + oD% (<D y(t, 0)) + f(t, %, y()),

that is a generalization of the classical reaction-diffusion equation in which the second-order derivative is
replaced with a fractional derivative of order less than two. The resulting solutions spread faster than the

classical solutions and may exhibit asymmetry, depending on the fractional derivative used, see [7, 8, 25]
for more details.
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Owing to its wide applications in modeling physical phenomena using equations involving left and
right fractional derivatives [19-21], the existence results of the initial and boundary value problem for such
equations have been studied by several researchers. We refer for instance to [2, 6, 26]. They all constructed
a solution in the space of continuous functions. Indeed, they used the continuous functions on [0, 1] as
a solution space so that initial and boundary conditions could make sense. On the other hand, we know
the natural conditions at boundary points for problems involving Riemann-Liouville fractional derivatives
are Riemann-Liouville conditions as we can see in the literature (see e.g., [13, 18]). Recently, the physical
meaning of such conditions to fractional differential equations with Riemann-Liouville derivatives has been
discussed [15, 16].

Here, we wish to investigate the existence results for problem (1) subject to the Riemann-Liouville
boundary conditions (2). For this, we first construct an appropriate solution space so that bounday condi-
tions make sense. Secondly, we prove some useful properties of our solution space and using generalized
Weierstrass theorem among with relatively simple techniques from nonlinear functional analysis, we show
that problem (1)-(2) admit at least one weak solution.

The paper is structured as follows. In Section 2, a number of definitions and lemmas concerning the
fractional Riemann-Liouville derivatives and integrals are collected. Next, in Section 3, the fractional
Hilbert space as a solution space is stated. Finally, in Section 4, the existence of appropriately defined weak
solution and almost everywhere solution of main problem is studied.

2. Preliminaries

The purpose of this section is to collect a number of definitions and lemmas concerning the fractional
derivatives and integrals.

Definition 2.1. [18]. The Riemann-Liouville fractional integrals oISy and Iy of order a > 0 of a function
y : [0,1] = R are defined by

oLy (x) = ﬁ fo (c— (o),

and

1
() = ﬁ f (- 0y (o),

respectively. Here and in what follows I denotes the Gamma function. These integrals are called the left and the right
fractional integrals.

Definition 2.2. [18]. The Riemann-Liouville fractional derivatives oDy and yD{y of order 0 < a < 1 of a function
y : [0,1] = R are defined by

1 d

d X
oDyy(x) = EOI}(_“y(x) = mafo (x =) "y(t)dt,

and
a __d 1-a _ 1 d ! A\
DY) =~ ol =~ e [ (=0 v

respectively. These operators are called the left and the right Riemann-Liouville fractional derivatives.

Definition 2.3. Let 0 < a < 1. A function y € L'[0,1] is said to have a summable fractional derivative ¢D%y (resp.
«Diy), if olL%y € ACI0,1] (resp. xl%‘“y € ACI0,1]), where AC[0, 1] represents the space of absolutely continuous
functions on [0, 1].
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Remark 2.4. Let 0 < a < 1. If gDy(x) (resp. 1D{y(x)) exists in the usual sense, i.e. xli’“y(x) (resp. xl%’“y(x)) is
differentiable at every point, then, evidently, y(x) has a derivative in the sense of Definition 2.3.

Proposition 2.5. [18]. Let p > 1. The fractional integration operators oIy and I with a > 0 are bounded in LP (0, 1),

. 1
oIyl < Kilyll, Iyl < Kyl (K = m)

Proposition 2.6. [12]. Let 0 < !1] < a < 1and y(x) € LF(0,1), then ol$y is Holder continuous on (0,1] with

exponent o — % and lim,_,o+ oI$y(x) = 0. Consequently, oIy can be continuously extended by 0 in x = 0.

Proposition 2.7. [18]. Let & > 1 and p > 1. Let y(x) € LP(0,1) and §(x) € L' (0, 1) where Il—) + ’% =1. Then

fo () - g = fo )
Proposition 2.8. [18]. Let &« > 0and p > 1. If y(x) € L7(0, 1), then
oDYoliy(x) = y(x), and 1Diliy(x) = y(x),
almost everywhere on [0, 1].
Proposition 2.9. [22]. Let 0 <a < Tandp > 1. If D3y(x) € LP(0,1) (resp. :Dfy(x) € LF(0, 1)), then

Olalc_ay(o) a—1

oIf;onfy(X) = y(x) — Wx p
and
I=y(1)
JLDY() = y(x) - %a _xr,

almost everywhere on [0, 1].

Theorem 2.10. [27].(Generalized Weierstrass Theorem). Let X be a Hilbert space and L : X — R be weakly
lower semicontinuous and weakly coercive. Then

e inf,cx L(u) > —oo,
o there is at least one ug € X such that L(ug) = inf,cx L(11).

Moreover, if L is Giteaux differentiable at ug, then L' (up) = 0.

3. Fractional Hilbert Space
In this section we introduce the fractional Hilbert space in which boundary conditions are nonlocal.

Definition 3.1. For 0 < a, B < 1, we define the following space
HY0,1) := {y € L%0,1) : oD%y, D’y € L2(0,1), lim oI}y (x) = lim .I. Py(x) =0
0 ’ . y ’ oYy Yrx 1y ’ /x_>0+0x y x—>1‘x1 Yy 7

with the inner product

1 1
Yy Phag = f oDy - D% dx + f Dy Dl dx, 3)
0 0
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and corresponding norm

1llop —( f (6DSy)* dx + f (:Dly) dx);. ()

Clearly, if « = B =1, the space ]I—Ig”S (0,1) coincides with the Sobolev space H}(0, 1).
Remark 3.2. In view of Proposition 2.9, for every y € I[—Ig’ﬁ (0,1), we have

ol20DSy(x) = y(x), and 15, Diy(x) = y(x).

Therefore, using the continuity of Riemann-Liouville fractional integral operator from L to L?, we deduce

1
lyllz < K (IlbD3ylR + 1hD5yIR)* = Kilyllas- 5)
for some K > 0. Therefore, the continuous embedding ]I—Ig"’g (0,1) = L*(0,1) holds.
Lemma 3.3. Let 0 < a, 5 < 1. The space ]I—Ig’ﬁ(O, 1) is a Hilbert space.

Proof. Let {y,} be a Cauchy sequence in ]I—Ig’ﬁ (0,1), then {y,}, {oD5y,} and {fo Yn} are Cauchy sequences in
L%(0,1). It follows that

12 12 L2
Yo — Yy, oD%y —y @, Dby, — . (6)
A similar argument in Remak 3.2, we deduce
12 12
Yo — ol3y@,  y, = Ly, 7)
Therefore, we have

y() = ol D), y) = LyPx) (8)

almost everywhere on [0, 1]. Finally, using Proposition 2.8, we immediately get that y@ = (D%y, y® = fo Y.
On the other hand, from (8), we have

y() = olDEY®, Y =Dy (), ©)
almost everywhere on [0, 1]. Therefore, using Proposition 2.9, we deduce
lim o} y(x) = lim €Ly =
and the proof is finished. [

Now we intend to state and prove a compactness result for the space ]Hg’ﬁ(O, 1). This will be crucial for
our analysis in the sequel. For any € R and any y € L?(0, 1), we define the translation of y by }, to be the
function 7;(y) from R to R, given by

oo ={ o0 TrO

Theorem 3.4. Let 0 < o, < 1. The compact embedding ]I—Ig’ﬁ (0,1) = L*(0, 1) holds.
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Proof. From Remark 3.2, it is sufficient to prove every bounded sequence in ]I—Ig"'g (0,1) is precompact in
L%(0,1). On the other hand, from Fréchet-Kolmogorov theorem, it is sufficient to prove that

sup [T, (Yn) — Yullo = 0, ash — 0. (10)
nelN

From Proposition 2.9, for every n € IN, we have

Yn(x) = 0I50D3yn(x).

Therefore, for h > 0 and x,x + h € [0,1], we have

1y + 1) = 1 (IR = [JoL20 Dy (x + 1) = oI DE |2 = f JoL80 DS yu(x + ) = oL DSyn ()| dx

B 1 1 x+h - " »
= —(F(a))z L ﬁ (x+h-—1t) onyn(t)dt - ](; (x—1) ODX}/n(t)df

1 N X+h
- (r(i))z f f ((x +h—1)* = (x - t)a_l)OD?yn(t)dt + f (x + h — )3 D%y, (t)dt
o |Jo .

1 N N
< —(r(a))2 fo fo ((x+h 1 (x— 1) 1)0nyn(t)dt
1 1 2

+<r(a)>2 f

1 1 2
r(a))z f ( f v+ b= £y (x—t)“—1|2|0Dzyn<t>|)(x+h—t>“-l-(x-t)a—112dt) dx

2

(r(i))zfo (f e+ =1 )nyn(t1|(x+h—t)"‘1(;dt) dx

Using Holder’s inequality for the inner integrals above, we have

2
dx

2
dx

2
dx

xX+h
f (x +h — 1) Dy, (t)dt| dx

X : 2
(f [ e 1| loD&yn(B)l | + T — £ —(x—t)“‘1|2dt)
(f R A 1||0nyn(f)l2df) (fx|(x+h—t)”‘1 —(x—t)“|dt)

—[h“—((1+h -1)] (f |+ =p27 = (x = 1) 1||0nyn(t)|2dt),

and
2

(f e+ 1= 1] oDy t)||<x+h_t>a—1|%dt)

xX+h
< (f |(x+h—t)a 1||0nyn(t)|2dt)(f ’(x+h—t)a—1‘dt)
1
([l ot [o-o)
0

Therefore, for every n € IN, we have

h)® —
lya(x + 1) — yOl5 < s (1+a);2 1)]ff|(x+h U (x = %Y lo D&y () Pdxdt
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oz(l" a))z f f (1= )7 | |oDyulx + sh)|2 dsdx

[ = (L +h* = DI = (@ + ) =D] B> o
= ( a(l(a))? a(T(a))? + 2T (a)? )”OD yull3
[h* — (1 + h)* - 1)]? 2 -
( (T(a+ D)2 + T(a+ 1))2) lloDyyullz, (11)

whence assertion (10) follows from (11). O

4. Existence and Uniqueness Results

We will study in this section the existence of appropriately defined weak solutions and almost every-
where solutions of the main problem.

Definition 4.1. Wesay y € ]I—Ig’ﬁ(O, 1) is a weak solution of (1)-(2), if
1
f (0D%y(x) - DLv(x) + <Dy (x) - <D v(x)) dx = f Fx, y(x)) - v(x) dx,
0

forallv e H—Ig’ﬁ(O, 1).

We define F(x, y) = j(;y f(x,&) d€ and the functional £ on ]I—Ig’ﬁ 0,1) by

1 1
Ly):=2" fo (oDﬁy(x))2+(foy(x))2 dx — fo F(x, y) dx. (12)

To prove the main result, we need the following assumptions

(i) F(x,s) > —y1ls| — y2(x) for a.e. x € [0,1], all s € R and some y1 > 0, 2 € L}(0,1),
(ii) |F(x,s)| < y3(x) + yals/* for a.e. x € [0,1], all s € R and some 3 € L'(0,1) and y4 > 0,
(iii) f(x,8)| < y5(x) + yels| for a.e. x € [0,1], all s € R and some 5 € L2(0, 1) and y; > 0.

Let us prove the following result:

Lemma 4.2. Under the standard conditions above, the functional L is Giteaux differentiable at any y € ]I—Ig’ﬁ (0,1)
and

1
L)) = fo () - oD0(x) +,DPy(x) - D) dx - f £, y00) - v(x) d,

forallv e ]Hg’ﬁ(O, 1).

Proof. We set
L(e) = L(y+ev)

= fl [2‘1(0D§§y + sonfv)z +271 (xD’fy + efov)z - F(x,y+ 81))] dx
0

F
Since
of

%" (OD;*y + sonfv) -oDfv + (foy + efov) . xD’fv - flx,y+ev)-v,
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and using (iii), we deduce )g—f‘ € L'(0,1). Then we obtain

L'(e) = fl [(ony + engv) -oDJv + (xD/fy + efov) . fov - fx,y+ev)- v] dx
0

Therefore, we deduce

1
L)) =L'(0) = fo () - aD%0(x) + 0P y(@) - D) dx - f £ y() - V@) dx.

Theorem 4.3. Assume that (i)-(iii) hold. Then the problem (1)-(2) has a weak solution.

Proof. In view of Theorem 2.10, the proof consists of two steps:
Step 1. We first check that

1
L) = L) + Lay) = f (D5y())? + (:Dfy() dx - fo F(x, y(x)) d,

is weakly lower semicontinuous on ]I—Io’ﬁ (0,1). Note that Li(y) = 2‘1||y||a,ﬁ on H—Ig’ﬁ (0,1) which is weakly

lower semicontinuous. On the other hand, since the embedding ]I—Ig”3 (0,1) = L2(01) is compact and F(x, v)
is bounded below, from [14, Theorem 1 in §8.2.2], we conclude £, is weakly lower semicontinuous too.

Hence £ is weakly lower semicontinuous on ]Hg’ﬁ 0, 1).
Step 2. L is weakly coercive on ]I—Ig’ﬁ (0,1). Using (i) and Remark 3.2, we have

Ly) = Iyl =yillylh -y
> IyIE 5 = yllylle -y
>

Y25 = Plyleg — 7,

and hence L(y) — oo if [|yllog — co. This proves the weak coercivity of L. Therefore, using Theorem 2.10
and Lemma 4.2, we have

1
f DDy () - oD%0(@) + DEy(@) - D) dx = f £, 9(x) - v(x) dx,
0
as desired. O

Now we derive uniqueness of weak solution to (1)-(2).

Theorem 4.4. Let (i)-(iii) hold and assume the mapping y — —F(x, y) is convex for all x € [0,1]. Then there exists
at most one weak solution of the problem (1)-(2).

Proof. Assume that y; and y, are two weak solutions of (1)-(2). We then divide the proof into two steps:
Step 1. We show that i1, y» are minimizers of the functional

1 1
Ly):=2" fo (oDﬁy(x))2+(foy(x))2 dx — fo F(x,v) dx, (13)

over I[—ID(’}8 0, 1).

Let L(x,y, oD%y, xD y) =2 1(0D Y +27 1(x y)? - F(x, ). The convexity of the mapping y — —F(x, )
implies the mapping (y, 0D5y, xD y) — L(x, y,oDx ¥, xDj y) is convex for all x € [0,1]. Therefore, for every
y e ]I—Ig’ﬁ (0,1), we have

L(x, y,0D3y, D 1y) > L(x, y1,oD§*y1,xD’fy1) + daL(x, yl,oDﬁyl,xD’fyl) “(y—w)
+95L(x, y1,0D%y1, <Dl y1) - (0D%y — 0D2yn) + AaL(x, y1,0D%y1, xDEyn) - DSy — 2Din),
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where J; denotes the partial derivative of L with respect to its ith argument. Therefore, we have

L(x/ }/,OD?%foy) = L(x, yerch‘yl,foyl) _f(x, ]/1) . (y _ ]/1)
+oD2y1 - (6D%y — oD3y) + Dl - Dy — D).

Integrating over [0, 1] and using the fact that y — y; € ]I—Ig"’g (0,1), we have L(y1) < L(y). A similar argument

shows that, for every y € I[—Ig’ﬁ 0,1), L(y2) < L(y).
Step 2. We now prove that y; = v».

From the previous step, we know vy, i, are minimizers of the functional £L(y) over ngﬁ (0,1) and so
that L(y1) = L(y2) = m. Denote by y := @ and observe that y € ]I—Ig"g (0,1). From the convexity of
(y,0D%y, XD’: y) = L(x, y,0D%y, fo y), we can infer that y is also a minimizer since

m< L) <27 L) + 27 L) =m,

which readily implies that
1
f [27'L(x, y1, 0081, D y1) + 27 L(x, 2, 0D y2, D} y2) — L(x, 7,0D%Y, . D§) | dx = 0.
0

The convexity of (y, 0D%y, xD’f y) = L(x,y,0D%y, fo y) implies that the integrand is non negative, while the
integral is zero. This is possible only if

27 L(x, y1,0D%y1, <D ) + 271 L(x, 2, oD% 2, DE2) = L(x, §,0D27, :D5Y) = 0, (14)

almost everywhere on [0, 1]. Now using the convexity of y — —F(x, y) and the strict convexity of L — (%, we

conclude that the mapping (y, oD% y,xD’f y) = L(x,y, oDﬁy,fo y) is strict convex. Therefore, from equality
(14) we obtain y; = y, almost everywhereon [0,1]. O

Remark 4.5. In a similar way, we can deal with the existence results of solutions for the following problem

limy -+ OI}C‘“y(x) =0.

{ DI(DY() = Fix,y(), (15)

Indeed, it is sufficient to construct a space of solutions as follows
H30,1) = {y € 120,1) : oDy € 150, 1), lim ofiy() =0},
x—0*

and carry out a similar argument to prove existence of solutions.

Theorem 4.6. Let a < 1 and f be continuous. Assume that y € H$(0,1) be a weak solution of (15). Then y is
almost everywhere solution of (15) on [0,1], i.e. y satisfies

D(oD2y()) = F(x, y(x)), (16)
almost everywhere on [0, 1].

Proof. Since C°(0,1) € H{(0,1) where C°(0,1) is the space of infinitely differentiable functions and com-
pactly supported in (0, 1), we have

1 1
f [oDSy(x) - oDSv(x)] dx = f f(x, y(x)) - v(x) dx, 17)
0 0
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forall v € C°(0,1). For any v € CZ(0,1), oDSv = o[1%v’. Therefore, Proposition 2.7 gives

1 1 X
fo <170 DSy(0)vdx = fo [- fo FE y(©)) de]vdx. (18)

So, there exist constant C, such that
X
DS y(x) = f FE 9(E)) dE +C. 19)
0

almost everywhere on [0,1]. On the other hand, from Proposition 2.6 we have JCI%“)‘OD;Vy(x) e C[0,1].
Therefore,

I %0DSy(x) = —fo f(&y()dE+C, (20)

everywhere on [0, 1]. Finally by differentiation, we obtain the desired equality. [

Remark 4.7. Notice that the condition a < L in the previous theorem together with Proposition 2.6 implies that
lim,1- .[™%D3y(x) = 0. This is natural because the sequential fractional differential equation (15) involves two
fractional derivative operators and therefore, this problem needs two initial or boundary conditions for the existence
of the classical solution.

5. Examples

Now we give two examples to illustrate the applicability of the results developed in the previous
sections.

Example 5.1. Let us consider the following problem
D2 (sD2y(x) + oD} (fo y(x)) = To(x)y — siny, (1)
with Riemann-Liouville boundary conditions
lim of2 y(x) = lim I y(x) = 0, (22)
x—0* x—1-
where

=y g

In this case, f(x,y) = 1g(x)y — siny is a Carathéodory function. Indeed, f(-,y) : [0,1] — R is measurable for every
y € Rand f(x,-) : R = R is continuous for almost everywhere on [0,1]. On the other hand, it is easy to see that
all the conditions (i), (ii) and (iii) hold; it suffices to set y; = 1,i = 1,--- ,6. Therefore, Theorem 4.3 implies that the

above problem admits a weak solution in ]Hé 3 0,1).
Example 5.2. Let us consider the following problem
1
')

with Riemann-Liouville condition

D; (D2 y(x) = —=(1 -2} (23)

lim ol y(x) = 0. (24)
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In this case, f(x,y) = %(1 - x)%. Obviously all the conditions (i), (ii) and (iii) hold true. Therefore, Theorem
3

11
4.3 implies that the above problem admits a weak solution in H' (0,1). Furthermore, since f(x,y) does not depend

0
on y, Theorem 4.4 implies that this solution is unique. On the other hand, from Theorem 4.6, this weak solution is
almost everywhere solution of (23). Now a simple calculation shows that y(x) = ﬁx% - ﬁxé satisfies the equation

3 3
(23)-(24).
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