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Abstract. Let L be an algebra generated by the commuting independent nests, M is an ultra-weakly
closed subalgebra of B(H) which contains al1L and φ is a norm continuous linear mapping from al1L into
M. In this paper we will show that a norm continuous linear derivable mapping at zero point from Al1L
toM is a derivation.

1. Introduction

Definition 1.1. Let A be a subalgebra of B(H), let φ be a linear mapping from A to B(H). We say that φ is a
derivation if φ(AB) = φ(A)B + Aφ(B) for any A,B ∈ A.

We say that φ is a derivable mapping at the zero point if φ(AB) = φ(A)B + Aφ(B) for any A,B ∈ A with AB = 0.

Several authors have studied linear mappings on operator algebras are derivations. In [2] Jing and Liu
showed that every derivable mapping φ at 0 with φ(I) = 0 on nest algebras is an inner derivation. In [6, 7]
Zhu and Xiong proved that every norm continuous generalized derivable mapping at 0 on a finite CSL
algebra is a generalized derivation, and every strongly operator topology continuous derivable mapping at
the unit operator I in nest algebras is a derivation. It is natural and interesting to ask whether or not a linear
mapping is a derivation if it is derivable only at one given point. An and Hou [1] investigated derivable
mapping at 0,P, and I on triangular rings, where P is a fixed non-trivial idempotent. In [5] Zhao and Zhu
characterized Jordan derivable mappings at 0 and I on triangular algebras.

Now we will give some required definitions.

Definition 1.2. Let L be a lattice on a Hilbert space H. If L is generated by finitely many commuting independent
nests, it will be called by an al1L FCIN algebra.

Let L be a subspace lattice. For each projection E ∈ L, let

E− =
∨
{F : F ∈ L,F � E} and E∗ =

∨
{F− : F ∈ L,F � E}.

Definition 1.3. A subspace lattice L is called completely distributive if E∗ = E,∀E ∈ L.
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Definition 1.4. If L is completely distributive and commutative, we will call an Al1L CDCSL algebra.

Throughout we consider x, y be vectors in H, we use notation x ⊗ y for rank one operators defined by
(x ⊗ y)z = (z, x)y for all z ∈ H. Let RL be the spanning space of rank one operators in Al1L. Laurie and
Longstaff [3] proved the following result.

Theorem 1.5. A commutative subspace latticeL is completely distributive if and only if RL is ultra-weakly dense in
Al1L.

Definition 1.6. Let L be a CSL. Then the von Neumann algebra (Al1L) ∩ (Al1L)∗ is called diagonal of Al1L
and denoted by D(L).

Assume that L is generated by the commuting independent

{E(Al1L)E⊥ : E ∈ L}.

It is clear that RL is a norm closed ideal of the CSL algebra Al1L.
Assume that L is generated by the commuting independent nests L1,L2, ....,Ln, then M is an ultra-

weakly closed subalgebra of B(H) which contains al1L, and φ is a norm continuous linear mapping from
Al1L intoM.

2. The Main Result

o prove the main result of this paper we require the following Lemma from [4].

Lemma 2.1. Let L be an arbitrary CSL on the complex separable Hilbert space H, andM be an ultra-weakly closed
subalgebra of B(H) which contains Al1L.
If φ : Al1L →M is a norm continuous linear mapping, then φ(XAY) = φ(XA)Y + Xφ(AY)−Xφ(A)Y for all A in
Al1L and all X,Y inD(L) + R(L).

Lemma 2.2. Let A ∈ Al1L and B ∈ D(L) + R(L). If AB ∈ D(L) + R(L), then φ(AB) = φ(A)B + Aφ(B).

Corollary 2.3. φ(XY) = φ(X)Y + Xφ(Y) for all X,Y ∈ D(L) + R(L).

So we are ready to prove the main result of this work.

Theorem 2.4. LetL be a commutative subspace lattice generated by finitely many independent nests, andM be any
ultra-weakly closed subalgebra of B(H) on H, which contains Al1L. Let φ be a norm continuous linear derivable
mapping at the zero point from Al1L toM. Then φ is a derivation.

Proof. Let φ : Al1L →M be a norm continuous derivable linear mapping. Then we just need to prove that
φ is a derivation. Let Ω = {i : I− = I ∈ Li}. Then we have the following cases.

When Ω = Φ, for each i=1, 2,....., n, let Qi = I− be the projection in Li and N=
∏n

i=1 Q⊥i , then B(H)N ⊂
D(L) + R(L). Let A,B ∈ al1L, it follows from Lemma 2.2 that

φ(ABTN) = φ(AB)TN + ABφ(TN)

for all T ∈ B(H). On the other hand, we have from Lemma 2.2 again

φ(ABTN) = φ(A)BTN + Aφ(BTN)
= φ(A)BTN + A[φ(B)TN + Bφ(TN)]
= φ(A)BTN + Aφ(B)TN + ABφ(TN).

The last two equations give us that [φ(AB) − φ(A)B − Aφ(B)]TN = 0 for all T ∈ B(H). Thus we have

φ(AB) = φ(A)B + Aφ(B).
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When Ω , Φ, for each i < Ω, let Qi = I− be the projection inLi, define M = Πi<ΩQ⊥i (If Ω = {1, 2, ...,n}, we
take M = I). For each i ∈ Ω, there exists an increasing sequence Pi,k of projections in Li \ {I} which strongly
converges to I. Let Ek = Πi∈ΩPi,k and Fk = Πi∈ΩP⊥i,k. Then limk→∞ Ek = I. It is clear that EkB(H)MFK ⊂ R(L)
for all k ∈N. Let A,B ∈ Al1L, it follows from Lemma 2.2 that

φ(ABEkTMFk) = φ(AB)EkTMFk + ABφ(EkTMFk)

for all T ∈ B(H) and k ∈N. On the other hand, by Lemma 2.2 we have

φ(ABEkTMFk) = φ(A)BEkTMFk + Aφ(BEkTMFk)
= φ(A)BEkTMFk + A[φ(B)EkTMFk + Bφ(EkTMFk)]
= φ(A)BEkTMFk + Aφ(B)EkTMFk + ABφ(EkTMFk).

From the last two equations we have [φ(AB) − φ(A)B − Aφ(B)]EkTMFk = 0 for all T ∈ B(H) and k ∈ N. By
independence of the nests Li,MFk , 0 for all k ∈N. Hence

[φ(AB) − φ(A)B − Aφ(B)]Ek = 0

for all k ∈ N. Letting k → ∞, we have that φ(AB) = φ(A)B + Aφ(B). Hence φ is a derivation, namely 0 is a
derivable point of al1L for norm continuous linear mapping. This completes the proof.
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