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Abstract. In this paper, we investigate the common fixed point property for commutative nonexpansive
mappings on τ-compact convex sets in normed and Banach spaces, where τ is a Hausdorff topological
vector space topology that is weaker than the norm topology. As a consequence of our main results, we
obtain that the set of common fixed points of any commutative family of nonexpansive self-mappings of a
nonempty clm-compact (resp. weak* compact) convex subset C of L1(µ) with a σ-finite µ (resp. the James
space J0) is a nonempty nonexpansive retract of C.

1. Introduction

Let E be a normed space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. E is said to have the fixed point property with respect to τ (τ-fpp) if the following
holds: For each nonempty, norm bounded, τ-compact, convex subset C of E, every nonexpansive mapping
T : C→ C (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C) has a fixed point. We say that a nonempty closed and convex
subset C of E has the fpp if every nonexpansive mapping T : C → C has a fixed point, and also C is said
to have the τ-fpp, if each nonempty, norm bounded, τ-compact, convex subset of C has the fpp. It is not
clear that a set having the fpp must be bounded. It is known that the norm boundedness assumption for
τ-compact, convex sets is redundant (see, for example, [12]). An standard example of such a τ is where τ is
the weak topology on E. Another example is where E is a dual Banach space and τ is the weak* topology.
Yet another example is when E is L1(µ) and τ is the topology clm of convergence locally in measure (see,
e.g., [18]).

Determining conditions on a Banach space E so that it has the fixed point property has been of consid-
erable interest for many years. Kirk [13] proved that a weakly compact convex subset of a Banach space
with weak normal structure has the fpp. It is known that every compact convex subset of a Banach space
has normal structure. Kirk’s proof of his result also yields that a weak* compact convex subset of a Banach
space with weak* normal structure has the fixed point property (see [19]). The condition above that C has
normal structure can not be dropped. In fact, Alspach [2] showed that L1[0, 1] fails the weak fpp.

We say that E has the (common) τ-fpp for commutative semigroups if whenever S = {Ts : s ∈ S} is
a commutative semigroup of nonexpansive self-mappings on a nonempty, τ-compact, convex subset of
E, then the common fixed point set of S, Fix(S), is nonempty. Bruck [4] showed that a Banach space E
having the weak fpp has the weak fpp for commutative semigroups. We refer to [23] for a simple proof
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to a more general version of Bruck’s result. For a dual Banach space E satisfying the weak* fpp, it is
still unknown whether E has the weak* fpp for commutative semigroups. Very recently, Borzdynski and
Wisnicki [3] proved that if S is a commuting family of weak* continuous nonexpansive mappings acting
on a weak* compact convex subset C of the dual Banach space E, then the set of common fixed points of
S is a nonempty nonexpansive retract of C. This partially answers a long-standing open problem posed
by Lau in [15] (see also [17]). Examples of Banach spaces with the weak* fpp for commutative semigroups
include `1, trace class operators on a Hilbert space, Hardy space H1 and the Fourier algebra of a compact
group (see [16, 19–22]).

In this paper, by using the retraction tool, we study the common fixed point property for commutative
nonexpansive mappings on τ-compact convex sets in E, where τ is a Hausdorff topological vector space
topology that is weaker than the norm topology. In Section 2, we shall prove the following: Let E be a
Banach space, τ a Hausdorff topological vector space topology on E that is weaker than the norm topology
and the norm of E is lsc with respect to τ, and C be a nonempty, τ-compact, separable, convex subset of
E which has the τ-fpp. Then any commutative family of nonexpansive self-mappings of C has a common
fixed point and the set of common fixed points is a nonexpansive retract of C. In Section 4, we obtain the
same result by replacing the separability with the τ-Opial condition. As a consequence, we shall show that
the set of common fixed points of any commutative family of nonexpansive self-mappings of a nonempty
clm-compact (resp. weak* compact) convex subset C of L1(µ) with a σ-finite µ (resp. the James space J0) is a
nonempty nonexpansive retract of C.

2. The τ-fpp for Commutative Mappings on Separable Subsets

Recall some general concepts and definitions. Let E be a normed space and C be a nonempty subset of
E. A mapping T on C is said to be a retraction if T2 = T. A subset F of C is called a nonexpansive retract of
C if either F = ∅ or there exists a retraction of C onto F which is a nonexpansive mapping. Nonexpansive
retract plays an important role in the study of the structure of fixed point sets of nonexpansive mappings.
We refer the reader to [4–7] for more information concerning nonexpansive retracts.

Let E be a normed space, and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. The purpose of this section is to study the τ-fpp (which implies the weak* fpp)
for commutative semigroups of nonexpansive mappings. In fact, we give some partial answers to the
following question:
If a dual Banach space E has the τ-fpp, does E have the τ-fpp for commuting semigroups?

The following theorem is essential to get the main results.

Theorem 2.1. Let E be a normed space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose that the norm of E is lsc with respect to τ. Let C be a nonempty, τ-compact, convex
subset of E with the τ-fpp. If {T1, . . . ,Tn} is a commutative family of nonexpansive mappings on C, then ∩n

i=1Fix(Ti)
is a nonempty nonexpansive retract of C.

Proof. First, we prove that for each nonexpansive mapping T : C→ C, Fix(T) is a nonempty nonexpansive
retract of C. To this purpose, consider CC with the product topology induced by the topology τ on C. Then
by Tychonoff’s theorem CC is compact. Now, consider a nonexpansive mapping T : C→ C and define

< := {S ∈ CC : S is nonexpansive,Fix(T) ⊂ Fix(S)}.

We show that < is closed in CC. Suppose that {Uλ : λ ∈ Λ} is a net in < which converges to U in CC.
Then for z ∈ Fix(T), Uλ(z) = z so U(z) = τ − limλ Uλ(z) = z. By the lower semi-continuity of the norm with
respect to τ, for any x, y in C, ‖Ux −Uy‖ ≤ lim infλ ‖Uλx −Uλ(y)‖ ≤ ‖x − y‖. So we have shown that U ∈ <,
hence that < is closed in CC. Since CC is compact, therefore < is compact (the topology on < is that of
τ-pointwise convergence). Define a preorder � in< by S � U if ‖Sx − Sy‖ ≤ ‖Ux −Uy‖ for all x, y ∈ C and
using the Bruck’s method [7] we obtain a minimal element R ∈ <. Indeed, by considering Zorn’s lemma it
suffices to show every linearly ordered subset of < has a lower bound in <. If {Uλ} is a linearly ordered
subset of< by �, the family of sets {S ∈ < : S � Uλ} is linearly ordered by inclusion. The proof that< is
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closed in CC can be repeated to show that these sets are closed in <, and hence compact. So there exists
U ∈
⋂
λ{S ∈ < : S � Uλ} with U � Uλ for each λ. Now, we have shown the existence of a minimal element

P ∈ < in the following sense:

if S ∈ < and ‖S(x) − S(y)‖ ≤ ‖P(x) − P(y)‖, ∀x, y ∈ C,

then ‖S(x) − S(y)‖ = ‖P(x) − P(y)‖. (∗)

We shall prove that P(x) ∈ Fix(T) for all x ∈ C. For a given x ∈ C, consider the set K = {S(P(x)) : S ∈ <}.
Then K is a nonempty τ-compact convex subset of C, because < is convex and compact. On the other
hand, TS ∈ <, ∀S ∈ <. Therefore, we have T(K) ⊆ K, and then, by the τ-fpp, there exists h ∈ < with
h(P(x)) ∈ Fix(T). Let y = h(P(x)). Then P(y) = h(y) = y, and by using the minimality of P, we have
‖P(x) − y‖ = ‖P(x) − P(y)‖ = ‖h(P(x)) − h(P(y))‖ = ‖h(P(x)) − y‖ = 0. So P(x) = y ∈ Fix(T). Since this is so for
each x ∈ C and P belongs to <, it follows that P2 = P. So, we have shown that Fix(T) is a nonexpansive
retract of C. Now, let {T1, . . . ,Tn} be a commuting family of nonexpansive mappings on C. We prove that
∩

n
i=1Fix(Ti) is a nonempty nonexpansive retract of C. The proof is by induction n. If n = 1, then Fix(T1) is a

nonempty nonexpansive retract of C by the above discussion. Now suppose that ∩n
j=1Fix(T j) is a nonempty

nonexpansive retract of C and R : C → ∩n
j=1Fix(T j) a nonexpansive retraction. Then, it is easy to check

that Fix(Tn+1R) = ∩n+1
j=1 Fix(T j) (see, e.g., [4] for the details). Another application of the first part of the

proof implies that Fix(Tn+1R) = ∩n+1
j=1 Fix(T j) is a nonempty nonexpansive retract of C, which completes the

induction.

We will also need the following lemma, due to Bruck [4], as an intermediary step.

Lemma 2.2. If C is a bounded closed convex subset of a Banach space E and {Fn} is a descending sequence of nonempty
nonexpansive retracts of C, then ∩∞n=1Fn is the fixed point set of some nonexpansive r : C→ C.

Theorem 2.3. Let E be a Banach space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose the norm of E is lsc with respect to τ, and C be a nonempty, τ-compact, separable,
convex subset of E which has the τ-fpp. Then any commutative family of nonexpansive self-mappings of C has a
common fixed point and the set of common fixed points is a nonexpansive retract of C.

Proof. Let S = {Ti}i∈I be a commutative family of nonexpansive mappings on C, and let F be the family of
the finite intersections of fixed point sets of mappings in the commutative family S. We have shown, in
Theorem 2.1, that F is a family of nonempty nonexpansive retracts of C, and F is obviously directed by ⊃.
Now, since C is separable, there is a countable subfamily F ′ of F such that

Fix(S) =
⋂
{F : F ∈ F } =

⋂
{F : F ∈ F ′}.

Using the fact that F is directed by ⊃ we can therefore find a descending sequence {Fn} in F with
Fix(S) =

⋂
n Fn. But, by Lemma 2.2, Fix(S) =

⋂
n Fn = Fix(r), for some nonexpansive r : C → C. Since C

has the τ-fpp, Theorem 2.1 implies Fix(S) is a nonempty nonexpansive retract of C. This completes the
proof.

An standard example of such a pair (E, τ) is where E is a dual Banach space and τ is the weak* topology.
Thus, Theorem 2.3 yields the following result:

Theorem 2.4. Let E be a dual Banach space and suppose C is a nonempty, weak* compact, separable, convex subset
of E which has the weak*-fpp. Then the set of common fixed points of any commutative family of nonexpansive
self-mappings of C is a nonempty nonexpansive retract of C.

Example 2.5. The James space J0, `1 and L1 over a separable measure space are separable [1]. Moreover, it is well
known that in `1, and in the James space J0, a nonexpansive self-mapping of a weak* compact convex subset has a
fixed point [11]. Thus, by Theorem 2.4, we deduce that for any nonempty, weak* compact, convex subset C of `1, or
the James space J0, the set of common fixed points of any commutative family of nonexpansive self-mappings of C is a
nonempty nonexpansive retract of C.
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For commutative sequences of nonexpansive self-mappings it is possible to say even more (cf. [24]).

Theorem 2.6. Let E be a Banach space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose the norm of E is lsc with respect to τ, and C be a nonempty, τ-compact, convex
subset of E which has the τ-fpp. Then the set of common fixed points of any commutative sequence of nonexpansive
self-mappings of C is a nonempty nonexpansive retract of C.

Proof. Let {Tn} be a commutative sequence of nonexpansive mappings on C. Then, by Theorem 2.1, for
each natural number n, Fn = ∩n

j=1Fix(T j) is a nonempty nonexpansive retract of C. Thus, applying Lemma
2.2, we deduce that ∩∞n=1Fn = ∩∞n=1Fix(Tn) is the fixed point set of some nonexpansive mapping r : C → C.
Therefore, by Theorem 2.1, Fix(r) = ∩∞n=1Fix(Tn) is a nonempty nonexpansive retract of C.

3. Fixed Point Property with Respect to clm-Topology in L1(µ)

In this section, we will use the topology of convergence in measure which we now recall for the
convenience of the reader. Let (Ω,Σ, µ) be a positive σ-finite measure space and L0(µ) be the set of all
scalar-valued Σ-measurable functions on Ω. The topological vector space topology clm, of convergence
locally in measure on L0(µ), is generated by the following translation-invariant metric: Let (An)∞n=1 be a
Σ̃-partition of Ω, where Σ̃ := {A ∈ Σ : µ(A) ∈ (0,∞)}. Define d0 by

d0( f , 1) :=
∞∑

n=1

1
2n

1
µ(An)

∫
An

| f − 1|
1 + | f − 1|

dµ, for all f , 1 ∈ L0(µ).

If µ(Ω) < ∞, then the simpler metric

d0( f , 1) =

∫
Ω

| f − 1|
1 + | f − 1|

dµ, for all f , 1 ∈ L0(µ),

generates the clm topology. In this case, we simply refer to clm as the topology of convergence in measure,
denoted by cm. L0(µ) is complete with respect to the above metric. For sequences, the clm-topology
reduces, in a sense, to almost everywhere convergence. Indeed, any sequence in L0(µ) that converges almost
everywhere to f ∈ L0(µ) must converge to f locally in measure. On the other hand, every clm-convergent
sequence of scalar-valued measurable functions has a subsequence that converges almost everywhere to
the same limit function. Note that when we discuss L1(µ), clm or cm will denote the topologies introduced
above, restricted to L1(µ). Further, the L1(µ)-norm is clm-lower semicontinuous. This follows from Fatou’s
lemma and the fact that clm is a metric topology. Thus, an example of the pair (E, τ) in Section 2 is where E
is L1(µ) and τ is the topology clm of convergence locally in measure.

We remark that one can show that in every L1(µ), µ σ-finite, clm-compact sets must be norm separable.
Besides, Lami Dozo and Turpin [14] showed that L1(µ) has the fpp with respect to the topology clm of
convergence locally in measure. Combining the above discussion with Theorem 2.3 yields the following
result:

Theorem 3.1. Let C be a nonempty, clm-compact, convex subset of L1(µ), where µ is σ-finite. Then the set of common
fixed points of any commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

In the particular case that µ is finite, Theorem 3.1 is a consequence of a result in [22] (see also [21]).

4. The τ-fpp for Commutative Mappings Under the τ-Opial Condition

In this section, we study the common fpp for commutative semigroups by considering conditions under
which the fixed point sets of nonexpansive mappings are τ-closed. For our purposes it will be convenient
to prove the following result:
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Theorem 4.1. Let E be a normed space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose that the norm of E is lsc with respect to τ. Let C be a nonempty, τ-compact, convex
subset of E with the τ-fpp. Then any commutative family of nonexpansive self-mappings of C such that their fixed
point sets are τ-closed has a common fixed point and the set of common fixed points is a nonexpansive retract of C.

Proof. Let S = {Ti}i∈I be a commutative family of nonexpansive mappings on C, and let F be the family of
the finite intersections of fixed point sets of mappings in the commutative family S. Since, by assumption,
the fixed point sets are τ-closed, Theorem 2.1 implies that F is a family of nonempty τ-compact subsets of
C that is directed by ⊃. Hence,

Fix(S) =
⋂
{F : F ∈ F } , ∅.

Now, defining
< := {T ∈ CC : T is nonexpansive,Fix(S) ⊂ Fix(T)},

and using an argument quite similar to the one used in the proof of Theorem 2.1, it is easy to show that<
contains a nonexpansive retraction P from C onto Fix(S).

Let E be a normed space and τ be a Hausdorff topological vector space topology on E that is weaker than the
norm topology. We say that a nonempty set C ⊂ E satisfies the τ-Opial condition if whenever the bounded
sequence {xn} of elements of C converges to x ∈ C, with respect to τ, we have

lim inf
n
‖xn − x‖ < lim inf

n
‖xn − y‖,

for y ∈ C \ {x}. We say that C satisfies the τ-Opial condition for nets, if whenever the bounded net {xα}α∈I of
elements of C converges to x ∈ C, with respect to τ, we have

lim inf
α∈I

‖xα − x‖ < lim inf
α∈I

‖xα − y‖,

for y ∈ C \ {x}.
Spaces with the weak Opial condition have weak normal structure [10] and hence the weak fpp. Similarly

dual spaces with the weak* Opial condition can contain no nontrivial separable weak* sequentially compact
convex diameteral sets; in particular, separable duals with the weak* Opial condition have weak* normal
structure [18], and hence the weak* fpp. Using the following argument, it is possible to say more:

Suppose T is a nonexpansive self mapping of a nonempty bounded closed convex subset C of a Banach
space E. It is well known that T admits an approximate fixed point sequence; that is, a sequence (xn) in C
with ‖Txn − xn‖ → 0. Now suppose C is, in addition, τ-compact, where τ is a Hausdorff topological vector
space topology on E that is weaker than the norm topology. If the norm of E satisfies τ-Opial condition
for nets (for sequences), then the fixed point set of T is nonempty and τ-compact (provided C is metrizable
with respect to τ). In fact, if (xi) is net (sequence) in C such that converges to x, with respect to τ, and
‖Txi − xi‖ → 0, then

lim sup
i
‖Tx − xi‖ = lim inf

i
‖Tx − Txi‖ ≤ lim inf

i
‖x − xi‖,

contradicting the τ-Opial condition unless Tx = x. Moreover, if {zi} is a net (sequence) in Fix(T) converging
in τ to some z ∈ C, then

lim inf
i
‖zi − Tz‖ = lim inf

i
‖Tzi − Tz‖ ≤ lim inf

i
‖zi − z‖,

contradicting the τ-Opial condition for nets (for sequences) unless Tz = z. This implies that if either the
norm of E satisfies τ-Opial condition for nets, or the norm of E satisfies τ-Opial condition for sequences
and C is metrizable with respect to τ, then Fix(T) is nonempty and τ-closed. Thus, Banach spaces with the
τ-Opial condition for nets (for sequences) have the τ-fpp (provided τ is metrizable), and in this case the
fixed point sets of nonexpansive mappings are τ-compact.

Combining the above facts with Theorem 4.1, we obtain the following results:
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Theorem 4.2. Let E be a Banach space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose that the norm of E is lsc with respect to τ and satisfies τ-Opial condition. Let C be
a nonempty, τ-compact, convex subset of E and let C be metrizable with respect to τ. Then any commuting family
of nonexpansive self-mappings of C has a common fixed point and the set of common fixed points is a nonexpansive
retract of C.

Let (Ω,Σ, µ) be a finite measure space. It follows from Proposition 5.2 in [21] (see also Lemma 2.6 in [22])
that L1(µ) satisfies cm-Opial condition. Further, cm-topology is metrizable and the norm of L1(µ) is lsc with
respect to the topology of convergence in measure. Thus, L1(µ) is an example that satisfies the assumptions
of Theorem 4.2.

Theorem 4.3. Let E be a Banach space and τ be a Hausdorff topological vector space topology on E that is weaker
than the norm topology. Suppose that the norm of E is lsc with respect to τ and satisfies τ-Opial condition for nets.
Let C be a nonempty, τ-compact, convex subset of E. Then the set of common fixed points of any commutative family
of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

Corollary 4.4. Let C be a nonempty, weak* compact and convex subset of a dual Banach space E. Suppose that
C satisfies weak*-Opial condition for nets. Then the set of common fixed points of any commutative family of
nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

Let E be a Banach space and let Γ be a nonempty subspace of its dual E∗. If

sup{x∗(x) : x∗ ∈ Γ, ‖x∗‖ = 1} = ‖x‖,

for each x ∈ E, then we say that Γ is a norming set for E. It is obvious that a norming set generates a
Hausdorff linear topology σ(E,Γ) which is weaker than the weak topology σ(E,E∗). It is worth noting here
that n(E) ⊆ E∗∗ is a norming set for E∗, where n is a natural embedding of E into E∗∗, and hence, for Γ = n(E),
σ(E,Γ) is the weak* topology on E∗. Throughout, Γ denotes a norming set for E. It is easy to observe that
the norm of E is lower semicontinuous with respect to the σ(E,Γ)-topology [8]. It is shown in [8] that if E is
a Banach space, Γ is a norming set for E and C is a nonempty, bounded and Γ-sequentially compact subset
of E, then in C the Γ-Opial condition for nets is equivalent to the Γ-Opial condition. Thus, we obtain the
following:

Corollary 4.5. Let E be a Banach space, Γ be a norming set for E, C be a nonempty, Γ-compact and Γ-sequentially
compact convex subset of E. Suppose that C satisfies Γ-Opial condition. Then the set of common fixed points of any
commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

Corollary 4.6. Let E be a dual Banach space with a separable predual space, C be a nonempty, weak* compact and
convex subset of E. Suppose that C satisfies weak*-Opial condition. Then the set of common fixed points of any
commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

Finally, it is worth mentioning that some of the well-known classical dual Banach spaces satisfy weak*-Opial
condition.

Example 4.7. The following dual Banach spaces satisfy the weak*-Opial condition for nets:
(i) `1;
(ii) the James space J0;
(iii) B(G), the Fourier-Stieltjes algebra of a compact group G;

see [1, 9, 16, 19], for details. Hence, by Corollary 4.4 (or 4.6), the common fixed point set of any commutative family
of nonexpansive self-mappings of a nonempty weak* compact convex subset C in the above spaces is a nonempty
nonexpansive retract of C.

Problem: Can Theorems 4.2 and 4.3 be extended to left reversible or amenable semigroups?
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