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Abstract. Three fixed point theorems for mappings satisfying contractive inequalities of integral type with
w-distance in complete metric spaces are proved. Three examples are included. The results presented in
this paper extend substantially some known results.

1. Introduction

In 1968, Kannan [8] extended the Banach contraction principle from continuous mappings to noncon-
tinuous mappings and proved the following fixed point theorem.

Theorem 1.1. ([8]) Let T be a mapping from a complete metric space (X, d) into itself satisfying

d(Tx,Ty) ≤ c[d(x,Tx) + d(y,Ty)], ∀x, y ∈ X, (2.1)

where c ∈
(
0, 1

2

)
is a constant. Then T has a unique fixed point in X.

In 1996, Kada et al. [7] used w-distance to generalize Caristi’s fixed point theorem, Ekeland’s ε-
variational principle, Takahashi’s nonconvex minimization theorem and to prove a fixed point theorem.
In 2002, Branciari [4] introduced the concept of contractive mappings of integral type and obtained the
following fixed point theorem, which extends the Banach contraction principle.

Theorem 1.2. ([4]) Let T be a mapping from a complete metric space (X, d) into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (2.2)
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where c ∈ (0, 1) is a constant and ϕ : [0,+∞)→ [0,+∞) is Lebesgue integrable, summable on each compact subset of
[0,+∞) and

∫ ε
0 ϕ(t)dt > 0 for each ε > 0. Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each

x ∈ X.

Since then, a lot of fixed and common point theorems dealing with various contractive mappings of
integral type in metric spaces, modular spaces and symmetric spaces have been established by many
researchers, see, for example, [1]-[3], [5], [11]-[17] and the references cited therein. In particular, Rhoades
[14] extended the result of Branciari and got fixed point theorems for more general contractive mappings
of integral type in complete metric spaces, Vijayaraju et al. [17] proved a common fixed point theorem for
a pair of mappings satisfying a general contractive condition of integral type in complete metric spaces,
Altun et al. [2] showed common fixed point theorems of weakly compatible mappings satisfying a general
contractive of integral type in complete metric spaces, Beygmohammadi et al. [3] discussed the existence of
fixed points for mappings defined in complete modular spaces satisfying contractive inequality of integral
type, Aliouche [1] gained a fixed point theorem using a general contractive condition of integral type in
symmetric spaces.

Motivated by the results in [1]-[17], in this paper we introduce new mappings satisfying contractive
conditions of integral type with w-distance and prove the existence, uniqueness and iterative approxima-
tions of fixed points for these mappings in complete metric spaces. Our results extend and improve the
results due to Branciari [4] and Kannan [8]. Three nontrivial and illustrative examples are also furnished to
support the results in this paper.

2. Preliminaries

Throughout this paper, we assume that R = (−∞,+∞), R+ = [0,+∞), N0 = {0} ∪N, where N denotes
the set of all positive integers, and

Φ =
{
ϕ : ϕ : R+

→ R+ is Lebesgue integrable, summable on each compact subset ofR+ and
∫ ε

0 ϕ(t)dt > 0

for each ε > 0
}
.

Definition 2.1. ([7]) Let (X, d) be a metric space. A function p : X×X→ R+ is called a w-distance in X if it satisfies
the following

(w1) p(x, z) ≤ p(x, y) + p(y, z), ∀x, y, z ∈ X;
(w2) for each x ∈ X, a mapping p(x, ·) : X → R+ is lower semi-continuous, that is, if {yn}n∈N is a sequence in X

with limn→∞ yn = y ∈ X, then p(x, y) ≤ lim infn→∞ p(x, yn);
(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Example 2.2. Let X = R+ be endowed with the Euclidean metric d = | · |, k be a positive constant and p : X×X→ R+

be defined by
p(x, y) = yk, ∀x, y ∈ X.

Then p is a w-distance in X.

Proof. Let x, y, z ∈ X. It is clear that (w2) holds and

p(x, z) = zk
≤ yk + zk = p(x, y) + p(y, z),

that is, (w1) holds. Let ε > 0 and put δ = εk. Suppose that p(z, x) ≤ δ and p(z, y) ≤ δ. It follows that

d(x, y) = |x − y| ≤ max{x, y} ≤ max{δ
1
k , δ

1
k } = ε,

which implies (w3).

Example 2.3. Let X = R be endowed with the Euclidean metric d = | · |, k ∈ R+, m be a positive constant and
p : X × X→ R+ be defined by

p(x, y) = |x|k + |y|m, ∀x, y ∈ X.

Then p is a w-distance in X.
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Proof. Let x, y, z ∈ X. It is clear that (w2) holds and

p(x, z) = |x|k + |z|m ≤ |x|k + |y|m + |y|k + |z|m = p(x, y) + p(y, z),

which yields (w1). Let ε > 0 and put δ =
(
ε
2

)m
. Suppose that p(z, x) ≤ δ and p(z, y) ≤ δ. It follows that

d(x, y) = |x − y| ≤ |x| + |y| ≤ δ
1
m + δ

1
m = ε,

which implies (w3).

Recall that a self mapping T in a metric space (X, d) is called orbitally continuous at u ∈ X if limn→∞ Tnx = u,
x ∈ X, implies that limn→∞ TTnx = Tu. The mapping T is orbitally continuous in X if T is orbitally continuous
at each u ∈ X.

The following lemmas play important roles in this paper.

Lemma 2.4. ([7]) Let X be a metric space with metric d and let p be a w-distance in X. Let {xn}n∈N and {yn}n∈N be
sequences in X, let {αn}n∈N and {βn}n∈N be sequences in R+ converging to 0, and let x, y, z ∈ X, then the following
hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈N, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then
y = z;

(b) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈N, then {yn}n∈N converges to z;
(c) if p(xn, xm) ≤ αn for any n,m ∈N with n > m, then {xn}n∈N is a Cauchy sequence;
(d) if p(x, xn) ≤ αn for any n ∈N, then {xn}n∈N is a Cauchy sequence.

Lemma 2.5. ([12]) Let ϕ ∈ Φ and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

Lemma 2.6. ([12]) Let ϕ ∈ Φ and {rn}n∈N be a nonnegative sequence. Then limn→∞
∫ rn

0 ϕ(t)dt = 0 if and only if
limn→∞ rn = 0.

3. Main Results

In this section, we establish three fixed point theorems for three classes of contractive mappings of
integral type with w-distance in complete metric spaces.

Theorem 3.1. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that T : X→ X satisfies
that ∫ p(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ p(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (3.1)

where c ∈ [0, 1) is a constant and ϕ ∈ Φ. Then T has a unique fixed point u ∈ X, p(u,u) = 0, limn→∞ p(Tnx0,u) = 0
and limn→∞ Tnx0 = u for each x0 ∈ X.

Proof. Pick an arbitrary point x0 in X and define xn = Tnx0 for each n ∈N0. Now we consider the following
two cases:

Case 1. Assume that xn0 = xn0−1 for some n0 ∈N. It’s easy to see that xn0−1 is a fixed point of T, xn = xn0−1
for each n ≥ n0 and limn→∞ Tnx0 = xn0−1. Suppose that p(xn0−1, xn0−1) > 0. It follows from (3.1) and ϕ ∈ Φ
that ∫ p(xn0−1,xn0−1)

0
ϕ(t)dt =

∫ p(Txn0−1,Txn0−1)

0
ϕ(t)dt ≤ c

∫ p(xn0−1,xn0−1)

0
ϕ(t)dt

<

∫ p(xn0−1,xn0−1)

0
ϕ(t)dt,
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which is a contradiction. Hence p(xn0−1, xn0−1) = 0, which yields that

lim
n→∞

p(xn, xn0−1) = p(xn0−1, xn0−1) = 0;

Case 2. Assume that xn , xn−1 for all n ∈N. Suppose that

p(xn0−1, xn0 ) = 0 for some n0 ∈N. (3.2)

In light of (3.1), (3.2) and ϕ ∈ Φ, we infer that

0 ≤
∫ p(xn0 ,xn0+1)

0
ϕ(t)dt =

∫ p(Txn0−1,Txn0 )

0
ϕ(t)dt ≤ c

∫ p(xn0−1,xn0 )

0
ϕ(t)dt = 0,

which means that ∫ p(xn0 ,xn0+1)

0
ϕ(t)dt = 0,

which together with ϕ ∈ Φ gives that
p(xn0 , xn0+1) = 0. (3.3)

Note that (3.2), (3.3) and (w1) ensure that

0 ≤ p(xn0−1, xn0+1) ≤ p(xn0−1, xn0 ) + p(xn0 , xn0+1) = 0,

that is,
p(xn0−1, xn0+1) = 0. (3.4)

It follows from (3.2), (3.4) and Lemma 2.4 that xn0 = xn0+1, which is absurd and hence

p(xn−1, xn) > 0, ∀n ∈N. (3.5)

In view of (3.1), (3.5) and ϕ ∈ Φ, we deduce that∫ p(xn,xn+1)

0
ϕ(t)dt =

∫ p(Txn−1,Txn)

0
ϕ(t)dt ≤ c

∫ p(xn−1,xn)

0
ϕ(t)dt

<

∫ p(xn−1,xn)

0
ϕ(t)dt, ∀n ∈N,

which together with (3.5) implies that

0 < p(xn, xn+1) < p(xn−1, xn), ∀n ∈N. (3.6)

Note that (3.6) yields that the sequence {p(xn, xn+1)}n∈N0 is positive and strictly decreasing. Thus there exists
a constant v ≥ 0 with

lim
n→∞

p(xn, xn+1) = v. (3.7)

Suppose that v > 0. By means of (3.1), (3.7), ϕ ∈ Φ and Lemma 2.5, we conclude that∫ v

0
ϕ(t)dt = lim

n→∞

∫ p(xn,xn+1)

0
ϕ(t)dt = lim

n→∞

∫ p(Txn−1,Txn)

0
ϕ(t)dt

≤ lim
n→∞

c
∫ p(xn−1,xn)

0
ϕ(t)dt = c

∫ v

0
ϕ(t)dt

<

∫ v

0
ϕ(t)dt,
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which is impossible and hence v = 0, that is,

lim
n→∞

p(xn, xn+1) = 0. (3.8)

Similarly, we get that
lim
n→∞

p(xn+1, xn) = 0. (3.9)

Now we show that
lim

n,m→∞
p(xn, xm) = 0. (3.10)

Otherwise there is a constant ε > 0 such that for each positive integer k, there are positive integers m(k) and
n(k) with m(k) > n(k) > k such that

p(xn(k), xm(k)) > ε.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying the above inequality.
It follows that

p(xn(k), xm(k)) > ε and p(xn(k), xm(k)−1) ≤ ε, ∀k ∈N. (3.11)

Note that
ε < p(xn(k), xm(k))
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + ε + p(xm(k)−1, xm(k)), ∀k ∈N.

(3.12)

Letting k→∞ in (3.12) and using (3.8), (3.9) and (3.11), we know that

lim
k→∞

p(xn(k), xm(k)) = lim
k→∞

p(xn(k)−1, xm(k)−1) = ε. (3.13)

By virtue of (3.1), (3.13), ϕ ∈ Φ and Lemma 2.5, we deduce that∫ ε

0
ϕ(t)dt = lim

k→∞

∫ p(xn(k),xm(k))

0
ϕ(t)dt = lim

k→∞

∫ p(Txn(k)−1,Txm(k)−1)

0
ϕ(t)dt

≤ lim
k→∞

c
∫ p(xn(k)−1,xm(k)−1)

0
ϕ(t)dt = c

∫ ε

0
ϕ(t)dt

<

∫ ε

0
ϕ(t)dt,

which is a contradiction. Thus, (3.10) holds.
Let ε > 0 and δ denote the number in (w3). It follows from (3.10) that there exists N ∈N satisfying

p(xN, xn) < δ and p(xN, xm) < δ, ∀n,m > N,

which together with (w3) yields that

d(xn, xm) < ε, ∀n,m > N,

that is, {xn}n∈N0
is a Cauchy sequence. Since (X, d) is a complete metric space, it follows that there exists a

point u ∈ X such that limn→∞ xn = u.
Observe that (3.10) guarantees that for each ε > 0, there exists Nε ∈N satisfying

0 ≤ p(xn, xm) < ε, ∀n,m ≥ Nε,

which together with (w2) and limn→∞ xn = u yields that

0 ≤ p(xn,u) ≤ lim inf
m→∞

p(xn, xm) ≤ ε, ∀n ≥ Nε,
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which gives that
lim
n→∞

p(xn,u) = 0. (3.14)

Making use of (3.1), (3.14), ϕ ∈ Φ and Lemma 2.5, we obtain that

0 ≤
∫ p(Txn,Tu)

0
ϕ(t)dt ≤ c

∫ p(xn,u)

0
ϕ(t)dt→ 0 as n→∞,

that is,

lim
n→∞

∫ p(Txn,Tu)

0
ϕ(t)dt = 0,

which together with Lemma 2.6 means that

lim
n→∞

p(xn+1,Tu) = lim
n→∞

p(Txn,Tu) = 0,

which together with (w1) and (3.8) yields that

0 ≤ p(xn,Tu) ≤ p(xn, xn+1) + p(xn+1,Tu)→ 0 as n→∞,

that is,
lim
n→∞

p(xn,Tu) = 0. (3.15)

Combining (3.14) and (3.15) and using Lemma 2.4, we derive at u = Tu.
Next we show that p(u,u) = 0. Suppose that p(u,u) > 0. It follows from (3.1) and ϕ ∈ Φ that

0 <
∫ p(u,u)

0
ϕ(t)dt =

∫ p(Tu,Tu)

0
ϕ(t)dt ≤ c

∫ p(u,u)

0
ϕ(t)dt <

∫ p(u,u)

0
ϕ(t)dt, (3.16)

which is impossible. That is, p(u,u) = 0.
Finally, we show that T possesses a unique fixed point in X. Suppose that α and β are two fixed points

of T in X. Similar to the proof of (3.16), we infer easily that p(α, α) = p(β, β) = 0. Suppose that p(β, α) > 0. It
follows from (3.1) and ϕ ∈ Φ that

0 <
∫ p(β,α)

0
ϕ(t)dt =

∫ p(Tβ,Tα)

0
ϕ(t)dt ≤ c

∫ p(β,α)

0
ϕ(t)dt <

∫ p(β,α)

0
ϕ(t)dt,

which is absurd. Consequently p(β, α) = 0, which together with p(β, β) = 0 and Lemma 2.4 that β = α. This
completes the proof.

Theorem 3.2. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that T : X→ X satisfies
that ∫ p(Tx,Ty)

0
ϕ(t)dt ≤ a

∫ p(Tx,x)

0
ϕ(t)dt + b

∫ p(Ty,y)

0
ϕ(t)dt, ∀x, y ∈ X, (3.17)

where ϕ ∈ Φ and
a and b are nonnegative and a + b < 1. (3.18)

Then T has a unique fixed point u ∈ X, p(u,u) = 0, limn→∞ p(Tnx0,u) = 0 and limn→∞ Tnx0 = u for each x0 ∈ X.

Proof. Let x0 be an arbitrary point in X and define xn = Tnx0 for each n ∈N0. Now we consider the following
two cases:
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Case 1. Assume that xn0 = xn0−1 for some n0 ∈N. It’s easy to see that xn0−1 is a fixed point of T, xn = xn0−1
for each n ≥ n0 and limn→∞ Tnx0 = xn0−1. Suppose that p(xn0−1, xn0−1) > 0. It follows from (3.17), (3.18) and
ϕ ∈ Φ that

0 <
∫ p(xn0−1,xn0−1)

0
ϕ(t)dt =

∫ p(Txn0−1,Txn0−1)

0
ϕ(t)dt

≤ a
∫ p(Txn0−1,xn0−1)

0
ϕ(t)dt + b

∫ p(Txn0−1,xn0−1)

0
ϕ(t)dt

= (a + b)
∫ p(xn0−1,xn0−1)

0
ϕ(t)dt

<

∫ p(xn0−1,xn0−1)

0
ϕ(t)dt,

which is a contradiction. Hence p(xn0−1, xn0−1) = 0, which yields that

lim
n→∞

p(xn, xn0−1) = p(xn0−1, xn0−1) = 0;

Case 2. Assume that xn , xn−1 for all n ∈N. In terms of (3.17), we obtain that∫ p(xn+1,xn)

0
ϕ(t)dt =

∫ p(Txn,Txn−1)

0
ϕ(t)dt

≤ a
∫ p(Txn,xn)

0
ϕ(t)dt + b

∫ p(Txn−1,xn−1)

0
ϕ(t)dt

= a
∫ p(xn+1,xn)

0
ϕ(t)dt + b

∫ p(xn,xn−1)

0
ϕ(t)dt, ∀n ∈N,

which yields that ∫ p(xn+1,xn)

0
ϕ(t)dt ≤

b
1 − a

∫ p(xn,xn−1)

0
ϕ(t)dt, ∀n ∈N. (3.19)

Suppose that there exists some n0 ∈Nwith

p(xn0 , xn0−1) = 0. (3.20)

It follows from (3.19), (3.20) and ϕ ∈ Φ that

0 ≤
∫ p(xn0+1,xn0 )

0
ϕ(t)dt ≤

b
1 − a

∫ p(xn0 ,xn0−1)

0
ϕ(t)dt = 0,

which together with Lemmas 2.6 yields that

p(xn0+1, xn0 ) = 0. (3.21)

Linking (3.20), (3.21) and (w1), we infer that

0 ≤ p(xn0+1, xn0−1) ≤ p(xn0+1, xn0 ) + p(xn0 , xn0−1) = 0,

that is,
p(xn0+1, xn0−1) = 0. (3.22)

Using (3.21), (3.22) and Lemma 2.4, we know that xn0 = xn0−1, which is impossible. Consequently, we get
that

p(xn, xn−1) > 0, ∀n ∈N. (3.23)
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In view of (3.18), (3.19), (3.23) and ϕ ∈ Φ, we deduce that

0 <
∫ p(xn+1,xn)

0
ϕ(t)dt ≤

b
1 − a

∫ p(xn,xn−1)

0
ϕ(t)dt

≤

( b
1 − a

)2 ∫ p(xn−1,xn−2)

0
ϕ(t)dt ≤ · · ·

≤

( b
1 − a

)n ∫ p(x1,x0)

0
ϕ(t)dt→ 0 as n→∞,

which together with Lemma 2.6 yields that (3.9) holds.
Now we show that

lim
m,n→∞

p(xm, xn) = 0. (3.24)

Otherwise there is a constant ε > 0 such that for each positive integer k, there are positive integers m(k) and
n(k) with m(k) > n(k) > k such that

p(xm(k), xn(k)) > ε.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying the above inequality.
It is clear that

p(xm(k), xn(k)) > ε and p(xm(k)−1, xn(k)) ≤ ε, ∀k ∈N. (3.25)

Note that (3.9) and (3.25) yield that

ε < p(xm(k), xn(k))
≤ p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k))
≤ p(xm(k), xm(k)−1) + ε→ ε as k→∞,

that is,
lim
k→∞

p(xm(k), xn(k)) = ε. (3.26)

Making use of (3.9), (3.26), ϕ ∈ Φ and Lemma 2.5, we acquire that

0 <
∫ ε

0
ϕ(t)dt

= lim
k→∞

∫ p(xm(k),xn(k))

0
ϕ(t)dt

= lim
k→∞

∫ p(Txm(k)−1,Txn(k)−1)

0
ϕ(t)dt

≤ lim
k→∞

(
a
∫ p(Txm(k)−1,xm(k)−1)

0
ϕ(t)dt + b

∫ p(Txn(k)−1,xn(k)−1)

0
ϕ(t)dt

)
= a lim

k→∞

∫ p(xm(k),xm(k)−1)

0
ϕ(t)dt + b lim

k→∞

∫ p(xn(k),xn(k)−1)

0
ϕ(t)dt

= 0,

which is a contradiction. Thus (3.24) holds. As in the proof of Theorem 3.1, we conclude that there exists
some u ∈ X satisfying (3.14) and limn→∞ xn = u, which together with (w2) gives that

p(Tu,u) ≤ lim inf
n→∞

p(Tu, xn). (3.27)

Clearly there exists a subsequent {xni }i∈N ⊆ {xn}n∈N0
satisfying

lim inf
n→∞

p(Tu, xn) = lim
i→∞

p(Tu, xni ). (3.28)
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By means of (3.9), (3.17), (3.18), (3.27), (3.28) and Lemma 2.5, we deduce that∫ p(Tu,u)

0
ϕ(t)dt ≤ lim

i→∞

∫ p(Tu,xni )

0
ϕ(t)dt

≤ lim
i→∞

(
a
∫ p(Tu,u)

0
ϕ(t)dt + b

∫ p(Txni−1,xni−1)

0
ϕ(t)dt

)
= a

∫ p(Tu,u)

0
ϕ(t)dt + b lim

i→∞

∫ p(xni ,xni−1)

0
ϕ(t)dt

= a
∫ p(Tu,u)

0
ϕ(t)dt,

which yields that

(1 − a)
∫ p(Tu,u)

0
ϕ(t)dt ≤ 0,

which together with (3.18) implies that ∫ p(Tu,u)

0
ϕ(t)dt = 0,

that is,
p(Tu,u) = 0. (3.29)

By virtue of (3.17), (3.18), (3.29) and ϕ ∈ Φ, we gain that

0 ≤
∫ p(Tu,Tu)

0
ϕ(t)dt ≤ a

∫ p(Tu,u)

0
ϕ(t)dt + b

∫ p(Tu,u)

0
ϕ(t)dt = 0,

which ensures that
p(Tu,Tu) = 0. (3.30)

It follows from (3.29), (3.30) and Lemma 2.4 that u = Tu and p(u,u) = 0.
Finally, we show that T possesses a unique fixed point in X. Suppose that α and β are two fixed points

of T in X. In light of (3.17), (3.18) and ϕ ∈ Φ, we conclude that∫ p(α,α)

0
ϕ(t)dt =

∫ p(Tα,Tα)

0
ϕ(t)dt

≤ a
∫ p(Tα,α)

0
ϕ(t)dt + b

∫ p(Tα,α)

0
ϕ(t)dt

= (a + b)
∫ p(α,α)

0
ϕ(t)dt,

which gives that

0 ≤ (1 − a − b)
∫ p(α,α)

0
ϕ(t)dt ≤ 0,

that is, ∫ p(α,α)

0
ϕ(t)dt = 0,

which yields that
p(α, α) = 0. (3.31)
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Similarly we infer also that p(β, β) = 0. It follows from (3.17), (3.18) and ϕ ∈ Φ that

0 ≤
∫ p(α,β)

0
ϕ(t)dt =

∫ p(Tα,Tβ)

0
ϕ(t)dt

≤ a
∫ p(Tα,α)

0
ϕ(t)dt + b

∫ p(Tβ,β)

0
ϕ(t)dt

= 0,

which implies that
p(α, β) = 0. (3.32)

On account of (3.31), (3.32), ϕ ∈ Φ and Lemmas 2.4, we deduce that α = β. This completes the proof.

Theorem 3.3. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that T : X → X is an
orbitally continuous mapping satisfying∫ p(Tx,Ty)

0
ϕ(t)dt ≤ a

∫ p(x,Tx)

0
ϕ(t)dt + b

∫ p(y,Ty)

0
ϕ(t)dt, ∀x, y ∈ X, (3.33)

where ϕ ∈ Φ and (3.18) holds. Then T has a unique fixed point u ∈ X, p(u,u) = 0, limn→∞ p(Tnx0,u) = 0 and
limn→∞ Tnx0 = u for each x0 ∈ X.

Proof. Let x0 be an arbitrary point in X and define xn = Tnx0 for each n ∈N0. Without loss of generality we
assume that xn , xn−1 for all n ∈ N. Similar to the proofs of Theorem 3.1 and 3.2, we conclude that (3.10)
holds and there exists some u ∈ X satisfying limn→∞ xn = u and (3.14). Since T is orbitally continuous, it
follows that

Tu = lim
n→∞

Txn = lim
n→∞

xn+1 = u.

It follows from (3.18), (3.33) and ϕ ∈ Φ that∫ p(u,u)

0
ϕ(t)dt =

∫ p(Tu,Tu)

0
ϕ(t)dt

≤ a
∫ p(u,Tu)

0
ϕ(t)dt + b

∫ p(u,Tu)

0
ϕ(t)dt

= (a + b)
∫ p(u,u)

0
ϕ(t)dt,

which implies that

0 ≤ (1 − a − b)
∫ p(u,u)

0
ϕ(t)dt ≤ 0,

which together with (3.18) means that ∫ p(u,u)

0
ϕ(t)dt = 0,

that is, p(u,u) = 0. The rest of the proof is similar to that of Theorem 3.2 and is omitted. This completes the
proof.

Problem 3.4. If the condition that T : X → X is an orbitally continuous mapping in Theorem 3.3 is removed, and
other conditions of Theorem 3.3 do not change, the conclusions of Theorem 3.3 hold ?
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4. Remarks and Examples

In this section, we construct three nontrivial examples to compare the fixed point theorems obtained in
Section 3 with the known results in Section 1.

Remark 4.1. In case p(x, y) = d(x, y) for all x, y ∈ X, then Theorem 3.1 reduces to Theorem 1.2. The following
example reveals that Theorem 3.1 extends substantially Theorem 1.2.

Example 4.2. Let X = R+ be endowed with the Euclidean metric d = | · |, p : X × X → R+, ϕ : R+
→ R+ and

T : X→ X be defined by
p(x, y) =

√
y, ∀x, y ∈ X, ϕ(t) = 4t3, ∀t ∈ R+

and

Tx =

0, ∀x ∈ [0, 1]
x
2 , ∀x ∈ (1,+∞).

Put c = 1
2 . It is clear that p is w-distance in X and ϕ ∈ Φ. In order to verify (3.1), we have to consider two possible

cases as follows:
Case 1. Let x ∈ X and y ∈ [0, 1]. It follows that∫ p(Tx,Ty)

0
ϕ(t)dt = 0 ≤ c

∫ p(x,y)

0
ϕ(t)dt;

Case 2. Let x ∈ X and y ∈ (1,+∞). Note that∫ p(Tx,Ty)

0
ϕ(t)dt =

∫ √ y
2

0
4t3dt =

y2

4
≤

y2

2

=
1
2

∫ √
y

0
4t3dt = c

∫ p(x,y)

0
ϕ(t)dt.

Hence (3.1) holds. Thus the conditions of Theorem 3.1 are satisfied. It follows from Theorem 3.1 that T has a unique
fixed point in X.

Now we show that the mapping T does not satisfy the conditions of Theorem 1.2. Otherwise, there exist c ∈ (0, 1)
and ϕ ∈ Φ satisfying (1.2). It follows from (1.2), ϕ ∈ Φ and Lemma 2.5 that

0 <
∫ 1

2

0
ϕ(t)dt = lim

y→1+

∫
|0− y

2 |

0
ϕ(t)dt = lim

y→1+

∫ d(T1,Ty)

0
ϕ(t)dt

≤ c lim
y→1+

∫ d(1,y)

0
ϕ(t)dt = c lim

y→1+

∫
|1−y|

0
ϕ(t)dt

= 0,

which is impossible.

Remark 4.3. In case p(x, y) = d(x, y) for all x, y ∈ X and ϕ(t) = 1 for all t ∈ R+, then Theorem 3.2 reduces to
Theorem 1.1. The following example proves that Theorem 3.2 generalizes indeed Theorem 1.1.

Example 4.4. Let X = R+ be endowed with the Euclidean metric d = | · |, p : X × X → R+, ϕ : R+
→ R+ and

T : X→ X be defined by
p(x, y) = y2, ∀x, y ∈ X, ϕ(t) = 2t, ∀t ∈ R+

and

Tx =

0, ∀x ∈ [0, 1)
√

x
2+x3 , ∀x ∈ [1,+∞).
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Put a = 1
2 and b = 1

16 . It is clear that p is w-distance in X, ϕ ∈ Φ and (3.18) holds. In order to verify (3.17), we have
to consider two possible cases as follows:

Case 1. Let x ∈ X and y ∈ [0, 1). It is clear that∫ p(Tx,Ty)

0
ϕ(t)dt = 0 ≤ a

∫ p(Tx,x)

0
ϕ(t)dt + b

∫ p(Ty,y)

0
ϕ(t)dt;

Case 2. Let x ∈ X and y ∈ [1,+∞). Note that

∫ p(Tx,Ty)

0
ϕ(t)dt =

∫ (
√

y

2+y3

)2

0
2tdt =

y2

(2 + y3)4 ≤
y2

16
≤

y4

16

≤ a
∫ x2

0
2tdt + b

∫ y2

0
2tdt

= a
∫ p(Tx,x)

0
ϕ(t)dt + b

∫ p(Ty,y)

0
ϕ(t)dt.

That is, (3.17) holds. Hence the conditions of Theorem 3.2 are satisfied. It follows from Theorem 3.2 that T has a
unique fixed point in X.

However we cannot use Theorem 1.1 to prove the existence of fixed points of the mapping T in X. Otherwise, there
exists c ∈

(
0, 1

2

)
satisfying (1.1). It follows that

1
3

= d
(
0,

1
3

)
= d(T0,T1) ≤ c(d(0,T0) + d(1,T1)) =

2c
3
,

which together with c ∈
(
0, 1

2

)
yields that

1
2
> c ≥

1
2
,

which is impossible.

The following example is an application of Theorem 3.3 and shows that Theorem 3.3 differs from
Theorem 1.2.

Example 4.5. Let X = [0, 2] be endowed with the Euclidean metric d = | · |, p : X × X → R+, ϕ : R+
→ R+ and

T : X→ X be defined by
p(x, y) = x + y, ∀x, y ∈ X, ϕ(t) = 2t, ∀t ∈ R+

and

Tx =

 x
4 , ∀x ∈ [0, 1]
0, ∀x ∈ (1, 2].

Put a = b = 1
5 . It is obvious that p is w-distance in X, ϕ ∈ Φ and (3.18) holds. Observe that

Tnx =

 x
4n , ∀x ∈ [0, 1], n ∈N
0, ∀x ∈ (1, 2], n ∈N,

which implies that T is orbitally continuous in X. In order to verify (3.33), we have to consider four possible cases as
follows:
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Case 1. Let x, y ∈ [0, 1]. It is clear that∫ p(Tx,Ty)

0
ϕ(t)dt =

∫ x+y
4

0
2tdt =

(x + y)2

16
≤

5(x2 + y2)
16

= a
∫ (x+ x

4 )

0
2tdt + b

∫ (y+
y
4 )

0
2tdt

= a
∫ p(x,Tx)

0
ϕ(t)dt + b

∫ p(y,Ty)

0
ϕ(t)dt;

Case 2. Let x, y ∈ (1, 2]. Note that∫ p(Tx,Ty)

0
ϕ(t)dt = 0 ≤ a

∫ p(x,Tx)

0
ϕ(t)dt + b

∫ p(y,Ty)

0
ϕ(t)dt;

Case 3. Let x ∈ [0, 1] and y ∈ [2, 3]. Note that∫ p(Tx,Ty)

0
ϕ(t)dt =

∫ x
4

0
2tdt =

x2

16
≤

5x2

16
= a

∫ p(x,Tx)

0
ϕ(t)dt

≤ a
∫ p(x,Tx)

0
ϕ(t)dt + b

∫ p(y,Ty)

0
ϕ(t)dt;

Case 4. Let x ∈ [2, 3] and y ∈ [0, 1]. It is clear that∫ p(Tx,Ty)

0
ϕ(t)dt =

∫ y
4

0
2tdt =

y2

16
≤

5y2

16
= b

∫ p(y,Ty)

0
ϕ(t)dt

≤ a
∫ p(x,Tx)

0
ϕ(t)dt + b

∫ p(y,Ty)

0
ϕ(t)dt,

that is, (3.33) holds. Thus the conditions of Theorem 3.3 are satisfied. It follows from Theorem 3.3 that T has a unique
fixed point in X.

However, we claim that Theorem 1.2 is unapplicable in proving the existence of fixed points of T in X. Suppose
that there exist c ∈ (0, 1) and ϕ ∈ Φ satisfying (1.2). It follows from (1.2), ϕ ∈ Φ and Lemma 2.5 that

0 <
∫ 1

4

0
ϕ(t)dt = lim

y→1+

∫ d(T1,Ty)

0
ϕ(t)dt ≤ lim

y→1+
c
∫ d(1,y)

0
ϕ(t)dt

= lim
y→1+

c
∫ y−1

0
ϕ(t)dt = 0,

which is a contradiction.
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