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Abstract. The purpose of this paper is to introduce and study an iterative scheme for solving the split fea-
sibility problems in the setting of p-uniformly convex and uniformly smooth Banach spaces. Under suitable
conditions a strong convergence theorem is established. The main result presented in this paper extends
some recent results done by Jitsupa Deepho and Poom Kumam [Jitsupa Deepho and Poom Kumam, A
Modified Halperns Iterative Scheme for Solving Split Feasibility Problems, Abstract and Applied Analysis,
Volume 2012, Article ID 876069, 8 pages] and some others.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ||.||. Let I denote the identity operator on H.
Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2, respectively. The
split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (1)

where A : H1 → H2 is a bounded linear operator. We say that SFP is consistent if (1) has a solution. The SFP
in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving [4] for modeling inverse
problems which arise from phase retrievals and in medical image reconstruction [2]. The SFP attracts
the attention of many authors due to its application in signal processing. Various algorithms have been
invented to solve it (see, for example, [3, 13, 16, 22, 27–32] and references therein).

Recently, Deepho and Kumam [7] introduced and studied a modified Halperns iterative scheme for solving
the split feasibility problem in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions,
they established the following strong convergence theorem.

Theorem 1.1. Suppose that the SFP is consistent and 0 < ξ < 2
||A||2 . Let {xn} be a sequence defined by

xn+1 = αnu + βnxn + γnPC(I − ξA∗(I − PQ)A)xn, ∀n ≥ 1, (2)

where {αn}, {βn} and {γn} are three sequences in [0,1] and satisfy αn + βn + γn = 1. If the following assumptions are
satisfied:
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(C1) lim
n→∞

αn = 0 but
∞∑

n=1
αn = ∞

(C2) lim sup
n→∞

βn < 1

(C3) the sums
∞∑

n=1
|αn+1 − αn|,

∞∑
n=1
|βn+1 − βn| and

∞∑
n=1
|γn+1 − γn| are finite.

Then {xn} converges strongly to a solution of the SFP (1).

The following question naturally arises.

Question: Can we extend the results of problem (1) to higher Banach spaces (i.e., Lp spaces, 1 < p < ∞)
other than Hilbert spaces considered by many authors?

Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C and
Q be nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear
operator and A∗ : E∗2 → E∗1 be the adjoint of A. The split feasibility problem (SFP) in (1) is reformulated as
find a point

x ∈ C such that Ax ∈ Q. (3)

We assume that SFP (3) has a nonempty solution set Ω := {y ∈ C : Ay ∈ Q} = C ∩ A−1(Q). Then, we have
that Ω is a closed and convex subset of E1.

In solving SFP (3) in p-uniformly convex real Banach spaces which are also uniformly smooth, Schöpfer et
al. [21] proposed the following algorithm: For x1 ∈ E1 and n ≥ 1, set

xn+1 = ΠC J∗E1
[JE1 (xn) − tnA∗ JE2 (Axn − PQ(Axn))], (4)

where ΠC denotes the Bregman projection and J the duality mapping. Clearly the above algorithm covers
the Byrne’s CQ algorithm [2]

xn+1 = PC(xn − γA∗(I − PQ)Axn),n ≥ 1,

which is found to be a gradient-projection method (GPM) in convex minimization as a special case. They
established the weak convergence of algorithm (4) under the condition that E1 is p-uniformly convex, uni-
formly smooth and the duality mapping of E1 is sequentially weak-to-weak-continuous.

We remark here that the condition that the duality mapping of E1 is sequentially weak-to-weak-continuous
assumed in [21] excludes some important Banach spaces, such as the classical Lp(2 < p < ∞) spaces.

Recently, Wang [25] modified the above algorithm (4) and proved strong convergence for the following
multiple-sets split feasibility problem (MSSFP): find x ∈ E1 satisfying

x ∈
r⋂

i=1

Ci,Ax ∈
r+s⋂

j=1+r

Q j, (5)

where r, s are two given integers, Ci, i = 1, . . . , r is a closed convex subset in E1, and Q j, j = r + 1, . . . , r + s, is
a closed convex subset in E2. He defined for each n ∈N,

Tn(x) =

{
ΠCi(n)(x), 1 ≤ i(n) ≤ r,
J∗E1

[JE1 (x) − tnA∗ JE2 (Ax − PQ j(n)(Ax))], r + 1 ≤ i(n) ≤ r + s,

where i :N→ I is the cyclic control mapping

i(n) = n mod (r + s) + 1,
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and tn satisfies

0 < t ≤ tn ≤
( q
cq||A||q

) 1
q−1
, (6)

with Cq a constant defined as in Lemma 2.1 and proposed the following algorithm: For any initial guess
x1 = x̄, define {xn} recursively by

yn = Tnxn
Dn = {w ∈ E1 : ∆p(yn,w) ≤ ∆p(xn,w)}
En = {w ∈ E1 : 〈xn − w, Jp(x̄) − Jp(xn) ≥ 0}
xn+1 = ΠDn∩En (x̄).

(7)

Using the idea in the work of Nakajo and Takahashi [14], he proved the following strong convergence
theorem in p-uniformly convex Banach spaces which is also uniformly smooth.

Theorem 1.2. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C
and Q be nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that SFP (5) has a nonempty solution set Ω. Let the sequence {xn}

∞

n=1
be generated by (7). Then {xn}

∞

n=1 converges strongly to the Bregman projection of x̄ onto the solution set Ω.

The main advantage of result of Wang [25] is that the weak-to-weak continuity of the duality mapping,
assumed in [21] is dispensed with and strong convergence result was achieved. On the other hand, to
implement the algorithm (7) of Wang [25], one has to calculate, at each iteration, the Bregman projection
onto the intersection of two half spaces Dn and En.

Our aim in this paper is to construct another iterative scheme for solving problem (3) for which its im-
plementation does not involve calculation of Bregman projection onto the intersection of two half spaces
at each step of the iteration for which strong convergence is achieved in p-uniformly convex real Banach
spaces which are also uniformly smooth.

2. Preliminaries

Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded linear operator. The dual (adjoint)
operator of A, denoted by A∗, is a bounded linear operator defined by A∗ : E∗2 → E∗1

〈A∗ ȳ, x〉 := 〈ȳ,Ax〉, ∀x ∈ E1, ȳ ∈ E∗2

and the equalities ||A∗|| = ||A|| andN(A∗) = R(A)⊥ are valid, whereR(A)⊥ := {x∗ ∈ E∗2 : 〈x∗,u〉 = 0, ∀u ∈ R(A)}.
For more details on bounded linear operators and their duals, please see [8, 23, 24].

Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. Let E be a real Banach space. The modulus of convexity δE : [0, 2]→ [0, 1] is
defined as

δE(ε) = inf
{
1 −
||x + y||

2
: ||x|| = 1 = ||y||, ||x − y|| ≥ ε

}
.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]; p-uniformly convex if there is a cp > 0 so that
δE(ε) ≥ cpεp for any ε ∈ (0, 2]. The modulus of smoothness ρE(τ) : [0,∞)→ [0,∞) is defined by

ρE(τ) =
{ ||x + τy|| + ||x − τy||

2
− 1 : ||x|| = ||y|| = 1

}
.

E is called uniformly smooth if lim
n→∞

ρE(τ)
τ = 0; q-uniformly smooth if there is a Cq > 0 so that ρE(τ) ≤ Cqτq for any

τ > 0. The Lp space is 2-uniformly convex for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that
E is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth (see [12]).

The q-uniformly smooth spaces have the following estimate [26].
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Lemma 2.1. (Xu, [26]) Let x, y ∈ E. If E is q-uniformly smooth, then there is a Cq > 0 so that

||x − y||q ≤ ||x||q − q〈y, Jq
E(x)〉 + Cq||y||q

Here and hereafter, we assume that E is a p-uniformly convex and uniformly smooth, which implies that its
dual space, E∗, is q-uniformly smooth and uniformly convex. In this situation, it is known that the duality
mapping Jp

E is one-to-one, single-valued and satisfies Jp
E = (J∗E)−1 = (Jq

E)−1, where J∗E = Jq
E is the duality

mapping of E∗ (see [1, 6]). Here the duality mapping Jp
E : E→ 2E∗ is defined by

Jp
E(x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ||x||p, ||x̄|| = ||x||p−1

}.

The duality mapping Jp
E is said to be weak-to-weak continuous if

xn ⇀ x⇒ 〈Jp
Exn, y〉 → 〈J

p
Ex, y〉

holds true for any y ∈ E . It is worth noting that the `p(p > 1) space has such a property, but the Jp
E(p > 2)

space does not share this property.

Given a Gâteaux differentiable convex function f : E→ R, the Bregman distance with respect to f is defined
as:

∆ f (x, y) = f (y) − f (x) − 〈 f ′(x), y − x〉, x, y ∈ E

It is worth noting that the duality mapping Jp is in fact the derivative of the function fp(x) = ( 1
p )||x||p. Then

the Bregman distance with respect to fp is given by

∆p(x, y) =
1
q
||x||p − 〈Jp

Ex, y〉 +
1
p
||y||p

=
1
p

(||y||p − ||x||p) + 〈Jp
Ex, x − y〉

=
1
q

(||x||p − ||y||p) − 〈Jp
Ex − Jp

Ey, x〉.

Given x, y, z ∈ E, one can easily get

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, Jp
Ex − Jp

Ez〉, (8)

∆p(x, y) + ∆p(y, x) = 〈x − y, Jp
Ex − Jp

Ey〉. (9)

Generally speaking, the Bregman distance is not a metric due to the absence of symmetry, but it has
some distance-like properties. For the p-uniformly convex space, the metric and Bregman distance has the
following relation (see [21]):

τ||x − y||p ≤ ∆p(x, y) ≤ 〈x − y, Jp
Ex − Jp

Ey〉, (10)

where τ > 0 is some fixed number.

It is easy to see that if {xn} and {yn} are bounded sequences of a p-uniformly convex and uniformly smooth
E, then xn − yn → 0, n→∞ implies that ∆p(xn, yn)→ 0, n→∞.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argminy∈C||x − y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a variational inequality:

〈Jp
E(x − PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (11)
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Likewise, one can define the Bregman projection:

ΠCx = argminy∈C∆p(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [20]). The Bregman projection can also be character-
ized by a variational inequality:

〈Jp
E(x) − Jp

E(ΠCx), z −ΠCx〉 ≤ 0, ∀z ∈ C, (12)

from which one has

∆p(ΠCx, z) ≤ ∆p(x, z) − ∆p(x,ΠCx), ∀z ∈ C. (13)

In Hilbert spaces, the metric projection and the Bregman projection with respect to f2 are coincident, but in
general they are different. More importantly, the metric projection can not share the decent property (13)
as the Bregman projection in Banach spaces.

Following [1, 5], we make use of the function Vp : E∗ × E→ [0,+∞) associated with fp, which is defined by

Vp(x̄, x) =
1
q
||x̄||q − 〈x̄, x〉 +

1
p
||x||p,∀x ∈ E, x̄ ∈ E∗.

Then Vp is nonnegative and

Vp(x̄, x) = ∆p(J∗E(x̄), x) = ∆p(Jq
E(x̄), x) (14)

for all x ∈ E and x̄ ∈ E∗. Moreover, by the subdifferential inequality,

Vp(x̄, x) + 〈ȳ, J∗E(x̄) − x〉 ≤ Vp(x̄ + ȳ, x) (15)

for all x ∈ E and x̄, ȳ ∈ E∗ (see also [11], Lemmas 3.2 and 3.3; [15]). In addition, Vp is convex in the first
variable. Thus, for all z ∈ E,

∆p

(
Jq
E

( N∑
i=1

ti J
p
E(xi)

)
, z

)
= ∆p

(
J∗E

( N∑
i=1

ti J
p
E(xi)

)
, z

)
≤

N∑
i=1

ti∆p(xi, z), (16)

where {xi}
N
i=1 ⊂ E and {ti}

N
i=1 ⊂ (0, 1) with

N∑
i=1

ti = 1.

We next state the following lemmas which will be used in the sequel.

Lemma 2.2. (Xu [26]) Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn,n ≥ 1,

where, (i) {αn} ⊂ [0, 1],
∑
αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),∑

γn < ∞. Then, an → 0 as n→∞.

We shall adopt the following notations in this paper:
. xn → x means that xn → x strongly;
. xn ⇀ x means that xn → x weakly;
. ωw(xn) := {x : ∃xn j ⇀ x} is the weak w-limit set of the sequence {xn}

∞

n=1.

In this paper, we assume that E1 and E2 are p-uniformly convex real Banach spaces which are also uniformly
smooth, E∗1 is q-uniformly smooth real Banach space which is also uniformly convex where 1 < q ≤ 2 ≤ p < ∞
with 1

p + 1
q = 1. We further assume that Jp

E1
and Jp

E2
represent the duality mappings of E1 and E2 respectively

and Jp
E1

= (J∗E1
)−1 = (Jq

E1
)−1, where J∗E1

= Jq
E1

is the duality mapping of E1
∗.
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3. Main Results

Theorem 3.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C
and Q be nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that SFP (3) has a nonempty solution set Ω. Let {αn} ⊂ (0, 1 − ε) for
some ε > 0, {βn} and {γn} be sequences in (0, 1) such that αn + βn + γn = 1. For a fixed u ∈ C, let sequences {yn}

∞

n=1
and {xn}

∞

n=1 be generated by x1 ∈ C,{
yn = Jq

E1
[Jp

E1
(xn) − tnA∗ Jp

E2
(Axn − PQ(Axn))]

xn+1 = ΠC Jq
E1

(αn Jp
E1

(u) + βn Jp
E1

(xn) + γn Jp
E1

(yn)), n ≥ 1. (17)

Suppose the following conditions are satisfied:
(a) lim

n→∞
αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) 0 < t ≤ tn ≤ k <
( q

cq ||A||q

) 1
q−1 and

(d) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Then the sequence {xn}
∞

n=1 converges strongly to an element x∗ ∈ Ω, where x∗ = ΠΩu.

Proof. Let x∗ ∈ Ω. Suppose wn := Axn−PQ(Axn), ∀n ≥ 1. Then we have yn = Jq
E1

[Jp
E1

(xn)−tnA∗ Jp
E2

(wn)], ∀n ≥ 1.
It follows from (11) that

〈Jp
E2

(wn),Axn − Ax∗〉 = ||Axn − PQ(Axn)||p + 〈Jp
E2

(wn),PQ(Axn) − Ax∗〉

≥ ||Axn − PQ(Axn)||p = ||wn||
p, (18)

which, with Lemma 2.1, yields

∆p(yn, x∗) = ∆p(Jq
E1

[Jp
E1

(xn) − tnA∗ Jp
E2

(wn)], x∗)

=
1
q
||Jp

E1
(xn) − tnA∗ Jp

E2
(wn)||q − 〈Jp

E1
(xn), x∗〉

+tn〈J
p
E2

(wn),Ax∗〉 +
1
p
||x∗||p

≤
1
q
||Jp

E1
(xn)||q − tn〈Axn, J

p
E2

(wn)〉 +
Cq(tn||A||)q

q
||Jp

E2
(wn)||q

−〈Jp
E1

(xn), x∗〉 + tn〈J
p
E2

(wn),Ax∗〉 +
1
p
||x∗||p

=
1
q
||xn||

p
− 〈Jp

E1
(xn), x∗〉 +

1
p
||x∗||p + tn〈J

p
E2

(wn),Ax∗ − Axn〉

+
Cq(tn||A||)q

q
||Jp

E2
(wn)||q

= ∆p(xn, x∗) + tn〈J
p
E2

(wn),Ax∗ − Axn〉 +
Cq(tn||A||)q

q
||Jp

E2
(wn)||q

≤ ∆p(xn, x∗) −
(
tn −

Cq(tn||A||)q

q

)
||wn||

p. (19)

Using the condition (c), we have
∆p(yn, x∗) ≤ ∆p(xn, x∗), ∀n ≥ 1.
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Now, using (17), we have

∆p(xn+1, x∗) ≤ αn∆p(u, x∗) + βn∆p(xn, x∗) + γn∆p(yn, x∗) (20)
≤ αn∆p(u, x∗) + βn∆p(xn, x∗) + γn∆p(xn, x∗)
= αn∆p(u, x∗) + (1 − αn)∆p(xn, x∗)
≤ max{∆p(u, x∗),∆p(xn, x∗)}
...

≤ max{∆p(u, x∗),∆p(x1, x∗)}.

Hence, {xn}
∞

n=1 is bounded.
The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists n0 ∈ N such that {∆p(xn, x∗)}∞n=n0
is non-increasing. Then {∆p(xn, x∗)}∞n=1

converges and ∆p(xn, x∗) − ∆p(xn+1, x∗)→ 0, n→∞. Then from (19), we obtain(
tn −

Cq(tn||A||)q

q

)
||Axn − PQ(Axn)||p ≤ ∆p(xn, x∗) − ∆p(yn, x∗). (21)

Also, from (20), we have

∆p(xn, x∗) − ∆p(yn, x∗) ≤
αn

γn
∆p(u, x∗) +

1 − αn

γn
∆p(xn, x∗)

−
1
γn

∆p(xn+1, x∗)

=
αn

γn
∆p(u, x∗) −

αn

γn
∆p(xn, x∗)

+
1
γn

(∆p(xn, x∗) − ∆p(xn+1, x∗))

≤
αn

γn
∆p(u, x∗) +

1
γn

(∆p(xn, x∗) − ∆p(xn+1, x∗)). (22)

Putting (21) into (22), we have(
tn −

Cq(tn||A||)q

q

)
||Axn − PQ(Axn)||p ≤ ∆p(xn, x∗) − ∆p(yn, x∗)

≤
αn

γn
∆p(u, x∗) +

1
γn

(∆p(xn, x∗) − ∆p(xn+1, x∗)). (23)

By conditions (c) and (d) and (23), we have

0 < t
(
1 −

Cqkq−1
||A||q

q

)
||Axn − PQ(Axn)||p

≤

(
tn −

Cq(tn||A||)q

q

)
||Axn − PQ(Axn)||p

≤
1
γn

[
αn∆p(u, x∗) + (∆p(xn, x∗) − ∆p(xn+1, x∗))

]
→ 0,n→∞.

Hence, we obtain

lim
n→∞
||Axn − PQ(Axn)|| = 0. (24)
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Since yn = Jq
E1

[Jp
E1

(xn) − tnA∗ Jp
E2

(Axn − PQ(Axn))], then we have

0 ≤ ||Jp
E1

(yn) − Jp
E1

(xn)|| ≤ tn||A∗||||J
p
E2

(Axn − PQ(Axn))||

≤

( q
Cq||A||q

) 1
q−1
||A∗||||Axn − PQ(Axn)|| → 0,n→∞. (25)

Therefore, we obtain

lim
n→∞
||Jp

E1
(yn) − Jp

E1
(xn)|| = 0.

Since Jq
E1

is also norm-to-norm uniformly continuous on bounded subsets of E∗1, we have

lim
n→∞
||yn − xn|| = 0.

Furthermore,
||Jq

E1
[Jp

E1
(xn) − tnA∗ Jp

E2
(Axn − PQ(Axn))] − xn|| = ||yn − xn|| → 0,n→∞.

Since Jp
E1

is norm-to-norm uniformly continuous on bounded sets, then

t||A∗ Jp
E2

(Axn − PQ(Axn))|| ≤ tn||A∗ J
p
E2

(Axn − PQ(Axn))||

= ||Jp
E1

(xn) − tnA∗ Jp
E2

(Axn − PQ(Axn)) − Jp
E1

(xn)|| → 0,n→∞.

Thus,

lim
n→∞
||A∗ Jp

E2
(Axn − PQ(Axn))|| = 0. (26)

Since {xn} is bounded, there exists {xn j } of {xn} such that xn j ⇀ z ∈ ωw(xn). From (9), (12) and (10), we have
that

∆p(z,ΠCz) ≤ 〈Jp
E1

(z) − Jp
E1

(ΠCz), z −ΠCz〉

= 〈Jp
E1

(z) − Jp
E1

(ΠCz), z − xn j〉 + 〈J
p
E1

(z) − Jp
E1

(ΠCz), xn j −ΠCxn j〉

+〈Jp
E1

(z) − Jp
E1

(ΠCz),ΠCxn j −ΠCz〉

≤ 〈Jp
E1

(z) − Jp
E1

(ΠCz), z − xn j〉 + 〈J
p
E1

(z) − Jp
E1

(ΠCz), xn j −ΠCxn j〉.

As j→∞, we obtain that ∆p(z,ΠCz) = 0. Thus, z ∈ C. Let us now fix x ∈ C. Then, Ax ∈ Q and

||(I − PQ)Axn j ||
p = 〈Jp

E2
(Axn − PQ(Axn j )),Axn − PQ(Axn j )〉

= 〈Jp
E2

(Axn − PQ(Axn j )),Axn j − Ax〉

+〈Jp
E2

(Axn − PQ(Axn j )),Ax − PQ(Axn j )〉

≤ 〈Jp
E2

(Axn − PQ(Axn j )),Axn j − Ax〉

≤ M||A∗ Jp
E2

(I − PQ)Axn j || → 0,n→∞,

where M > 0 is sufficiently large number. It then follows from (11) that

||(I − PQ)Az||p = 〈Jp
E2

(Az − PQ(Az)),Az − PQ(Az)〉

= 〈Jp
E2

(Az − PQ(Az)),Az − Axn j〉 + 〈J
p
E2

(Az − PQ(Az)),Axn j − PQ(Axn j )〉

+〈Jp
E2

(Az − PQ(Az)),PQ(Axn j ) − PQ(Az)〉

≤ 〈Jp
E2

(Az − PQ(Az)),Az − Axn j〉 + 〈J
p
E2

(Az − PQ(Az)),Axn j − PQ(Axn j )〉.

Let wn = Jq
E1

(αn Jp
E1

(u) + (1 − αn)Jp
E1

(un)), n ≥ 1, where un = Jq
E1

( βn

1−αn
Jp
E1

(xn) +
γn

1−αn
Jp
E1

(yn)), n ≥ 1. By (10), we
have

0 < ∆p(yn, xn) ≤ ||yn − xn||||J
p
E1

(yn) − Jp
E1

(xn)|| → 0,n→∞.
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Furthermore,

∆p(un, xn) ≤
βn

1 − αn
∆p(xn, xn) +

γn

1 − αn
∆p(yn, xn)

=
γn

1 − αn
∆p(yn, xn)→ 0,n→∞.

and

∆p(wn,un) ≤ αn∆p(u,un) + (1 − αn)∆p(un,un)
= αn∆p(u,un)→ 0,n→∞.

Hence, by (10) we have lim
n→∞
||wn − un|| = 0 and lim

n→∞
||xn − un|| = 0. Now,

||xn − wn|| ≤ ||wn − un|| + ||xn − un|| → 0,n→∞.

Since xn j ⇀ z and ||wn − xn|| → 0, we have that wn j ⇀ z. Since Axn j ⇀ Az, we have that

lim
n→∞
||(I − PQ)Az|| = 0.

Thus, Az ∈ Q. Furthermore, let x∗ = ΠΩu. Then we observe that

lim sup
n→∞

〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉 = lim
j→∞
〈wn j − x∗, Jp

E1
(u) − Jp

E1
(x∗)〉

= 〈z − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉 ≤ 0. (27)

Furthermore, by (15) and (14) we have

∆p(xn+1, x∗) ≤ ∆p(Jq
E1

(αn Jp
E1

(u) + βn Jp
E1

(xn) + γn Jp
E1

(yn)), x∗)

= ∆p(Jq
E1

(αn Jp
E1

(u) + (1 − αn)Jp
E1

(un)), x∗)

= Vp(αn Jp
E1

(u) + (1 − αn)Jp
E1

(un), x∗)

≤ Vp(αn Jp
E1

(u) + (1 − αn)Jp
E1

(un) − αn(Jp
E1

(u) − Jp
E1

(x∗)), x∗)

−〈Jq
E1

(αn Jp
E1

(u) + (1 − αn)Jp
E1

(un)) − x∗,−αn(Jp
E1

(u) − Jp
E1

(x∗))〉

= Vp(αn Jp
E1

(x∗) + (1 − αn)Jp
E1

(un), x∗) + αn〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉

= ∆p(Jq
E1

(αn Jp
E1

(x∗) + (1 − αn)Jp
E1

(un)), x∗) + αn〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉

≤ αn∆p(x∗, x∗) + (1 − αn)∆p(un, x∗) + αn〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉

= (1 − αn)∆p(un, x∗) + αn〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉

≤ (1 − αn)∆p(xn, x∗) + αn〈wn − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉. (28)

Using Lemma 2.2 and (27) in (28), we obtain

lim
n→∞

∆p(xn, x∗) = 0.

Thus, xn → x∗,n→∞.

Case 2
Assume that {∆p(xn, x∗)}∞n=1 is not monotonically decreasing sequence. Set Γn = ∆p(xn, x∗), ∀n ≥ 1 and let
τ :N→N be a mapping for all n ≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈N : k ≤ n,Γk ≤ Γk+1}.
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Clearly, τ is a non decreasing sequence such that τ(n)→∞ as n→∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1,∀n ≥ n0.

After a similar conclusion from (24), it is easy to see that

||Axτ(n) − PQxτ(n)|| → 0,n→∞.

By the similar argument as above in Case 1, we conclude immediately that

lim
n→∞
||A∗ Jp

E2
(Axτ(n) − PQ(Axτ(n)))|| = 0.

and
lim sup

n→∞
〈wτ(n) − x∗, Jp

E1
(u) − Jp

E1
(x∗)〉 ≤ 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by {xτ(n)}which converges weakly
to z ∈ C and Az ∈ Q. From (28) we have that

∆p(xτ(n)+1, x∗) ≤ (1 − ατ(n))∆p(xτ(n), x∗) + αn〈wτ(n) − x∗, Jp
E1

(u) − Jp
E1

(x∗)〉

which implies by Lemma 2.2

lim
n→∞

∆p(xτ(n), x∗) = 0 (29)

and lim
n→∞

∆p(xτ(n)+1, x∗) = 0. Furthermore, for n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n , τ(n) (that is,
τ(n) < n), because Γ j ≥ Γ j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence lim Γn = 0, that is, {xn} converges strongly to x∗. This completes the proof.

Corollary 3.2. Let E1 and E2 be two Lp spaces with 2 ≤ p < ∞. Let C and Q be nonempty, closed and convex subsets
of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose
that SFP (3) has a nonempty solution set Ω. Let {αn} ⊂ (0, 1 − ε) for some ε > 0, {βn} and {γn} be sequences in (0, 1)
such that αn + βn + γn = 1. For a fixed u ∈ C, let sequences {yn}

∞

n=1 and {xn}
∞

n=1 be generated by x1 ∈ C,{
yn = Jq

E1
[Jp

E1
(xn) − tnA∗ Jp

E2
(Axn − PQ(Axn))]

xn+1 = ΠC Jq
E1

(αn Jp
E1

(u) + βn Jp
E1

(xn) + γn Jp
E1

(yn)), n ≥ 1.

Suppose the following conditions are satisfied:
(a) lim

n→∞
αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) 0 < t ≤ tn ≤ k <
( q

cq ||A||q

) 1
q−1 and

(d) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Then the sequence {xn}
∞

n=1 converges strongly to an element x∗ ∈ Ω, where x∗ = ΠΩu.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty, closed and convex subsets of H1
and H2 respectively, A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint of A. Suppose that
SFP (3) has a nonempty solution set Ω. Let {αn} ⊂ (0, 1− ε) for some ε > 0, {βn} and {γn} be sequences in (0, 1) such
that αn + βn + γn = 1. For a fixed u ∈ C, let sequences {yn}

∞

n=1 and {xn}
∞

n=1 be generated by x1 ∈ C,{
yn = xn − tnA∗(Axn − PQ(Axn))
xn+1 = PC(αnu + βnxn + γnyn), n ≥ 1.
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Suppose the following conditions are satisfied:
(a) lim

n→∞
αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) 0 < t ≤ tn ≤ k < 2
||A||2 and

(d) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Then the sequence {xn}
∞

n=1 converges strongly to an element x∗ ∈ Ω, where x∗ = PΩu.

4. An Application

In this section, we give an application of Theorem 3.1 to the convexly constrained linear inverse problem
in p-uniformly convex real Banach spaces which are also uniformly smooth.
Consider the convexly constrained linear inverse problem (cf [9]){

Ax = b,
x ∈ C, (30)

where E1 and E2 are two p-uniformly convex real Banach spaces which are also uniformly smooth and
A : E1 → E2 is a bounded linear mapping and b ∈ E2.
It is well known that the projected Landweber method (see, [10]) given by{

x1 ∈ C,
xn+1 = PC[xn − λA∗(Axn − b)],n ≥ 1,

where A∗ is the adjoint of A and 0 < λ < 2α with α = 1
||A||2 , converges weakly to a solution of (30). In what

follows, we present an algorithm with strong convergence for solving (30).

Corollary 4.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C
and Q be nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that the convexly constrained linear inverse problem (30) is consistent
and let Ω denote its solution set. Let {αn} be a sequence in (0, 1). Let {αn} ⊂ (0, 1 − ε) for some ε > 0, {βn} and {γn}

be sequences in (0, 1) such that αn + βn + γn = 1. For a fixed u ∈ C, let sequences {yn}
∞

n=1 and {xn}
∞

n=1 be generated by
x1 ∈ C,{

yn = Jq
E1

[Jp
E1

(xn) − tnA∗ Jp
E2

(Axn − b)]
xn+1 = ΠC Jq

E1
(αn Jp

E1
(u) + βn Jp

E1
(xn) + γn Jp

E1
(yn)), n ≥ 1. (31)

Suppose the following conditions are satisfied:
Suppose the following conditions are satisfied:
(a) lim

n→∞
αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) 0 < t ≤ tn ≤ k <
( q

cq ||A||q

) 1
q−1 and

(d) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Then the sequence {xn}
∞

n=1 converges strongly to an element x∗ ∈ Ω, where x∗ = ΠΩu.

Proof. For each n ≥ 1, replacing b = PQ(Axn), xn ∈ C implies that (17) reduces to (31). Thus, by Theorem 3.1
we obtain the desired conclusion.

We note that an iterative method is not of any serious interest unless it can be implemented to solve a
problem. In view of this, we demonstrate the applicability of our result obtained in Theorem 3.1 to this
example.
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Example 4.2. Let E1 = L2([a, b]) = E2 and suppose that A : L2([a, b])→ L2([a, b]) is defined by

A(x)(s) =

∫ b

a
V(s, t)x(t)dt, ∀x ∈ L2([a, b]),

where V : [a, b]× [a, b]→ R is continuous. It can be easily shown that A is a bounded linear operator with the adjoint
A∗ of A defined by

A∗(x)(s) =

∫ b

a
V(t, s)x(t)dt, ∀x ∈ L2([a, b]).

Let C = {x ∈ L2([a, b]) : 〈a, x〉 = b}, for some a ∈ L2
− {0} and Q = {x ∈ L2([a, b]) : 〈a, x〉 ≥ b}, for some

a ∈ L2
− {0}, b ∈ R. In this case,

ΠC(x) = PC(x) =
b − 〈a, x〉
||a||22

a + x,

and

PQ(x) = max
{
0,

b − 〈a, x〉
||a||22

}
a + x.

We consider the following problem

find x∗ ∈ C such that Ax∗ ∈ Q. (32)

To be more specific, let us consider a split feasibility problem in L2([0, 1]). Suppose A : L2([0, 1]) → L2([0, 1]) is
defined by

Ax(s) =

∫ 1

0
(s2 + t2)x(t)dt, ∀x ∈ L2([0, 1]).

Let C = {x ∈ L2([0, 1]) :
∫ 1

0 2tx(t)dt = 0} and Q = {x ∈ L2([0, 1]) :
∫ 1

0 t2x(t)dt ≥ −1}. We consider the following
problem

find x∗ ∈ C such that Ax∗ ∈ Q. (33)

It is clear that Problem (33) has a nonempty solution set Ω since 0 ∈ Ω. In this case, our iterative scheme (17) becomes
x1 ∈ C, (with αn = 1

n+1 , βn = n
2(n+1) , γn = n

2(n+1) and tn = 1
||A||2 ) yn =

[
xn −

1
||A||2 A∗

(
Axn − PQ(Axn)

)]
xn+1 = PC

(
u

n+1 + nxn
2(n+1) +

nyn

2(n+1)

)
, n ≥ 1.

We see here that our iterative scheme can be implemented to solve the problem (33) considered in this example.

Remark 4.3. We make the following remark concerning our contributions in this paper.
1. The weak-to-weak continuity of the duality mapping assumed in [21] is dispensed with in this paper and strong
convergence is achieved.
2. In implementing the algorithm (7), one has to calculate, at each iteration, the Bregman projection onto the
intersection of two half spaces but in this our iterative algorithm (17), one does not have to calculate, at each iteration,
the Bregman projection onto the intersection of two half spaces. Hence, our algorithm (17) appears more efficient and
implementable than the algorithm of Wang [25].

3. The conditions
∞∑

n=1
|αn+1 − αn| < ∞,

∞∑
n=1
|βn+1 − βn| < ∞ and

∞∑
n=1
|γn+1 − γn| < ∞ imposed in the result of Deepho

and Kumam [7] are dispensed with in our result even in higher Banach spaces than Hilbert where the result of Deepho
and Kumam [7] was proved.
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