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Abstract. In this paper, Cline’s formula for the well-known generalized inverses such as Drazin inverse,

pseudo Drazin inverse and generalized Drazin inverse is extended to the case when
{

acd = dbd
dba = aca.

Also,

applications are given to some interesting Banach space operator properties like algebraic, meromorphic,
polaroidness and B-Fredholmness.

1. Introduction

For any associative ring R with identity 1, Jacobson’s lemma states that if 1 − ab is invertible, then so is
1 − ba and

(1 − ba)−1 = 1 + b(1 − ab)−1a.

The folklore proof of this result, which is usually ascribed to Jacobson, can be “formally” proceeded by
writing

(1 − ba)−1 = 1 + ba + baba + bababa + · · ·

= 1 + b(1 + ab + abab + · · · )a

= 1 + b(1 − ab)−1a,

see [14] for details. Over the years, suitable analogues of Jacobson’s lemma were found for many operator
properties [2–6, 8, 20–23, 26, 30] and various kinds of generalized inverse [9, 12, 17, 24, 25, 34]. In 2013,
Corach, Duggal and Harte [11] extended Jacobson’s lemma and many of its relatives to the case when
aba = aca. Take invertibility for example, in the presence of aba = aca, we see that if 1 − ac is invertible, then
so is 1 − ba and

(1 − ba)−1 = 1 + b(1 − ac)−1a.
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This can also be checked “formally” as follows

(1 − ba)−1 = 1 + ba + baba + bababa + · · ·

= 1 + b(1 + ac + acac + · · · )a

= 1 + b(1 − ac)−1a.

Straight after the authors established suitable analogues in this situation for many operator properties
[31, 32]. But we also remark here that, for few operator properties, we have not yet find suitable analogues
in this case (see [11, 31]). Very recently, Yan and Fang [28, 29] investigated a new extension of Jacobson’s
lemma and obtained many of its relatives in the case whenacd = dbd

dba = aca.

It is obviously that the case a = d gives aba = aca. Take invertibility for example again, in the presence of
acd = dbd, we know that if 1 − ac is invertible, then so is 1 − bd and

(1 − bd)−1 = 1 + b(1 − ac)−1d.

This can be checked “formally” again. Combining with Jacobson’s lemma and in the presence of acd = dbd,
it is easily to see that if 1 − bd is invertible, then so is 1 − ac and

(1 − ac)−1 = 1 + a(1 + c(1 + d(1 − bd)−1b)a)c.

Corresponding to Jacobson’s lemma, Cline discover in 1965 a fundamental relation between the Drazin
invertibility of ab and ba. He showed that if ab is Drazin invertible, then so is ba and

(ba)D = b((ab)D)2a.

Here we say that an element a ∈ R is Drazin invertible [13] if there exists s ∈ R such that

as = sa, sas = s and aksa = ak for some k ≥ 0.

In this case s is unique and denoted by s = aD, the Drazin inverse of a, and the least non-negative integer k
satisfying aksa = ak is called the Drazin index i(a) of a. Drazin inverse is a class of important, widely-applied
and uniquely-defined generalized inverse. The concept of Drazin inverse was extended until recently.
Recall that an element a ∈ R is said to be 1eneralized Drazin invertible [16] if there exists s ∈ R such that

s ∈ comm2(a), sas = s and asa − a is quasinilpotent,

where comm2(a) is defined as usual by

comm2(a) = {x ∈ R, xy = yx for all y ∈ R commuting with a}

and we say that an element a ∈ R is quasinilpotent if 1 + ax is invertible for all x ∈ R commuting with a. In
this case s is unique if it exists and denoted by s = a1D, the 1eneralized Drazin inverse of a. An intermedium
between Drazin inverse and generalized Drazin inverse was introduced in [27]: an element a ∈ R is called
pseudo Drazin invertible provided that there is a common solution to the equations

s ∈ comm2(a), sas = s and aksa − ak
∈ J(R) for some k ≥ 0,

where J(R) denotes the Jacobson radical of R. If such a solution exists, then it is unique and denoted by
s = apD, the pseudo Drazin inverse of a, and the smallest non-negative integer k for which aksa − ak

∈ J(R)
holds is called the pseudo Drazin index i(a) of a.
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Cline’s formula for generalized Drazin inverse and pseudo Drazin inverse were found in [19] and [27]
lately. Their proof are given through the bridges quasipolar and pseudopolar, respectively. Very recently,
the authors [18, 33] established Cline’s formula for Drazin inverse, pseudo Drazin inverse and generalized
Drazin inverse in the case when aba = aca. In this paper, we extend further Cline’s formula for the above three

kinds of generalized inverse to the case when
{

acd = dbd
dba = aca.

As corollaries, we show that operator products

AC and BD share some interesting operator properties such as algebraic, meromorphic, polaroidness and

B-Fredholmness in the case when
{

ACD = DBD
DBA = ACA.

2. Main Results

We begin with the following result, which extends Cline’s formula for Drazin inverse to the case when{
acd = dbd
dba = aca.

Theorem 2.1. Suppose that a, b, c, d ∈ R satisfy
{

acd = dbd
dba = aca.

Then

ac is Drazin invertible⇐⇒ bd is Drazin invertible.

In this case, we have
(1) |i(ac) − i(bd)| ≤ 2;
(2) (ac)D = d((bd)D)3bac and (bd)D = b((ac)D)2d.

Proof. Suppose that bd is Drazin invertible and let s be the Drazin inverse of bd and k its Drazin index. Then
we have

s(bd) = (bd)s, s(bd)s = s and (bd)ks(bd) = (bd)k.

Set t = ds3bac. We get
t(ac) = ds3bacac = ds3bdbac = ds2bac

and
(ac)t = (ac)ds3bac = dbds3bac = ds2bac,

and thus
t(ac) = (ac)t.

Moreover,
t(ac)t = ds3bac(ac)ds3bac = ds3bdbacds3bac = ds3bdbdbds3bac = ds3bac = t

and

(ac)k+2t(ac) = (ac)k+2ds3bac(ac) = d(bd)k+2s3bdb(ac) = d(bd)kbac

= (ac)kdbac = (ac)kacac = (ac)k+2.

Consequently, ac is Drazin invertible, (ac)D = d((bd)D)3bac and i(ac) ≤ i(bd) + 2.
As the above arguments, it is easily to see that if ac is Drazin invertible, then so is bd, (bd)D = b((ac)D)2d

and i(bd) ≤ i(ac) + 1.

Next we give an example to show that the difference of the Drazin index of products in Theorem 2.1 is
optimal.
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Example 2.2. Let A,B,C and D be operators, acting on separable Hilbert space l2(N), defined as follows
respectively:

A(x1, x2, x3, x4, x5, x6, · · · ) = (x2, x3, 0, x4, x5, x6, · · · ) for all {xn}
∞

n=1 ∈ l2(N),

B(x1, x2, x3, x4, x5, x6, · · · ) = (x4, x5, x6, x7, x8, x9, · · · ) for all {xn}
∞

n=1 ∈ l2(N),

C(x1, x2, x3, x4, x5, x6, · · · ) = (x2, x3, 0, x4, x5, x6, · · · ) for all {xn}
∞

n=1 ∈ l2(N),

D(x1, x2, x3, x4, x5, x6, · · · ) = (0, 0, 0, x1, x2, x3, · · · ) for all {xn}
∞

n=1 ∈ l2(N).

It is easy to verify that
{

ACD = DBD
DBA = ACA.

Noting that BD is the identity operator, we see that BD is Drazin

invertible and its Drazin index i(BD) = 0. But the Drazin index of AC is equal to 2.

Throughout the sequel, B(X,Y) stands for the set of all bounded linear operators from Banach space X
to Banach space Y. For T ∈ B(X) := B(X,X), let N(T) denote its kernel, α(T) its nullity, R(T) its ran1e and
β(T) its de f ect. The ascent and the descent of T are defined as

asc(T) = inf{n ∈N : N(Tn) = N(Tn+1)}

and
dsc(T) = inf{n ∈N : R(Tn) = R(Tn+1)},

respectively. It is well-known that if asc(T) and dsc(T) are both finite, then they are equal ([1, Theorem
3.3]). Moreover, being a Drazin invertible element in B(X) for T is equivalent to asc(T) = dsc(T) < ∞. In
the following we give the operator case of Theorem 2.1.

Corollary 2.3. Suppose that A,D ∈ B(X,Y) and B,C ∈ B(Y,X) satisfy
{

ACD = DBD
DBA = ACA.

Then AC is Drazin

invertible if and only if BD is Drazin invertible. In this case, we have

(AC)D = D((BD)D)3BAC and (BD)D = B((AC)D)2D.

Proof. Dilate A,B,C and D to be elements in the algebra B(X ⊕ Y) as follows

Ā =

(
0 0
A 0

)
∈ B(X ⊕ Y),

B̄ =

(
0 B
0 0

)
∈ B(X ⊕ Y),

C̄ =

(
0 C
0 0

)
∈ B(X ⊕ Y)

and

D̄ =

(
0 0
D 0

)
∈ B(X ⊕ Y)

Then by similar argument as in the proof of [19, Corollary 3.1] and using in particular Theorem 2.1, we
obtain the desired result by a matrix calculation.

Recall that an operator T ∈ B(X) is said to be al1ebraic if there exists non-zero complex polynomial p
such that p(T) = 0; meromorphic if every non-zero spectral point is a pole of the resolvent of T; polaroid if
every isolated spectral point is a pole of the resolvent of T.
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Corollary 2.4. Suppose that A,D ∈ B(X,Y) and B,C ∈ B(Y,X) satisfy
{

ACD = DBD
DBA = ACA.

Then

(1) AC is algebraic if and only if BD is algebraic;
(2) AC is meromorphic if and only if BD is meromorphic;
(3) AC is polaroid if and only if BD is polaroid.

Proof. (1) and (2) Apply the proof of [33, Theorem 2.2], using in particular Corollary 2.3 and [28, Lemmas
2.3 and 2.4].

(3) Apply the proof of [33, Theorem 2.3], using in particular Corollary 2.3 and [28, Lemmas 2.3 and
2.4].

If both α(T) and β(T) are finite, then T ∈ B(X) is said to be Fredholm and the index of T is then defined by
ind(T) = α(T) − β(T). An operator T ∈ B(X) is called B-Fredholm if for some n ∈N the range R(Tn) is closed
and the restriction T|R(Tn) of T to R(Tn) is Fredholm. In this case, [7, Proposition 2.1] enables us to define the
index of T as the index of T|R(Tn).

Corollary 2.5. Suppose that A,D ∈ B(X,Y) and B,C ∈ B(Y,X) satisfy
{

ACD = DBD
DBA = ACA.

Then AC is B-Fredholm if

and only if BD is B-Fredholm. In this case, we have

ind(AC) = ind(BD).

Proof. When X = Y, the desired result follows by applying the proof of [33, Lemma 2.8] and using in
particular Theorem 2.1. When X , Y, the desired result follows by dilating A,B,C and D as in Corollary
2.3, and then applying the proof of [33, Theorem 2.9] and using in particular [28, Lemmas 2.3 and 2.4].

Lemma 2.6. Suppose that a, b, c, d ∈ R satisfy
{

acd = dbd
dba = aca.

Then

ac is quasinilpotent⇐⇒ bd is quasinilpotent.

Proof. Suppose that ac is quasinilpotent. Then for all x ∈ R commuting with ac, 1 + xac is invertible. Let
y ∈ R be an element commuting with bd. Since

(dy3bac)(ac) = (dy3bdb)(ac) = (dbdy3b)(ac) = (ac)(dy3bac),

1 + (dy3bac)(ac) is invertible. Therefore by Jacobson’s Lemma, we have

(1 + ybd)(1 − ybd + y2bdbd) = 1 + y3bdbdbd = 1 + y3bacacd

is invertible. Thus, together with the fact 1 + ybd and 1 − ybd + y2bdbd commute, 1 + ybd is invertible.
Consequently, bd is quasinilpotent.

Conversely, suppose that bd is quasinilpotent. Then by [18, Lemma 2.2], we see that db is quasinilpotent.
Then by similar arguments as the previous paragraph, we infer that ca is quasinilpotent. By [18, Lemma
2.2] again, we conclude that ac is quasinilpotent.

In the following we extend Cline’s formula for generalized Drazin inverse to the case when
{

acd = dbd
dba = aca.

Theorem 2.7. Suppose that a, b, c, d ∈ R satisfy
{

acd = dbd
dba = aca.

Then

ac is generalized Drazin invertible⇐⇒ bd is generalized Drazin invertible.

In this case, we have (ac)1D = d((bd)1D)3bac and (bd)1D = b((ac)1D)2d.
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Proof. Suppose that bd is generalized Drazin invertible and let s = (bd)1D. Then

s ∈ comm2(bd), s(bd)s = s and (bd)s(bd) − bd is quasinilpotent.

Put
t = ds3bac.

In order to prove that t = (ac)1D, it needs to show that

(i) t ∈ comm2(ac), (ii) t(ac)t = t and (iii) (ac)t(ac) − ac is quasinilpotent.

(i) Let r ∈ comm(ac). Then we have

rt = rds3bac = rd(bdbds5)bac = racacds5bac = acacrds5bac = d(bacrd)s5bac. (1)

Since
bd(bacrd) = bacacrd = bracacd = bracdbd = (bacrd)bd

and s ∈ comm2(bd), we have

(bacrd)s = s(bacrd). (2)

Therefore, putting (2) into (1), we get

rt = d(bacrd)s5bac = ds5(bacrd)bac

= ds5(bacra)cac = ds5bacacacr

= ds5bdbdbacr = ds3bacr
= tr.

(ii) We have t(ac)t = ds3bac(ac)ds3bac = ds3bdbdbds3bac = ds3bac = t.
(iii) Let a′ = (1 − dsb)a and b′ = (1 − bds)b. Then b′d is quasinilpotent. Direct calculation shows that

a′cd = db′d, db′a′ = a′ca′ and ac − (ac)2t = a′c. Therefore Lemma 2.6 implies that ac − (ac)2t is quasinilpotent.
Consequently, (ac)1D = d((bd)1D)3bac.

As the above arguments, it is easily to see that if ac is generalized Drazin invertible, then so is bd and
(bd)1D = b((ac)1D)2d.

At last, Cline’s formula for pseudo Drazin inverse is extended to the case when
{

acd = dbd
dba = aca.

Theorem 2.8. Suppose that a, b, c, d ∈ R satisfy
{

acd = dbd
dba = aca.

Then

ac is pseudo Drazin invertible⇐⇒ bd is pseudo Drazin invertible.

In this case, we have
(1) |i(ac) − i(bd)| ≤ 2;
(2) (ac)pD = d((bd)pD)3bac and (bd)pD = b((ac)pD)2d.

Proof. Let s be the pseudo Drazin inverse of bd and let k = i(bd). Then

s ∈ comm2(bd), s(bd)s = s and (bd)ks(bd) − (bd)k
∈ J(R).

Put
t = ds3bac.
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As in the proof of Theorem 2.7, we get t ∈ comm2(ac) and t(ac)t = t. Moreover, since (bd)ks(bd) − (bd)k
∈ J(R),

(ac)k+2t(ac) − (ac)k+2 = (ac)k+2ds3bacac − (ac)k+2

= d(bd)k+2s3bdbac − (db)k+1ac

= d(bd)k+1sbac − d(bd)kbac

= d((bd)k+1s − (bd)k)bac ∈ J(R).

Therefore, ac is pseudo Drazin invertible, (ac)pD = d((bd)pD)3bac and i(ac) ≤ i(bd) + 2.
By similar arguments as above, one can show that if ac is pseudo Drazin invertible, then so is bd,

(bd)pD = b((ac)pD)2d and i(bd) ≤ i(ac) + 1.

We conclude this paper by an example to illustrate that the results obtained in this paper are proper
generalizations of the corresponding ones in [18, 33].

Example 2.9. For Banach spaces X and Y, let S1 ∈ B(Y,X),T1 ∈ B(Y,X) and T2 ∈ B(X,Y) be operators
satisfying S1(T2T1 − I) , 0 and let S2 = S1T2. We consider A,B,C,D ∈ B(X ⊕ Y) as follows:

A =

(
0 S1
0 0

)
, B = C =

(
I T1

T2 I

)
, D =

(
S2 0
0 0

)
.

Evidently, CDC − CAC =

(
0 S1(T2T1 − I)
0 T2S1(T2T1 − I)

)
, 0, but ACD = DBD =

(
S2

2 0
0 0

)
and DBA = ACA =(

0 S2S1
0 0

)
. Hence, the common Drazin invertibility (resp. pseudo Drazin invertibility and generalized

Drazin invertibility) of AC and CD can only be deduced directly from the results obtained in this paper,
and not from the corresponding ones in [18, 33].
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