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Abstract. The present paper unifies some aspects concerning the vertical Liouville distributions on the
tangent (cotangent) bundle of a Finsler (Cartan) space in the context of generalized geometry. More exactly,
we consider the big-tangent manifold TM associated to a Finsler space (M,F) and of its L-dual which is a
Cartan space (M,K) and we define three Liouville distributions on TM which are integrable. We also find
geometric properties of both leaves of Liouville distribution and the vertical distribution in our context.

1. Introduction and Preliminary Notions

1.1. Introduction
The vertical Liouville distribution on the tangent bundle of a (pseudo) Finsler space was defined for the

first time in [4] where some aspects of the geometry of the vertical bundle are derived via vertical Liouville
distribution. A similar study on the cotangent bundle of a Cartan space can be found in [11]. Also, other
significant studies concerning the interrelations between natural foliations defined by Liouville fields on
the tangent bundle of a Finsler space and the geometry of the Finsler space itself, as well as similar problems
on Cartan spaces are intensively studied in [6] and [2], respectively. See also [11, 14, 19, 20].

As it is well known, in the generalized geometry initiated in [10], the tangent bundle TM of a smooth n-
dimensional manifold M is replaced by the big-tangent bundle (or Pontryagin bundle) TM⊕T∗M. On its total
space the velocities and moments are considered as independent variables. This idea was proposed and
developed in [21, 22] and later was used in the study of Hamiltonian-Jacobi theory for singular Lagrangian
systems [13]. The geometry of the total space of the big-tangent bundle, called big-tangent manifold, is
intensively studied in [25] and some its applications to mechanical systems can be found in [9].

Using the framework of the geometry on the big-tangent manifold, our aim in this paper is to extend
some results concerning the vertical Liouville foliation in the context of generalized geometry. Thus, some
aspects concerning the geometry of vertical bundle of the big-tangent bundle of a Finsler space can be
obtained via our generalized Liouville distribution. This extension yields new subfoliations of the vertical
foliation on the big-tangent bundle and some properties of these subfoliations are studied in the end of the
paper. In this sense, we consider the big-tangent manifold TM associated to a Finsler space (M,F) and of
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its L-dual which is a Cartan space (M,K). As usual, we reconsider the vertical Liouville distributions VE1

and VE2 from the case of vertical tangent (cotangent) bundle of a Finsler (Cartan) space, see [4, 11], for the
case of vertical subbundles V1 and V2, respectively, with respect to Liouville vector fields E1 and E2. Next
we define the Liouville distribution VE with respect to the Liouville vector field E = E1 + E2, we prove that
it is integrable (Theorem 2.2) and we study some of its properties (Theorem 2.5 and Proposition 2.6). Also,
some links between the vertical Liouville foliations VE1 , VE2 and VE, respectively, are established.

On the other hand, it is well known that the vertical Liouville distribution on the tangent (cotangent)
bundle of a Finsler (Cartan) space is strongly related with the indicatrix of Finsler (Cartan) space, see
[6, 11], which inherits a natural almost contact structure, see [1, 8]. Thus, our generalized vertical Liouville
distribution, which is an odd dimensional integrable distribution over the big-tangent manifold, can serve
as an example of a contact Lie algebroid. This example is presented in the recent paper [12] when the Finsler
metric is the norm of a Riemannian metric. Also, some basic adapted connections with respect to vertical
subfoliations of the big-tangent manifold can be studied as in [11, 14].

1.2. Preliminaries and notations
Let M be a n-dimensional smooth manifold, and we consider π : TM → M its tangent bundle, π∗ :

T∗M→M its cotangent bundle and τ ≡ π⊕π∗ : TM⊕ T∗M→M its big-tangent bundle defined as Whitney
sum of the tangent and cotangent bundles of M. The total space of the big-tangent bundle, called big-tangent
manifold, is a 3n-dimensional smooth manifold denoted here by TM. Let us briefly recall some elementary
notions about the big-tangent manifold TM. For a detailed discussion about its geometry we refer [25].

Let (U, (xi)) be a local chart on M. If { ∂∂xi |x}, x ∈ U is a local frame of sections in the tangent bundle over
U and {dxi

|x}, x ∈ U is a local frame of sections in the cotangent bundle over U, then by definition of the
Whitney sum, { ∂∂xi |x, dxi

|x}, x ∈ U is a local frame of sections in the big-tangent bundle TM ⊕ T∗M over U.
Every section (y, p) of τ over U takes the form (y, p) = yi ∂

∂xi + pidxi and the local coordinates on τ−1(U) will
be defined as the triples (xi, yi, pi), where i = 1, . . . ,n = dim M, (xi) are local coordinates on M, (yi) are vector
coordinates and (pi) are covector coordinates.

The change rules of these coordinates are:

x̃i = x̃i(x j) , ỹi =
∂x̃i

∂x j y j , p̃i =
∂x j

∂x̃i
p j (1)

and the local expressions of a vector field X and of a 1-form ϕ on TM are

X = ξi ∂

∂xi + ηi ∂

∂yi + ζi
∂
∂pi

and ϕ = αidxi + βidyi + γidpi. (2)

For the big-tangent manifold TM we have the following projections

τ : TM→M , τ1 : TM→ TM , τ2 : TM→ T∗M

on M and on the total spaces of tangent and cotangent bundle, respectively.
As usual, we denote by V = V(TM) the vertical bundle on the big-tangent manifold TM and it has the

decomposition

V = V1 ⊕ V2, (3)

where V1 = τ−1
1 (V(TM)), V2 = τ−1

2 (V(T∗M)) and have the local frames { ∂∂yi }, { ∂∂pi
}, respectively. The subbun-

dles V1, V2 are the vertical foliations of TM by fibers of τ1, τ2, respectively, and TM has a multi-foliate
structure [23, 24]. The Liouville vector fields (or Euler vector fields) are given by

E1 = yi ∂

∂yi ∈ Γ(V1) , E2 = pi
∂
∂pi
∈ Γ(V2) , E = E1 + E2 ∈ Γ(V). (4)

In the following we consider that the manifold M is endowed with a Finsler structure F, and we present
a metric structure on V induced by F. According to [3, 5, 17], a function F : TM→ [0,∞) which satisfies the
following conditions:
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i) F is C∞ on TM0 = TM − {zero section};
ii) F(x, λy) = λF(x, y) for all λ ∈ R+;

iii) the n × n matrix (1i j), where 1i j = 1
2
∂2F2

∂yi∂y j , is positive definite at all points of TM0,

is called a Finsler structure on M and the pair (M,F) is called a Finsler space. We notice that in fact F(x, y) > 0,
whenever y , 0.

There are some useful facts which follow from the above homogeneity condition ii) of the fundamental
function of the Finsler space (M,F). By the Euler theorem on positively homogeneous functions we have,
see [3, 5, 17]:

yi = 1i jy j , yi = 1i jy j , F2 = 1i jyiy j = yiyi , Ci jkyk = Cik jyk = Cki jyk = 0, (5)

where (1i j) is the inverse matrix of (1 ji) and we have put yi = 1
2
∂F2

∂yi , Ci jk = 1
4

∂3F2

∂yi∂y j∂yk .
Also, for a given Finsler structure F on TM0 there is a Cartan structure K = F∗ on T∗M0 := T∗M −

{zero section} obtained by Legendre transformation of F (the L-duality process, see [15, 16, 18]), that is a
function K : T∗M→ [0,∞) which has the following properties:

i) K is C∞ on T∗M0;
ii) K(x, λp) = λK(x, p) for all λ > 0;

iii) the n × n matrix (1∗i j), where 1∗i j = 1
2
∂2K2

∂pi∂p j
, is positive definite at all points of T∗M0.

Also K(x, p) > 0, whenever p , 0. The properties of K imply that

pi = 1∗i jp j , pi = 1∗i jp
j , K2 = 1∗i jpip j = pipi , Ci jkpk = Cik jpk = Cki jpk = 0, (6)

where (1∗i j) is the inverse matrix of (1∗ ji) and we have put pi = 1
2
∂K2

∂pi
, Ci jk = − 1

4
∂3K2

∂pi∂p j∂pk
.

It is well-known that 1i j determines a metric structure on V(TM) and 1∗i j determines a metric structure
on V(T∗M). Similarly, every Finsler structure F on M determines a metric structure G on V by setting

G(X,Y) = 1i j(x, y)Xi
1(x, y, p)Y j

1(x, y, p) + 1∗i j(x, p)X2
i (x, y, p)Y2

j (x, y, p), (7)

for every X = Xi
1(x, y, p) ∂

∂yi + X2
i (x, y, p) ∂

∂pi
, Y = Y j

1(x, y, p) ∂
∂y j + Y2

j (x, y, p) ∂
∂p j
∈ Γ(V).

2. Vertical Liouville Foliations on TM

In this section we reconsider the vertical Liouville distributions VE1 and VE2 from the case of vertical
tangent (cotangent) bundle of a Finsler (Cartan) space, see [4, 11], for the case of vertical subbundles V1 and
V2, respectively, with respect to Liouville vector fields E1 and E2. Next we define the Liouville distribution
VE with respect to the Liouville vector field E = E1 + E2, we prove that it is integrable and we study some
of its properties. Also, some links between the vertical Liouville foliations VE1 , VE2 and VE, respectively,
are established.

2.1. Vertical Liouville distributions VE1 and VE2

Following [4], [11] we define two vertical Liouville distributions on TM as the complementary orthog-
onal distributions in V1 and V2 to the line distributions spanned by the Liouville vector fields E1 and E2,
respectively.

By (4) and (5) we have

G(E1,E1) = F2. (8)

Using G and E1, we define the V1-vertical one form ζ1 by

ζ1(X1) =
1
F

G(X1,E1) , ∀X1 = Xi
1(x, y, p)

∂

∂yi ∈ Γ(V1). (9)
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Let us denote by {E1} the line vector bundle over TM spanned by E1 and we define the first vertical Liouville
distribution as the complementary orthogonal distribution VE1 to {E1} in V1 with respect to G. Thus, VE1 is
defined by ζ1, that is

Γ
(
VE1

)
= {X1 ∈ Γ(V1) : ζ1(X1) = 0}. (10)

We get that every V1-vertical vector field X1 = Xi
1(x, y, p) ∂

∂yi can be expressed in the form:

X1 = P1X1 +
1
F
ζ1(X1)E1, (11)

where P1 is the projection morphism of V1 on VE1 .
Also, by direct calculus, we get

G(X1,P1Y1) = G(P1X1,P1Y1) = G(X1,Y1) − ζ1(X1)ζ1(Y1), ∀X1,Y1 ∈ Γ(V1). (12)

Let us consider {θi
} the dual basis of { ∂∂yi }. Then, with respect to the basis {θi

} and
{
θ j
⊗

∂
∂yi

}
, respectively, ζ1

and P1 are locally given by

ζ1 =
1
ζi θ

i , P1 =
1

Pi
j θ

j
⊗

∂

∂yi ,
1
ζi=

yi

F
,

1

Pi
j= δi

j −
y jyi

F2 , (13)

where δi
j are the components of the Kronecker delta.

As usual for tangent bundle of a Finsler space (see Theorem 3.1 from [4]), the first vertical Liouville
distribution VE1 is integrable and it defines a foliation on TM, called the first vertical Liouville foliation on
the big-tangent manifold TM. Also, some geometric properties of the leaves of vertical foliation V1 can be
derived via the first vertical Liouville foliation VE1 .

Similarly, by (4) and (6) we have

G(E2,E2) = K2, (14)

and using G and E2, we define the V2-vertical one form ζ2 by

ζ2(X2) =
1
K

G(X2,E2) , ∀X2 = X2
i (x, y, p)

∂
∂pi
∈ Γ(V2). (15)

Let us denote by {E2} the line vector bundle over TM spanned by E2 and we define the second vertical
Liouville distribution as the complementary orthogonal distribution VE2 to {E2} in V2 with respect to G. Thus,
VE2 is defined by ζ2, that is

Γ
(
VE2

)
= {X2 ∈ Γ(V2) : ζ2(X2) = 0}. (16)

We get that every V2-vertical vector field X2 = X2
i (x, y, p) ∂

∂pi
can be expressed in the form:

X2 = P2X2 +
1
K
ζ2(X2)E2, (17)

where P2 is the projection morphism of V2 on VE2 .
Similarly, by direct calculus, we get

G(X2,P2Y2) = G(P2X2,P2Y2) = G(X2,Y2) − ζ2(X2)ζ2(Y2), ∀X2,Y2 ∈ Γ(V2). (18)

Let us consider {ki} the dual basis of { ∂∂pi
}. Then, with respect to the basis {ki} and

{
k j ⊗

∂
∂pi

}
, respectively, ζ2

and P2 are locally given by

ζ2 =
2

ζi ki , P2 =
2

P j
i k j ⊗

∂
∂pi

,
2

ζi=
pi

K
,

2

Pi
j= δi

j −
p jpi

K2 . (19)

As usual for cotangent bundle of a Cartan space (see Theorem 2.1 from [11]), the second vertical Liouville
distribution VE2 is integrable and it defines a foliation on TM, called the second vertical Liouville foliation on
the big-tangent manifold TM. Also, some geometric properties of the leaves of vertical foliation V2 can be
derived via the second vertical Liouville foliation VE2 .
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2.2. Vertical Liouville distribution VE
In this subsection we unify the concepts presented in the previous subsection and we define a vertical

Liouville distribution on TM as the complementary orthogonal distribution in V to the line distribution
spanned by the Liouville vector field E = E1 + E2. We prove that this distribution is an integrable one, and
also, we find some geometric properties of both leaves of Liouville distribution and the vertical distribution
on the big-tangent manifold TM. Finally, some links between the vertical Liouville foliations VE1 , VE2 and
VE, respectively, are established.

By (4), (5) and (6) we have

G(E,E) = F2 + K2. (20)

Now, by means of G and E, we define the vertical one form ζ by

ζ(X) =
1

√

F2 + K2
G(X,E) , ∀X = Xi

1(x, y, p)
∂

∂yi + X2
i (x, y, p)

∂
∂pi
∈ Γ(V). (21)

Let us denote by {E} the line vector bundle over TM spanned by E and we define the vertical Liouville
distribution as the complementary orthogonal distribution VE to {E} in V with respect to G. Thus, VE is
defined by ζ, that is

Γ (VE) = {X ∈ Γ(V) : ζ(X) = 0}. (22)

We get that every vertical vector field X = Xi
1(x, y, p) ∂

∂yi + X2
i (x, y, p) ∂

∂pi
can be expressed in the form:

X = PX +
1

√

F2 + K2
ζ(X)E, (23)

where P is the projection morphism of V on VE.
Also, by direct calculus, we get

G(X,PY) = G(PX,PY) = G(X,Y) − ζ(X)ζ(Y), ∀X,Y ∈ Γ(V). (24)

With respect to the basis {θi, ki} and
{
θ j
⊗

∂
∂yi , θ j

⊗
∂
∂pi
, k j ⊗

∂
∂yi , k j ⊗

∂
∂pi

}
, respectively, ζ and P are locally given

by

ζ = ζiθ
i + ζiki , P =

1

Pi
j θ

j
⊗

∂

∂yi +
2

P j
i k j ⊗

∂
∂pi

+
3

Pi j θ
j
⊗
∂
∂pi

+
4

Pi j k j ⊗
∂

∂yi , (25)

where their local components are expressed by

ζi =
yi

√

F2 + K2
, ζi =

pi

√

F2 + K2
, (26)

1

Pi
j= δi

j −
y jyi

F2 + K2 ,
2

Pi
j= δi

j −
pip j

F2 + K2 ,
3

Pi j= −
y jpi

F2 + K2 ,
4

Pi j= −
p jyi

F2 + K2 . (27)

Remark 2.1. We have the following relations between ζ, P, ζ1, ζ2, P1 and P2:

ζ(X) =
F

√

F2 + K2
ζ1(X1) +

K
√

F2 + K2
ζ2(X2), (28)

P(X) = P1(X1) + P2(X2) +
1

F2 + K2

(
ζ1(X1)

F
−
ζ2(X2)

K

)
(K2
E1 − F2

E2), (29)

for every vertical vector field X = X1 + X2 = Xi
1(x, y, p) ∂

∂yi + X2
i (x, y, p) ∂

∂pi
.
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Theorem 2.2. The vertical Liouville distribution VE is integrable and it defines a foliation on TM, called vertical
Liouville foliation on the big-tangent manifold TM.

Proof. Follows using an argument similar to that used in [4]. Let X,Y ∈ Γ (VE). As V is an integrable
distribution on TM, it is sufficient to prove that [X,Y] has no component with respect to E.

It is easy to see that a vertical vector field X = Xi
1(x, y, p) ∂

∂yi + X2
i (x, y, p) ∂

∂pi
is in Γ (VE) if and only if

1i j(x, y)Xi
1y j + 1∗i j(x, p)X2

i p j = 0. (30)

Differentiating (30) with respect to yk we get

∂1i j

∂yk
Xi

1y j + 1ikXi
1 + 1i j

∂Xi
1

∂yk
y j + 1∗i jp j

∂X2
i

∂yk
= 0 , ∀ k = 1, . . . ,n (31)

and taking into account the relation ∂1i j

∂yk y j = 0 (see (5)), one gets

1ikXi
1 + 1i jy j

∂Xi
1

∂yk
+ 1∗i jp j

∂X2
i

∂yk
= 0 , ∀ k = 1, . . . ,n. (32)

Similarly, differentiating (30) with respect to pk we get

1i jy j
∂Xi

1

∂pk
+ 1∗ikX2

i +
∂1∗i j

∂pk
X2

i p j + 1∗i jp j
∂X2

i

∂pk
= 0 , ∀ k = 1, . . . ,n (33)

and taking into account the relation ∂1∗i j

∂pk
p j = 0 (see (6)), one gets

1∗ikX2
i + 1i jy j

∂Xi
1

∂pk
+ 1∗i jp j

∂X2
i

∂pk
= 0 , ∀ k = 1, . . . ,n. (34)

Let X = Xi
1(x, y, p) ∂

∂yi + X2
i (x, y, p) ∂

∂pi
, Y = Y j

1(x, y, p) ∂
∂y j + Y2

j (x, y, p) ∂
∂p j
∈ Γ(V). Then, by direct calculations

using (32) and (34), we have

G([X,Y],E) = 1 jkyk

Xi
1

∂Y j
1

∂yi − Yi
1

∂X j
1

∂yi

 + 1∗ikpkX j
1

∂Y2
i

∂y j − 1ikykY2
j

∂Xi
1

∂p j

+1ikykX2
j

∂Yi
1

∂p j
− 1∗ikpkY j

1

∂X2
i

∂y j + 1∗ikpk

X2
j

∂Y2
i

∂p j
− Y2

j

∂X2
i

∂p j


= −1i jYi

1X j
1 + 1i jXi

1Y j
1 − 1

∗i jY2
i X2

j + 1∗i jX2
i Y2

j

= 0

which completes the proof.

Remark 2.3. The proof of Theorem 2.2 can be also obtained using an argument similar to [7]. More exactly, if we

consider P( ∂
∂y j ) =

1
Pi

j
∂
∂yi +

3
Pi j

∂
∂pi

and P( ∂
∂p j

) =
4

Pi j ∂
∂yi +

2

P j
i

∂
∂pi

, by direct calculus we obtain

P(
∂

∂y j )(
√

F2 + K2) = P(
∂
∂p j

)(
√

F2 + K2) = 0. (35)

Now, since V = VE ⊕ {E} is integrable, the Lie brackets of vector fields from VE are given by[
P(

∂

∂yi ),P(
∂

∂y j )
]

= Ak
i jP(

∂

∂yk
) + Bi jkP(

∂
∂pk

) + Ci jE, (36)
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P(

∂

∂yi ),P(
∂
∂p j

)
]

= D jk
i P(

∂

∂yk
) + E j

ikP(
∂
∂pk

) + F j
iE, (37)[

P(
∂
∂pi

),P(
∂
∂p j

)
]

= Gi jkP(
∂

∂yk
) + Hi j

k P(
∂
∂pk

) + Li j
E, (38)

for some locally defined functions Ak
i j, Bi jk, Ci j, D jk

i , E j
ik, F j

i , Gi jk, Hi j
k and Li j, respectively. We notice that by the

homogeneity condition of F and K we have E(
√

F2 + K2) =
√

F2 + K2. Now, if we apply the vector fields in both sides
of formulas (36), (37) and (38) to the function

√

F2 + K2 and using (35), we obtain Ci j
√

F2 + K2 = F j
i

√

F2 + K2 =

Li j
√

F2 + K2 = 0. This implies that Ci j = F j
i = Li j = 0, and then the vertical Liouville distribution VE is integrable.

As usual, the Theorem 2.2, we may say that the geometry of the leaves of vertical foliation V should be
derived from the geometry of the leaves of vertical Liouville foliation VE and of integral curves of E. In
order to obtain this interplay, we consider a leaf LV of V given locally by xi = ai, i = 1, . . . ,n, where the ai’s
are constants. Then, 1i j(a, y) and 1∗i j(a, p) are the components of a Riemannian metric GLV = G|LV on LV. If
we denote by ∇ the Levi-Civita connection on LV with respect to GLV then its local expression is

∇ ∂
∂yi

∂

∂y j = Ck
i j(a, y)

∂

∂yk
, ∇ ∂

∂yi

∂
∂p j

= 0 , ∇ ∂
∂pi

∂

∂y j = 0 , ∇ ∂
∂pi

∂
∂p j

= Ci j
k (a, p)

∂
∂pk

, (39)

where Ck
i j(a, y) = 1

21
lk(a, y)

∂1 jl(a,y)
∂yi and Ci j

k (a, p) = − 1
21
∗

lk(a, p) ∂1
∗ jl(a,p)
∂pi

.

Contracting Ck
i j(a, y) by y j and Ci j

k (a, p) by p j, respectively, we deduce

Ck
i j(a, y)y j = 0 , Ci j

k (a, p)p j = 0. (40)

In the following lemma we obtain the covariant derivatives with respect to ∇ of E, ζ and P, respectively.

Lemma 2.4. On any leaf LV of V, we have

∇X

(
E

√

F2 + K2

)
=

PX
√

F2 + K2
, (41)

(∇Xζ) Y =
1

√

F2 + K2
GLV (PX,PY), (42)

and

(∇XP) Y = −
1

F2 + K2

[
GLV (PX,PY)E +

√

F2 + K2ζ(Y)PX
]

(43)

for any X,Y ∈ Γ (TLV).

Proof. We take X = Xi
1(a, y, p) ∂

∂yi + X2
i (a, y, p) ∂

∂pi
, Y = Y j

1(a, y, p) ∂
∂y j + Y2

j (a, y, p) ∂
∂p j
∈ Γ (TLV) and the relation

(41) follows by:

∇X

(
E

√

F2 + K2

)
=

Xi
1

√

F2 + K2

(
δ j

i −
y jyi

F2 + K2

∂

∂y j −
p jyi

F2 + K2

∂
∂p j

)
+

X2
i

√

F2 + K2

(
δi

j −
p jpi

F2 + K2

∂
∂p j
−

y jpi

F2 + K2

∂

∂y j

)
=

1
√

F2 + K2

Xi
1

1

P j
i
∂

∂y j + Xi
1

3
P ji

∂
∂p j

+ X2
i

4

P ji ∂

∂y j + X2
i

2

Pi
j
∂
∂p j


=

PX
√

F2 + K2
.
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For the relation (42) we have

(∇Xζ) Y = X(ζ(Y)) − ζ (∇XY)

= Xi
1Y j

1

∂ζ j

∂yi + Xi
1Y2

j
∂ζ j

∂yi + X2
i Y j

1

∂ζ j

∂pi
+ X2

i Y2
j
∂ζ j

∂pi

=
Xi

1Y j
1

√

F2 + K2

(
1i j −

yiy j

F2 + K2

)
−

Xi
1Y2

j p
jyi

(F2 + K2)
√

F2 + K2

−
X2

i Y j
1y jpi

(F2 + K2)
√

F2 + K2
+

X2
i Y2

j
√

F2 + K2

(
1∗i j
−

p jpi

F2 + K2

)
.

On the other hand we have

GLV (PX,PY) = GLV (X,Y) − ζ(X)ζ(Y)

= Xi
1Y j

11i j + X2
i Y2

j1
∗i j
−

(Xi
1yi + X2

i pi)(Y j
1y j + Y2

j p
j)

F2 + K2

and the relation (42) follows easily.
The relation (43) follows using (23), (41) and (42).

Theorem 2.5. Let (M,F) be a n-dimensional Finsler space and LV, LVE and γ be a leaf of V, a leaf of VE that lies in
LV, and an integral curve of E

√

F2+K2
, respectively. Then the following assertions are valid:

i) γ is a geodesic of LV with respect to ∇.
ii) LVE is totally umbilical immersed in LV.

iii) LVE lies in the generalized indicatrix Ia = {(y, p) ∈ TaM0
⊕ T∗aM0 : F2(a, y) + K2(a, p) = 1} and has constant

mean curvature equal to −1.

Proof. Replace X by E
√

F2+K2
in (41) and we obtain i). Taking into account that E

√

F2+K2
is the unit normal vector

field of LVE , the second fundamental form B of LVE as a hypersurface of LV is given by

B(X,Y) =
1

√

F2 + K2
GLV (∇XY,E) , ∀X,Y ∈ Γ

(
TLVE

)
. (44)

On the other hand, by using (41) and taking into account that GLV is parallel with respect to ∇, we deduce
that

GLV (∇XY,E) = −GLV (X,Y) , ∀X,Y ∈ Γ
(
TLVE

)
. (45)

Hence,

B(X,Y) = −
1

√

F2 + K2
GLV (X,Y), ∀X,Y ∈ Γ

(
TLVE

)
, (46)

that is, LVE is totally umbilical immersed in LV. Now, we have

1i jyi

√

F2 + K2
+

1∗i jpi
√

F2 + K2
=
∂
√

F2 + K2

∂y j +
∂
√

F2 + K2

∂p j
(47)

which says that E
√

F2+K2
is a unit normal vector field for both LVE and the component Ia. Thus, LVE lies in Ia

and F2(a, y) + K2(a, p) = 1 at any point (y, p) ∈ LVE . Then (46) becomes

B(X,Y) = −GLV (X,Y), ∀X,Y ∈ Γ
(
TLVE

)
(48)
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which implies that

1
2n − 1

2n−1∑
i=1

εiB(Ei,Ei) = −1, (49)

where {Ei} ia an orthonormal frame field on LVE of signature {εi}. Hence, the mean curvature of LVE is −1
which completes the proof.

Proposition 2.6. Let (M,F) be a n-dimensional Finsler space and LV be a leaf of the vertical foliation V. Then the
sectional curvature of any nondegenerate plane section on LV which contain the vertical Liouville vector field E is
equal to zero.

Proof. Denote by RLV the curvature tensor field of ∇ on LV. Then, by using (41) and (43), we obtain

RLV (X,E)E = −

1 −
E(
√

F2 + K2)
√

F2 + K2

 PX (50)

for every vector field X on LV. Now, taking into account E(
√

F2 + K2) =
√

F2 + K2, the sectional curvature
of a plane section {X,E} vanishes on LV.

Remark 2.7. Let (M,F) be a n-dimensional Finsler space. Then there exist no leaves of V which are positively or
negatively curved.

Finally, let us study certain relations between the vertical Liouville foliations VE1 , VE2 and VE, respec-
tively.

We notice that we have the following decompositions of the vertical distribution:

V = VE1 ⊕ VE2 ⊕ {E1} ⊕ {E2} and V = VE ⊕ {E}. (51)

Taking into account that [
1

Pi
j

∂
∂yi ,

2

Pk
l

∂
∂pl

] = 0 and [E1,E2] = 0 we get that both distributions VE1 ⊕ VE2 and
{E1} ⊕ {E2} are integrable. Evidently, {E} ⊂ {E1} ⊕ {E2} and by (28) we have also VE1 ⊕ VE2 ⊂ VE. Thus, we
have the following vertical subfoliations on TM:

{E} ⊂ {E1} ⊕ {E2} ⊂ V , VE1 ⊕ VE2 ⊂ VE ⊂ V. (52)

The relations (51) says that {E} and VE1 ⊕ VE2 have the same orthogonal complement in {E1} ⊕ {E2} and in
VE, respectively. It is a line distribution {E′}, where E′ = K2

E1 − F2
E2, see (29) (or by direct calculations in

G(α1E1 + α2E2,E) = 0 it results α1 = K2 and α2 = −F2). Thus

{E1} ⊕ {E2} = {E} ⊕ {E
′
} , VE = VE1 ⊕ VE2 ⊕ {E

′
}. (53)

Proposition 2.8. The leaves of the foliation {E1} ⊕ {E2} are totally geodesic submanifolds of the leaves of vertical
foliation V.

Proof. Follows easily taking into account that ∇E1E1 = E1 , ∇E1E2 = ∇E2E1 = 0 , ∇E2E2 = E2.

Also by direct calculus we obtain ∇E′E′ = −K2F2
E + (K2

− F2)E′ < Γ({E′}), which leads to

Proposition 2.9. If γ is an integral curve of E′ then it is not a geodesic of a leaf of vertical foliation V.

A natural question is if between the foliations VE1 ⊕ VE2 and VE exists certain relations. Although the
leaves of VE1 are totally umbilical submanifolds of the leaves of V1, the leaves of VE2 are totally umbilical
submanifolds of the leaves of V2 and the leaves of VE are totally umbilical submanifolds of the leaves of V,
we have
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Theorem 2.10. The leaves of VE1 ⊕ VE2 are not totally umbilical submanifolds of the leaves of VE.

Proof. Taking into account that E
′

FK
√

F2+K2
is the unit normal vector field of LVE1⊕VE2

, the second fundamental
form B′ of LVE1⊕VE2

as hypersurface of LVE is given by

B′(X′,Y′) =
1

FK
√

F2 + K2
GLV (∇X′Y′,E′) , ∀X′,Y′ ∈ Γ

(
TLVE1⊕VE2

)
. (54)

Taking into account that GLV is parallel with respect to ∇, we deduce that

GLV (∇X′Y′,E′) = −GLV (Y′,∇X′E
′) , ∀X′,Y′ ∈ Γ

(
TLVE1⊕VE2

)
. (55)

Now, let us take X′ = P1(X1) + P2(X2) and Y′ = P1(Y1) + P2(Y2) for every X1,Y1 ∈ Γ(V1) and X2,Y2 ∈ Γ(V2).
Then by direct calculus we get

∇X′E
′ = K2P1(X1) − F2P2(X2). (56)

Thus the relation (54) becomes

B′(X′,Y′) =
−1

FK
√

F2 + K2
GLV

(
K2P1(X1) − F2P2(X2),Y′

)
, λGLV (X′,Y′), (57)

that is, LVE1⊕VE2
is not totally umbilical immersed in LVE .
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