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Abstract. We observe properties of some mappings related to the Davis-Choi-Jensen inequality for Hilbert
space operators. Using these results, we observe properties of some mappings related to Levinson’s
operator inequality. Consequently, we obtain several refinements for each of these inequalities.

1. Introduction

Let B(H) denote a C*-algebra of all bounded linear operators on a (complex) Hilbert space H and 14
denote the identity operator. We denote by B;,(H) the real subspace of all self-adjoint operators on H and
by 8*(H) the set of all positive operators in By, (H).

A continuous real valued function f defined on an interval I is said to be operator convex if f(AX + (1 -
A)Y) < Af(X) + (1 = A)f(Y) for all self-adjoint operators X, Y with spectra contained in [ and all A € [0,1].
Let ¥ (I) denote the set of all operator convex functions on interval I.

A linear mapping @ : B(H) — B(K) is said to be positive if it preserves the operator order >, i.e. if
A € B*(H) implies D(A) € B*(K) and is called normalized if it preserves the identity operator, i.e. if
Q(1y) = 1x.

We recall the Davis-Choi-Jensen inequality:

Theorem A [3, Theorem 1.20]. If @ : B(H) — B(K) is a normalized positive linear mapping and f € F(I) is an
operator convex function on an interval I, then

D(f(A)) = f(P(A)) (1)

for every selfadjoint operator A on H whose spectrum is contained in L.

Many other results can be found in [2, 3].

Next, we recall Levisons’s operator inequality. First we give the definition of classes of functions for
which we observe Levisons’s operator inequality.
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Definition 1.1. Let f € C(I) be a real valued function on an arbitrary interval I in R and c € I°, where I° is the
interior of I.

We say that f € Ki(I) (resp. f € K(1)) if there exists a constant o such that the function F(t) = f(t) — §* is operator
concave (resp. operator convex) on I N (—oo, c] and operator convex (resp. operator concave) on I N [c, o0).

Now we give Levisons’s inequality for two operators and f € K7(I). Many other results can be found in
[4, 5].

Theorem B [4, Theorem 1].

Let X, Y € By,(H) be self-adjoint operators with spectra contained in [m, M]
and [n, N, respectively, such thata <m <M <c<n <N <b. Let o, ¥
be normalized positive linear mappings @,V : B(H) — B(K).

If f € Ke((a, b)) and N S
Cri= 5 [(x?) - 02| < & = Z[w(¥?) - w(vy, @)
then
O(f(X)) - A(P(X)) < C1 < C < W(F(N) - A(W(Y)). 3)

S.S. Dragomir in [1] observe Hermite-Hadamard's type inequalities for operator as follows. Let f : I — R
be an operator convex function on the interval 1. Then for any self-adjoint operators A and B with spectra in I we
have (see [1, Theorem 1]):

1

(f(A;B) S)%[f(3A4+B)+f(A 233)] S ff((l—t)A+tB)dts %[f(A;B)+f(A);f(B)](S f(A);rf(B))

0
and (see [1, Corollary 1]):

1

05ff((l—t)A+tB)dt—f(A;B)Sf(A);f(B)—ff((l—t)A+tB)dt.
0

0

In the proof of the first result he introduce real-valued function ¢, 45 : [0,1] — R defined by @, 5(t) =
(f((1 = Hx + ty)x, x).

In [1, Section 3] Dragomir gives two definitions
- the closed operator segment [A,B] = { (1 -tA+1B, t € [0,1]}, for two distinct self-adjoint operators A,
B;
-the operator-valued functional

Af(A,B;t) = (1 =D f (A) +tf (B) - f (1 - DA+ tB) > 0,

for an operator convex function f : I — R defined on the interval I and operators A, B with spectra in I;
and proves an operator quasi-linearity property for the functional A¢(-, -; £):

Theorem C [4, Theorem 1]. Let f : I — R be an operator convex function on the interval I. Then for each two
distinct self-adjoint operators A, B with spectra contained in I and C € [A, B] we have

(0 <) Af(A, C; 1) + Af(C,B; ) < Af(A, B; ) 4)

for each t € [0,1], i.e. the functional Af(-,-;t) is operator superadditive as a function of interval.
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If[C,D] c [A, B], then
(0=) Af(C,D;t) < Af(A, B;t) )
foreach t € [0,1], i.e. the the functional As(-,-;t) is operator monotone as a function of interval.

Inspired by Dragomir’s results, we observe some mappings related to Levinson’s operator inequality.
To obtain these results, we give appropriate mappings related to the Davis-Choi-Jensen inequality. As
application, we obtained some refinements of inequalities (1) and (3).

2. Jensen’s Mapping and its Properties

We define Jensen’s mapping Jo : F ([, M]) X By (H) x Bj,(H) x [0,1] = By(H) as
Jo(f, A, B,1) = O(f (tA + (1 - HB)), (6)
where mlgy < A,B < Mlgy and @ : B(H) — B(K) is a normalized positive linear mapping.
The following properties of the mapping (6) are obvious. We omit the proof.
Lemma 2.1. Mapping 3o defined by (6) satisfied:
(i) Ja(f,A,B,-)is convex on [0,1], that is
Jo(f,A,B,ati + B 1) <aJa(f,A B t)+ B IJa(f, A B 1) )
for every a, B € [0, 1] such that a + p = 1 and for every t,,t, € [0, 1].
(ii) Jo(f,-, -, t) is operator convex on By(H) X By(H), that is
Jo(f, @A + pAz, aB1 + BBy, t) < a Jo(f, A1, B, t) + B Jo(f, A2, Ba, t)
for every a, B € [0, 1] such that a + = 1 and for every A1, Ay, B1, By € By,(H).

The following three theorems contain another properties of the mapping (6) for some special case of
operator B.

Theorem 2.2. Let Jo(f, A, B, t) be a mapping defined by (6) and B = A := O(A).

If © : B(H) — B(H) preserve the operator A, then Jo( f,A, A, ) is monotone increasing on [0, 1], that is
Jo(f, A A H) <J0(f,A A L) forevery 0<t; <t <1.

So,

inf S(P(f/ A/ A_/ t) = f(cD(A))/ sup SCD(f/ A/ A/ t) = (D(f(A)) (8)
te[0,1] te[0,1]

Proof. Using the Davis-Choi-Jensen inequality (1) and condition ®(A) = A, we obtain that
Sof, A, A1) = O(f (tA + (1= HA)) 2 f(@(tA + (1 - DA)) = f(A) = Ja(f, 4, 4,0)

holds for every t € [0,1]. Since Jo(f,A,A,-) is a convex on [0,1], setting a = % and f = % (for
0 <t; <ty <£1)in (7) we obtain
f

2 ; h s1 + N sz) < % Jo(f, A A, s1) + i—l Jo(f, A, A, 52).
Now, setting s; = 0 and s, = t, in the above inequality we obtain
0 < Jo(f, A, A1) = Jo(f, A, A,0) - Jo(f, A A b)) - Jo(f, A A 1)
- t1—-0 - th —tH
forevery 0 < t; < t, < 1. It follows that Jo(f, A, B, -) is monotone increasing on [0, 1].

Finally, applying this monotone increasing mapping, we obtain the minimum and maximum values in
(13). O

3@ (f/A/A/
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Theorem 2.3. Let Jo(f, A, B, t) be a mapping defined by (6), where @ : B(H) — B(K), B = (D(A)u, u)ley and
u € K with ||u|| = 1.
Then Jo(f, A, {DP(A)u, u)lgy, -) is monotone increasing on [0, 1] and

tl[l’(‘)lfl] SCD(f/ A, (CD(A)M, M>1w, t) = f((CD(A)M, Ll>)1r]-{, SFP] SCD(f/ A, (CD(A)M, Z’l>1(H/ t) = (I)(f(A))
€l tef0,1

The proof is the same as one of Theorem 2.2 and we omit it.

Remark 2.4. Under the assumptions of Theorem 2.2 the following refinement of the Davis-Choi-Jensen inequality
)

ADA) < O f (LA + (1 - 1)A)) < O(f (LA + (1 - )A)) < D(f(A)) 9)

holds for every 0 < t; <t < 1.
1

Since f is continuous on [m, M], the operator valued integral f f (tA +(1- t)B)dt exists for any self-adjoint
0

operators A and B with spectra in [m, M]. Since the mapping ® is linear and continuous, then

fo 1 O(f (tA + (1 - 1)B))dt = qn( fo 1 F(tA+ (1 -1B) dt)_

Finally, integrating the inequality (9) over t € [0, 1], we obtain another refinement of the Davis-Choi-Jensen inequality:

f(o) < cp( j; F(EA + (1 - A) dt) < o(f(A)). (10)

But, under the assumptions of Theorem 2.3 we obtain the following inequality:

1
F(@AY, w15 < cp( fo F(EA+ (1 — DAY, u)lg) dt) < o(f(A))-

Also, it is obvious that we obtain the inequality with the scalar product by using (10):

1
F{@A)u, u)) < (@ fo FUA+ (1= DAY, u)Ly)dt)u, u) < (D (F(A)) u,u),

where u € K, |lul]| = 1.

Example 2.5. We give examples with the power function and the trace mapping.
(1) Let the assumptions of Theorem 2.2 be hold. If A is a positive self-adjoint operator with spectra contained in
[m, M] for some 0 < m < M, then

Jo(t, A, A1) = O((tA+ (1 - HAY), pel-1,0]U[L2],

is an example of (6) and refinements of the Davis-Choi-Jensen inequality as in (9) and (10) hold. But, if p € [0,1],
then the reverse inequalities are valid in (9) and (10).

(2) Let A € M, be a hermite matrix with spectra contained in [m, M], f be an operator convex function on [m, M]
and ®(A) = L Tr(A)I,. Then P is the normalized positive linear mapping and preserve the operator ®(A). So,

In(f, A, DA), ) = %Tr ( flta+@ -1 Tr:lA) 1)) I

is another example of (6).
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Theorem 2.6. Let J¢(f, A, B, t) be a mapping defined by (6), where A is a positive self-adjoint operator, B = M14
where M is the upper bound of A, and f : [0, 00) — [0, ), f(0) < 0, is an operator convex function.
Then Jao(f, A, M1y, -) is monotone decreasing on [0,1] and

inf SCD(f/A/ Ml(}'{/ t) = (D(f(A))/ sup \(\SCD(f/A/ Ml(l’[’ t) = f(M)]ﬂ( (11)
te[0,1] te[0,1]

Proof. Lett € (0,1). Operator convexity of f and positive linearity of ® give
Jolf, A, My, 1) = O(f (tA + (1 — HM1y)) < t(F(A)) + (1 - HD( F(M)1)
< Mg + (1= Hf M)k = f(M)lx = Jo(f, A, My, 0).

Next, [6, Corollary 2.9] provides that f(X+Y) > f(X)+ f(Y) holdsif X < N1y < X+Yand Y < Nlyy < X+Y
for some scalar N, and f : [0, 00) — [0, o), f(0) < 0, is convex. Moreover, using [6, Corollary 2.5] we have
flaX) < af(X)for 0 < a < 1. Setting X := %A, Y := %MLH and N := %M, we have

e ) {3

It follows

o f@A . %le)) > o f(%A)) ; f(%M)lq(

2@( f(%A)) > o((£(A))) = Jo(f, A, M1y, D).

S(D(f/A/Ml‘T(/ 1/2)

I\

Now, since, Jo(f, A, M14, ) is convex function on [0, 1], then

SQ(f/A/Ml'}(/ 1) - SED(fIA/Ml?{/ 1/2)

>

0 = 1/2
. Jo(f, A, My, 1/2) = Ja(f, A, Mgy, t2) S Jo(f, A, My, tr) = Jo(f, A, M1y, t1)
= 12—t = -t

= S(D(f,A,Mlq{, ) < S(D(f,A,Mlq{, t1) forl/2>t, >t >0

that is, Jo(f, A, M1g,-) is a monotone decreasing on [0,1/2]. Similarly, we obtain that Jo(f, A, M1y, t) 2
Jo(f, A, M14y, 1), which gives that Jo(f, A, M14,, ) is a monotone decreasing on [1/2,1]. O

Remark 2.7. Applying Theorem 2.6 we have the following extension of the Davis-Choi-Jensen inequality (1)

F@A) < B(F(A)) < O(f (A + (1 - )M1y))
< O(f (hA+ (1 - t)Mly)) < f(M)ly, forevery0 <t <t <1

and

1
F@(4)) < o(f(4)) < q>( fo FUA+(1- t)Ml(H))dt < F(M)1y.

Now, if we define trivial Jensen’s mapping J : 7.:([m, M]) X B(H) x Bi(K) x[0,1] = B,(K) as

So(f, A, B,1) = tO(f(A)) + (1 - F(B), (12)

where mly < A,B < Mlg; and @ : B(H) — B(K) is a normalized positive linear mapping, then the
following results hold. We omit the proof.
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Lemma 2.8. Mapping 3o defined by (12) has the following properties:
(i) Jo(f, A, B,") is linear on [0, 1], that is
So(f, A, B,ati + Bt2) = aJo(f, A, B, 1) + Bo(f, A, B, t2)

for every a, p € [0,1] such that o + p = 1 and for every t1,t, € [0, 1].
(i) Jo(f,-, - t) is operator convex on B(H) x B (K).

We can observe special cases of operator B in the mapping (12) similar to Theorems 2.2, 2.3 and 2.6. We
give one of these results.

Theorem 2.9. Let Jo(f, A, B, t) be a mapping defined by (12) and B = A := ®(A).
Then Jo(f, A, A, -) is monotone increasing on [0,1] and

inf qu;(f,A,A, t) = f(D(A)), sup T_Scp(f, A AL = D(f(A)). (13)
te[0,1] te[0,1]

Proof. By using (1) we have
So(f, A, ®(A), D) = t(f(A)) + (1 - Hf(A) 2 tf(A) + (1 - HF(A) = F(A) = Fa(f, A, D(A),0).
Next, similar to the proof of Theorem 2.2, we obtain that Jo(f, A, P(A), -) is monotone increasingon[0,1]. O

Remark 2.10. 1) Under the assumptions of Theorem 2.9 we can give refinement of the Davis-Choi-Jensen inequality
(1), similarly as in Remark 2.4.

2) Under the assumptions of Theorems 2.2 and 2.9, we obtain another refinements of (1)

F(D(A) < O f (tA + (1 - A)) < td(f (A)) + (1 - Hf (A) < B(f(A))
for every t € [0,1] and

1
F(04) < o fo ftA+(1-pA)dt) < % O(f (A)) + % f(A) < o(f(A)).

3) Itis easy to prove that the above results hold for series of operators. For example, similarly to (6) we define Jensen’s

mapping Jo : F ([m, M]) X B(H) X By (H) x [0,1] X N — Bj,(H) as

k
So(f, A B, LK) =) &f (tA; + (1 - DB)),

i=1

where A = (A,...,Ax), B = (A1, ..., By) are two k—tuples of self-adjoint operators A;, Bi € By(H) with spectra
contained in [m,M] for some m < M and ® = (Dy,..., D) be a unital k—tuple of positive linear mappings
D; : B(?‘() i .'B(?’() (ie. Z?:l q)l(lz/.[) = 17—[)
As a special case, we set f(t) = t", v € [-1,0] U [1, 2], and @®;(X) = p;X, for some positive scalars p; such that
k

Y pi = 1. It is obvious that ® preserve the operator A = 21 piA;. So, inequalities in 2) become:
i=

k k k

A < ((tA + (1 - DAY <t A+ (1-DA < AL te0,1]

P pid; PiA;
i=1 i=1 i=1

and

N~

k 1 k
YopA S A <Y piAL
i=1

i=1

k 1
A’ < Zpi fo (tA; + (1 - HA) dt <
i=1
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3. Levinson’s Mapping and its Properties

We define Levinson’s mapping ¢ as a difference between the corresponding Jensen’s mappings (6),
ie.

Low(f, X, Y1) = Ju(f, Y, W(Y), £) — Jo(f, X, D(X), 1), (14)

where ®,W : B(H) — B(H) are normalized positive linear mappings, f € K[((a,b)), X,Y € B),(H) are
self-adjoint operators with spectra contained in [, M] and [n, N], such thata <m <M <c<n <N <band
t € [0,1]. Therefore,

Lo (f, X, Y1) = P(f (1Y + (1= HP(V)) = DF (1X + (1 = NO(X)). (15)

Now, we prove our first result that the properties of convexity and monotonicity of the mapping (14)
hold.

Theorem 3.1. Let Lo be a mapping defined by (14), let @ preserve the operator X := ®(X) and the product of
operators X and X, and let W, analogous, preserve Y := W(Y) and the product of Y and Y.

If
_ @ 2 2 _a 2 2
Cr=3 [(X?) - D(X?] < C; = 5 [w(y?)-w(rp],
holds (see (2)), then Lo w(f, X, Y, ) is convex and monotone increasing on [0, 1]. So,

t E1[r6f1 | Low(f, X, Y1) = f(P(Y)) - A(P(X)), tsg};] Low(f, X, Y1) = W(f(Y)) - D(f(X)). (16)

Proof. Let the constant a be as in Definition 1.1, such that F(s) = f(s) — %52 is an operator concave function
on [a, c] and operator convex on [c, b]. Then we can apply Lemma 2.1 and Theorem 2.2 to the mappings

SwEY,Y,H=W(F(tY +(1-HY)) and - J(E X, X, 1) = W(-F (X + (1 - HX))
and obtain that Jy(F, Y, Y, -) and —Jo(F, X, X, -) are convex and monotone increasing on [0, 1]. So the mapping
QCD,‘I—’(F/ X/ 'Yr ) = S\I’(Fr Y/ Y/ ) - SCD(F/ X/ X/ )

has the same properties. Next,

SWEYY,H = W(f(EY+(1-HY))- $9((tY + (1 - HY)?)
= W(f(Y+1-HY)) - $(PWO2) + 11 - (P(YY) + W(YY)) + (1 - 2P (V2))

Since W(Y) = Y and W preserve the product of operators Y and Y, it follows that

SWEYY,H = W(f(Y+1-HY)) - $(PWO2) +26(1 - T2 + (1 - 1?72 )
= Y(f(Y+(1-HY))-£2C-47?,
where C; = § [‘I’(Yz) - Yz]. Similarly, we have
~J0(E,X, X, 1) = =0(f (X + (1= X)) + £C + 5 X2, (18)

where C; = § [‘I’(Xz) - X'z].
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Using (17) and (18) we obtain

Low(f, X, Y,0) = W(f (Y + (1= HY)) - O(f (X + (1 - HX))

3W(F/Y/ Y/ t) + t2C2 + ng - SCD(F/ X/ X/ t) - tzcl - %XZ

Low(EX Y0+ (C-C)+ 5 (VP - X). (19)

We define mappings: €1(C;,Ca,t) = £2(C2 —C1) and (X, Y, ) = %(Yz —}_(2). Since C; < C, then the
mapping £1(Cy, Cy, -) is convex and monotone increasing on [0,1]. Also, the constant mapping %(X, Y, )
has the same properties.

Taking into account properties of mappings Lo w, £1, £, it follows from (19) that Lo w(f, X, Y, -) is convex
and monotone increasing on [0,1]. O

Now, we define trivial Levinson’s mapping ¢,w as a difference between the corresponding Jensen’s
mappings (12), i.e.

Low(f, X, V1) = Ju(f, Y, U(Y), 1) - Jo(f, X, D(X), 1), (20)

where ®,W : B(H) — B(K) are normalized positive linear mappings, f € Ki((a,b)), X,Y € B,(H) are self-
adjoint operators with spectra contained in [m, M] and [n, N], such thata <m < M <c<n < N < b and
t € [0,1]. Therefore,

Low(f, X, Y t) = tW(f(V)) + (1 = F(P(Y)) - [t(F(X)) + (1 - ) F(@(X))].
Next, we show that the mapping (20) has the properties convexity and monotonicity.

Theorem 3.2. Let Lqy be a mapping defined by (20).
If C1 < Cy holds (see (2)), then Lo w(f, X, Y, -) is convex and monotone increasing on [0,1]. So,

tel[r(}fl : Low(f, X, Y1) = f(P(V)) = (X)), ts‘;}?] Low(f, X, Y1) = W(f(Y)) = D(f (X))

Proof. The proof is similar to the one for Theorem 3.1. We give a short version. Using Lemma 2.8 and
Theorem 2.9 we obtain that the mapping

Q(D,\IJ(F/ X/ Y/ ) = 3‘1’(P/ Y/ Y/ ) - SED(F/ X/ X/ )
is convex and monotone increasing on [0, 1]. We have

Lou(f,X, %0 = Lon(EXY,) +1 (C2 = C) + 3 (V- %),

We define mapping: £3(Cy, Cy,t) =t (C2 — C1). Since C; < C; then the mapping £3(Cy, Cp, -) is convex and
monotone increasing on [0, 1]. Taking into account properties of mappings Lo,w, {3, £, (define in the proof
of Theorem 3.1), it follows that ¢ w(f, X, Y, -) is convex and monotone increasing on [0,1]. [

Remark 3.3.
1) Using the Davis-Choi-Jensen inequality (1), we have that

Low(EX, Y1) 2 Low(E X, Y 1).

Next, using the proofs of Theorem 3.1 and 3.2 we have that

Low(f, X, Y1) — Low(f, X, Y,t) > (1 —t)(Ca — C1) >0 (21)
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isz > Cy.
We remark that Levinson’s inequality (3) can we read as follows

AWM) = A(@0) < ¥(F(1) - ©(f()). (22)
If all assumptions of Theorem 3.1 and 3.2 valid, then we have the following refinement of (22) by using (21):

AW) - f(@x))

< W(F (Y + (1= W) - O(f (KX + (1 - HD(X)))
< () + (1 - HAW)) — 1 f(X)) - (1 = ) F@(X))
< W(f)-o(f(X))

for every t € [0,1] and

S
f<W<Y>> (o)

< W FEY+ A=) d) - @ f) f (X + (1~ HOX) dt)
< 3[w(fm) + F) - o(£(X0)) - F@())]
< Y(f) -9(fx)

2) Similar to Remark 2.10, we have versions of (14) and (20) for series of operators.

Let X = (X1,..., Xy,) bean ky—tupleand Y = (Y1,..., Yx,) be a ky—tuple of self-adjoint operators X;, Y; € By, (H)
with spectra contained in [m, M] and [n, N], respectively, such thata <m <M <c <n < N < b forsomea,b,c € R.
Let ® = (O, ..., Dy,) be a unital ky—tuple which preserve the operator X = Zf;l ®;(X;) and the product of operators

X;and X. Let W = g‘I’l, .., Wy,) be a unital ky—tuple which preserve the operator Y = Zizl W;(Y;) and the product
of operators Yiand Y.

We define
Low(f,X Y, t)= L2 W(f Y+ (1-H7))- T8 o(f (X + (1 - HX)),
Sow(f, XY, 0= tX2 W(F(¥))+1-HfD) - T8 O(f(X) - (1- X

where X = Y1, @(X;)and Y = ¥.2, Wy(Y)).

If f € Ke((a, b)) and

o[£l @) - %] <a [z, w,() - 7,

then Lo w(f, X, Y, ) and Lo f,X,Y, ) are convex and monotone increasing on [0,1]. So,

Jnf Low(f,X Y0 = inf Sow(f,XY,0=f(LE WiX)) - £ (L, %),

sup Low(f, X, Y,t) = sup Low(f, X, Y, t) = L2 W (f(Y) - T, @i (F(X)).
te[0,1] te[0,1]
The interested reader can construct other Levinson’s mappings using the remaining Jensen’s mappings
given in Section 2.
Finally, inspired by Dragomir’s research given in Theorem B, we define the operator valued-functional
related to Levinson’s inequality as a difference between respective mappings ¥¢w and Lo w, i.e.

Aq,,\p(f,A, B; C, D, t)
= (1-H¥(f(0) + tW(£(D)) - ¥(f (1 - HC + tD))
(@ - )0(f(A4)) + tD(f(B)) - ©(f (1 - A + tB))]
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where ©, WV : B(H) — B(H) are normalized positive linear mappings, A,B,C,D € B)(H) are self-adjoint
operators with spectra of A, C contained in [, M] and spectra of B, D contained in [, N], such thata < m <

M<c<n<N<b, feK(ab)andte€[0,1]
For the sake of convenience let us define operator functions:

da(A, B) = D((A - B)?) (23)
and

Ao(f, A, B,1) = (1 - HD(f(A)) + tO(£(B)) — D(f (1 — HA + tB)).
So, we can read

Aow(f,A,B;C,D,t) = Au(f,C,D,t) — Ao(f, A, B, t). (24)

Now, we show an operator quasi-linearity property for the mapping (24), as operator superadditive and
operator monotone as a function of intervals.

Theorem 3.4. Let Aoy be a mapping defined by (24).
If 2 6w(C, D) = a 60 (A, B), then for every Ay = (1 —s)A+sB € [A,B]and C; = (1 —s)C +sD € [C, D], we have
0<Aow(f, A A1;CCyt)+ Apw(f, A1, B;Cy, D, t) < Aow(f, A, B;C,D,t). (25)
Moreover, if By = (1 —v)A+rBand D; = (1 — r)C + rD so that [A1,B1] C [A, Bl and [Cy, D1] C [C, D], then
0< A(D,\I’(f/Alr Bl/ Cl/ Dl/ t) < A(D,‘I’(f/ A/ B/ C/ D/ t) (26)
Proof. (i) Let the constant a be as in Definition 1.1, such that F(s) = f(s)— %sz is an operator concave function
on [, c] and operator convex on [c, b]. Then F ((1 — #)C + tD) < (1 — t)F(C) + tF(D). Since W is positive linear
mapping it follows

0< Aw(ECD,t)

Aw(f,C,D,t) - %‘I’((l ~)C? +tD? — (1 - HC + tD)?)

Ay(f,C,D,t) — %t(l - Hw((C-DY).
Also,
0< —Ao(E A, B, 1) = —Ao(f, A, B,f) + %t(l - Ho((A - B).
Using that
Ao w(F,A,B;C,D,t) = Ay(F,C,D,t) — Ao(F, A,B,t) >0
and a 0w(C, D) > a 0o(A, B), we obtain positive sign of Aepw(f, A, B;C, D, t) for every t € [0, 1], since
Aoy (f,A,B;C,D,t) = Apw(F, A, B;C,D,t) + 1 - t)% (0w(C, D) = 6a(A,B)) = 0. (27)
(if) Applying positive linear mapping W to (4), we obtain

A\I/(F/ C/ Cl/t) + A\I’(F/ Cl/ D/ t) < A\I/(F/ C/ D/ t) (28)
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for every C; € [C,D]. Since C; = (1 —s)C +sD for some s € (0, 1), then
Sw(C,C) = W((C-(1-5)C-sD))=5y(CD),
dw(C;,D) = W(((1-5)C+sD - D)?) = (1-576w(C D).
So (28) give

Ay(f,C,Cy, t) — 5t(1 - 1)s26w(C, D) + Aw(f, C1, D, t) — st -1 - 5)?6w(C, D)
< Ay(f,C D, t) - 5t(1 = H)ow(C, D).

It follows

Aw(f,C,C1,t) + Aw(f,C1, D, t) + s(1 = s)t(1 — t) - adw(C, D) < Aw(f,C,D, t). (29)
Similarly, we obtain

—Ao(f, A, A1) = Ao(f, A1, B,t) — s(1 — (1 — ) - ado(A, B) < —Ao(f, A, B, 1). (30)
Summing (29) and (30), applying (27) and using that

s(1 =s)t(1 —¢t) a (6w(C,D) — da(A, B)) = 0,
we obtain

0< Agw(f,A A1;CCy,t)+ Aow(f, A1, B;C1, D, t)
Aow(f, A, A1;C,Cy,t) + Aow(f, A1,B;C1, D, t) + 5(1 = s)t(1 — t) a (0w(C, D) — 60(A, B))
Aow(f,A,B;CD,t),

IA

IA

which give the desired inequality (25).
(iii) LetA; =(1-s)C+sD,B; = (1-r)A+rB,C; = (1-s)C+sDand D, = (1-r)C+rDsothat[A, B1] C [A, B]
and [Cy, D] C [C, D]. Applying positive linear mapping W to (5), we obtain

A\I/(f/ Cl/ Dl/ t) - %t(l - t)é\}l(Cl,D]) < A‘I’(f/ C/ D/ t) - %t(l - t)é‘y(cl D)
—Ao(f, A1, By, t) + §H(1 — 10w (A1, B1) < —Ao(f, A, B, 1) + §H1 — t)oa(A, B)

Summing the above inequalities and applying (27), we obtain

0< Aow(f A1,B1;Ci, Dy, t) = 5t(1 = t) (0w(Cy, D1) — 60(A1, B1))
< A(D,‘I/(f/A/ B/ C/ D/ t) - % (1 - t) (6‘{’(C/ D) - 6®(A/ B)) ’

Since
6w(C1, D) — bo(A1, B1) = (r — 5)* (6w(C, D) — 6o (A, B))
it follows that for every r,s € [0, 1]

0

IA

Aq),\y(flAll Bl/ Cl/ Dlr t)
< Aow(f,AB;CD, 1) —(1-(r—5)?) (1 - % (5w(C,D) - dw(A, B))
Aow(f, A, B;C D,t)

A

IA

hods. Then the desired inequality (26) holds. O
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Remark 3.5. From the proof of Theorem 3.4 it obviously follows that the inequality (25) holds if the condition: A; =
(1-s)A+sB € [A,Bland C; = (1-s)C+sD € [C, D] is replaced by the weaker condition: Ay = (1—s1)A+s1B € [A, B]
and Cy = (1 —$5)C + s,D € [C, D] such that s,(1 — s3) = s1(1 — s1).

Similarly, the inequality (26) holds if the condition: B; = (1 — r)A +¥B and D1 = (1 —r)C + rD is replaced by the
weaker condition: By = (1 —-r)A+rB € [A,B]land D1 = (1 —r,)C+r,D € [C, D] such that ro(1 —r5) > r1(1 —r7).

Applying Theorem 3.4 we are able to state the following bounds.

Corollary 3.6. Let ®,V : B(H) — B(H) are normalized positive linear mappings, A, C € By,(H) are self-adjoint op-
erators with spectra of A and C contained in [m, M] and [n, N, respectively, such thata <m < M <c<n <N <},
A =®(A) and C = ¥Y(C).

If a6w(C,C) = adq(A,A), B=(1—-5)A+sAand D = (1 —s)C +sC, then

it {W(F (@ - 0C +D)) + ¥(F (1 - DD + 1)) - ¥(f (D)

De[CC]

—(f (1~ A +1B)) = D (1 — DB + tA)) + O f (B))} 31)

= W(f((1-HC+10)) - D(f (1 - DA +tA))

holds for every f € Ki((a, b)) and t € [0,1].
Moreover, if By = (1—s)A+sA, B, =(1-1r)A+7rB, Dy = (1-s)C+sCand Dy = (1 -r)C+7rD forr,s € [0,1],
then

sup {(1 — HW(f (D) + 1¥(f (D) - ¥(f (1 - HD1 + D))

By,By € [4,4]
Dy,Dy €[C,C]

~(1 = 0 (B0)) - 10(f (B2)) + O (1 - 01 + 15))| )

= (1-HY(f () +tw(f(C)) - w(f (@ -HC+10))
= (1=O(f (A) - t(f (A)) + D(f (1 - DA + tA)).

If ® and WV preserve the operator f(A) and f(C), respectively, then supremum in (32) is equal to Lo w(f, A, C t) —
Low(f, A,C, t), where Lo and Loy are Levinson'’s mapping defined by (14) and (20).

Proof. Replacing Bby A, A; by Band D by C, C; by D in (25) and using (24) we obtain
Ay(f,C,D,t) - Ao(f, A, B,t) + Aw(f, D, C,t) — Aa(f, B, A, 1) < Aw(f,C,C,t) — Aa(f, A, A, b). (33)
We have
Aw(f,C,D,t)+ Aw(f,D,C,t) — Aw(f,C,C,t)
= (1-HY(f(O) + t¥(£(D)) - W(f (1 - HC + D)) + (1 - HW(£(D)) + t¥(£(C))
- W(f((1-HD+tC)) - (1 - HW(£(O) - t¥(£(O)) + P(f (1 - HC + tC))
= —W(f((1-HC+tD)) - W(f (1 - HD +tC)) + W(£(D)) + ¥(f (1 - HC + tC))
and, similarly,
~Ao(f, A, B,t) = Aa(f, B, A, D) + Ao(f, A, A, 1)
= O(f((1- A +1B)) + O(f (1 - B + tA)) — O f(B)) — (£ (1 - DA + tA)).
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So the inequality (33) becomes

W(f (1 -HC+ D))+ W(f (1 - HD + tC)) - W(£(D))
— O(f((1- A +1B)) - O(f (1 - )B +tA)) + O(£(B)) (34)
> W(f((1-0C+10)) - O(f (1 - HA +tA)).
Since the equality case in (34) is realized for either s=0 (B=Aand D =C)ors=1(B=Aand D = C), we
get the desired bound (31).

The bound (32) is obvious by the monotonicity property of the functional Agw(f, -, -;-, -, f) as a function
of intervals [A, A] and [C, C], respectively. [

We can also consider the following functional
1
Oow(f, A B;CD) = W(f(C))+¥(F(D))-W([ f((1-£C+tD)dt)

— O(f(4) - O(f(B)) + ®(f £ (1~ DA+ B)dt)

where @,V : B(H) — B(H) are normalized positive linear mappings, A,B,C,D € B)(H) are self-adjoint
operators with spectra of A, C contained in [, M] and spectra of B, D contained in [, N], such thata < m <

M<c<n<N<band f € K{((D)).
We observe that

G)(D,\I/(flAr B/ C/ D)
1 1
= Jy Bow(f,AB;C,D, bt = [ Aow(f, A B;C,D,1-tdt > 0
holds. Utilising this representation, we obtain the following result.

Corollary 3.7. Let @,V : B(H) — B(H) are normalized positive linear mappings, A, C € By, (H) are self-adjoint op-
erators with spectra of A and C contained in [m, M] and [n, N], respectively, such thata <m <M <c<n<N <},
A = ®(A) and C := ¥(C).

Ifady(C,C) > adep(A,A), B=(1—-s)A+sAand D = (1 -s)C +sC, then

inf, {\y( I F(@=nC+Dydt)+W( [ £(@~HD +tC)dt) - W(f (D))
De[CCC]

o[ £(1 - A +tB)dt) = ([ F((1 - HB + tA)dt) + D(f (B))}

= W([ f(@-DC+IC)dt) - ([ (1~ DA+ tA)dr)

holds for every f € 7%16((11, b)).
Moreover, if B = (1—s)A+5sA, By =(1-1r)A+7B, Dy = (1-s)C+sCand Dy = (1 -r)C+7rD forr,s € [0,1],
then

sup {\y( £ (D) +W(f (D) - W(f £ (1 - HD; + D) dt)

By, B, €[A,A]
Dy,D; €[C,C)

—0(f (B) - (f (B2) + ([ £ (1 - OBy + tB2) dt)}

= W(f(©O)+Y(f(©)-w(f f(1-0C+C)dt)
— O(f () - (f (D) + ([ £((1-DA+tA)dr).
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Example 3.8. Putting the power function f(t) =t" for t € (0,c], f(t) =d -t for t € [c, ), wherec > 0and k = ¢'*
in the above, we can get perhaps interesting results.
(1) Ifrel0,1],5 € [-1,0] U [1,2], we have mappings

Aow(r,s,A,B;C,D,t) = d{(1-H¥(C)+tw(D*) - W((1-£)C +tDY)]
= (1-HO(A") - to(B") + (1 - A + tBY),
Oou(r,s, A B;CD) = d {‘P(CS) +w(D*) —w( f (1 = HC + tDY dt)}

o(A") - (B") + ([, (1 - HA +BY dt).

If adw(C,C) > ado(A, A), then it follows from Theorem (3.4) that these mappings are operator superadditive and
operator monotone as functions of intervals. Also, we can state the proper bounds for the power function by applying
Corollaries 3.6-3.7.

(2) It is easy to prove that the above results hold for series of operators. For example, let A = diag(Ai, ..., Ax),

B = diag(By, ..., By,), C = diag(Cy, ..., C,), D = diag(Dy, ..., Dy,) such that A;, B, C;, Dy € B;,(H) with spectra

of Ai,C; and B;,D; contained in [m,M] and [n,N], respectively, and a < m < M < c <n < N < b. Then

ABeBy(H® - ®H)and C,D € By(H®---®H), with spectra of A, C and B, D contained in [m, M] and
— —

kl kZ
[, N], respectively. Also, let be ® (diag(Xy, ..., Xk)) = Zf;l piXi and W (diag(Ys, ..., Yk,)) = Zfil qiYi, where
p=1,...,px)and q = (q1,...,qx,) are ky and ko—tuples of positive scalars such that Y.\, p; = 1 and Zl;:l g;i =1
Then we obtain that @ : BH®---&H) - BH) and W : B(H®--- @& H) — B(H) are normalized positive
——— ———

kl kZ
linear mappings.
Then, putting these mappings and f in 1) we obtain that the mapping

ks ks ks
Apq(r,s,A,B;C,D,t) = d {(1 -H Y qC+tY gD = Y qi(1-1)C;i + tDi)s}
iz iz1 iz
k1 k1 k1
- (I-HYpAl+tY piBl = ¥ pi (1 - 1A; +tB)
iz iz iz

is operator superadditive and operator monotone as functions of intervals if r € [0,1], s € [-1,0] U [1,2], d = ¢"*
and

k: k k: k1
o [ZZ q,Clz - CZ] > [Zl plAlz — AZ], where C := ZZ qui and A = Z piAi~
i=1 i=1 i=1 i=1

Moreover, we define A = diag(4, ..., A) and
———
k1
[A,A]={B=(By,...,By)IBi=(1-HA; +tA, t€[0,1],i=1,..., Kk}

and by analogy [C, C]. We have the following bounds

ko ko — ky
inf {42 g:((1=0Ci+ D) +4 X i (1 - OD; +1C) ~d ¥ gD}

i=1 i=1 i=1

Be[AA]
De[CC]

ky k1 _ ky
=Y pi((1=DA; +1tB) = ¥ pi (1 - )B; + tA) + Y. PiB;}
i-1 i-1 izl

= dY g (1= 0C+C) = 3 py((1 - DA, + tAY
i=1 i=1
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and similarly, we can give results for supremum. Or, we can observe the mapping

1
@P,q(r,s,A,B;C,D):f Apq(r,s,A,B;C,D,t)dt
0

with similar properties.
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