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Abstract. For a given symmetric orthogonal matrix R, i.e., RT = R, R2 = I, a matrix A ∈ Cn×n is termed
Hermitian R-conjugate matrix if A = AH, RAR = A. In this paper, an iterative method is constructed for
finding the Hermitian R-conjugate solutions of general coupled Sylvester matrix equations. Convergence
analysis shows that when the considered matrix equations have a unique solution group then the proposed
method is always convergent for any initial Hermitian R-conjugate matrix group under a loose restriction
on the convergent factor. Furthermore, the optimal convergent factor is derived. Finally, two numerical
examples are given to demonstrate the theoretical results and effectiveness.

1. Introduction

In this paper, the following notations and definitions are used. LetRm×n, Cm×n be the set of all m× n real
matrices and complex matrices, respectively. For a given matrix A, the notations tr(A), A, AT, AH, λmax(A),
λmin(A), cond(A), ρ(A) and ‖A‖ =

√
tr(AHA) denote its trace, conjugate, transpose, conjugate transpose, max-

imal eigenvalue, minimal eigenvalue, condition number, spectral radius and Frobenius norm, respectively.
For two matrices A ∈ Cm×n, B ∈ Cm×n, A⊗B is their Kronecker product. The symbol vec(·) is a vector formed
by the columns of given matrix A = (a1, a2, . . . , an), i.e., vec(A) = (aT

1 , a
T
2 , . . . , a

T
n )T.

Definition 1.1. For a given symmetric orthogonal matrix R ∈ Rn×n, i.e., RT = R, R2 = In, a matrix A ∈ Cn×n is
termed Hermitian R-conjugate matrix if A = AH, RAR = A. The set of all n × n Hermitian R-conjugate matrices is
denoted byHRCn×n.

Centro-Hermitian matrix and related matrices, such as Hermitian Toeplitz matrix, generalized centro-
Hermitian matrix, and so on, have been widely investigated, which naturally appear in digital signal
processing and other areas [1–4]. As an extension of centro-Hermitian matrix and its related matrices,
(R,S)-conjugate matrix was defined by Trench [5] as: a matrix A ∈ Cm×n is (R,S)-conjugate if RAS = A,
where R, S are two given symmetric orthogonal matrices. In [6], Chang, Wang and Song gave the expression
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of the (R,S)-conjugate solution of AX = C, XB = D by matrix decompositions. In particular, if a (R,S)-
conjugate matrix is Hermitian, we also require that R = S. In this sense, the Hermitian R-conjugate matrix
is in fact a Hermitian generalized centro-Hermitian matrix. In [7], Dong, Wang and Zhang discussed the
Hermitian R-conjugate solution of system AX = C, XB = D by matrix decompositions. Chang, Duan
and Wang [8] derived the expression of the solution to the Hermitian R-conjugate generalized procrustes
problem by matrix decompositions.

Consider the following general coupled Sylvester matrix equations

p∑
j=1

Ai jX jBi j = Ci, i = 1, 2, . . . , p, (1)

where Ai j ∈ Cm×n, Bi j ∈ Cn×s and Ci ∈ Cm×s are given matrices, X j ∈ Cn×n are the unknown matrices to
be determined. The coupled matrix equations have wide applications in many areas. For example, in
stability analysis of linear jump systems with Markovian transitions [9, 10], the coupled Lyapunov matrix
equations are required to be solved. For stability analysis of control system and robust control [11], we
need to solve the coupled Sylvester matrix equations AX + YB = C and DX + YE = F where A,B,C,D,E
and F are known. In addition, one naturally encounters the coupled Sylvester matrix equations when
dealing with the problems of reordering eigenvalues of regular matrix pairs [12], or computing an additive
decomposition of a generalized transform matrix equations [13]. Owing to their important applications,
many iterative methods have been proposed to solve the coupled matrix equations.

By extending the idea of the CGNE method, some finite iterative algorithms have been proposed to
solve the different kinds of coupled matrix equations over reflexive, generalized bisymmetric, generalized
centro-symmetric, (P,Q)-reflexive and common matrices, for more details, see [14–24] and the references
therein. The gradient-based iterative (GI) algorithm is another kind of effective algorithm for solving the
coupled matrix equations, which was first proposed by Ding and Chen [25–27] with using the hierarchical
identification principle. In [28, 29], the optimal parameter of the GI method was derived for computing
the solutions and the weighted least squares solutions of the general coupled matrix equations. In order to
improve the convergent rate of the GI method, two variants of the GI method were proposed to solve the
Sylvester equations in [30, 31]. Meanwhile, the GI method was extended to solve the common solutions,
the generalized centro-symmetric solutions, generalized bisymmetric solutions, reflexive and anti-reflexive
solutions of some coupled matrix equations, see [32–36] for further details on this topic. However, the
optimal convergent factors of these extended GI methods were not given in computing such constraint
solutions.

In addition, some other iterative methods were proposed to solve the coupled matrix equations. In
[37, 38], some Krylov subspace methods were presented to solve the general coupled matrix equations.
Li and Huang [39] presented a matrix LSQR method for computing the constrained solutions of the
generalized coupled Sylvester matrix equations. By developing the Richardson iterative method, Salkuyeh
and Beik [40] obtained the solutions of the general coupled matrix equations. In [41], Beik used a one-
dimensional projection technique to improve the convergent rate of the GI method for solving the general
coupled Sylvester matrix equations over reflexive matrices. More recently, Hajarian [42–45] solved some
coupled Sylvester matrix equations by using the matrix forms of the CGS method, Bi-CGSTAB method,
GPBiCG algorithms, BiCOR method and CORS method, respectively. However, by the previous iterative
methods, we cannot obtain the Hermitian R-conjugate solutions of the matrix equations (1). Therefore,
we are interested in constructing a new iterative method to solve the matrix equations (1) over Hermitian
R-conjugate matrices.

The remainder of this paper is organized as follows. In Section 2, an iterative method is proposed to
solve the matrix equations (1) over Hermitian R-conjugate matrices. The convergence of the proposed
method is proved and the optimal convergent factor is derived. In Section 3, two numerical examples are
offered to illustrate the efficiency of the proposed method. Finally, we end the paper with a brief conclusion
in Section 4.
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2. Main Results

In this section, we first derive the solvability conditions of the matrix equations (1) over Hermitian
R-conjugate matrices.

Lemma 2.1. A necessary and sufficient condition of the consistency of the matrix equations (1) over Hermitian
R-conjugate matrices is that the following matrix equations

p∑
j=1

Ai jX jBi j = Ci,

p∑
j=1

BH
ij X jAH

ij = CH
i ,

p∑
j=1

Ai jRX jRBi j = Ci,

p∑
j=1

B
H
ij RX jRA

H
ij = C

H
i , i = 1, 2, . . . , p,

(2)

are consistent.

Proof. If the matrix equations (1) have solutions X j ∈HRC
n×n, j = 1, 2, . . . , p, i.e., X j = XH

j ,RX jR = X j, it
is easy to get that X j are also the solutions of the matrix equations (2). Conversely, if the matrix equations

(2) have solutions X j ∈ Cn×n, let X∗j =
X j+XH

j +R(X j+XH
j )R

4 , then X∗j ∈HRC
n×n, and

p∑
j=1

Ai jX∗jBi j = 1
4

p∑
j=1

Ai jX jBi j + 1
4

p∑
j=1

Ai jXH
j Bi j + 1

4

p∑
j=1

Ai jRX jRBi j + 1
4

p∑
j=1

Ai jRX
H
j RBi j

= 1
4 (Ci + Ci + Ci + Ci) = Ci.

Therefore, X∗j are the Hermitian R-conjugate solutions of the matrix equations (1). So the solvability of
the matrix equations (1) is equivalent to that of the matrix equations (2). �

For further details on the consistency of the matrix equations (2), we refer to see Dmytryshyn et al. [46].
By using Kronecker product, the matrix equations (2) can be rewritten as Mx = b with

M =



BH
11 ⊗ A11 BH

12 ⊗ A12 · · · BH
1p ⊗ A1p

A11 ⊗ BH
11 A12 ⊗ BH

12 · · · A1p ⊗ BH
1p

B
H
11R ⊗ A11R B

H
12R ⊗ A12R · · · B

H
1pR ⊗ A1pR

A11R ⊗ B
H
11R A12R ⊗ B

H
12R · · · A1pR ⊗ B

H
1pR

...
...

...
...

BH
p1 ⊗ Ap1 BH

p2 ⊗ Ap2 · · · BH
pp ⊗ App

Ap1 ⊗ BH
p1 Ap2 ⊗ BH

p2 · · · App ⊗ BH
pp

B
H
p1R ⊗ Ap1R B

H
p2R ⊗ Ap2R · · · B

H
ppR ⊗ AppR

Ap1R ⊗ B
H
p1R Ap2R ⊗ B

H
p2R · · · AppR ⊗ B

H
ppR



, x =


vec(X1)
vec(X2)

...
vec(Xp)

 , b =



vec(C1)
vec(CH

1 )
vec(C1)

vec(C
H
1 )

...
vec(Cp)
vec(CH

p )
vec(Cp)

vec(C
H
p )



. (3)

Then, we have the following theorem.
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Theorem 2.1. The matrix equations (1) have a unique Hermitian R-conjugate solution group (X∗1,X
∗

2, . . . ,X
∗
p) if

and only if rank(M, b) = rank(M) and M has a full column rank; in this case, the Hermitian R-conjugate solution
group (X∗1,X

∗

2, . . . ,X
∗
p) is given by

X∗j =
X j + XH

j + R(X j + XH
j )R

4
,

with 
vec(X1)
vec(X2)

...
vec(Xp)

 = (MHM)−1MHb,

and the corresonding homogeneous matrix equations (1) with Ci = 0, i = 1, 2, . . . , p, have the unique Hermitian
R-conjugate solution group (X∗1,X

∗

2, . . . ,X
∗
p) = 0.

From Theorem 2.1, the Hermitian R-conjugate solutions of the matrix equations (1) can be obtained by
solving the linear system Mz = b. In this case, we will encounter the problem of dimensionality which
leads to computational difficulties. Therefore, we tend to solve the original system (1) over Hermitian
R-conjugate matrices instead of the linear system Mz = b.

Algorithm 2.1.
Step 1: Input matrices Ai j ∈ Cm×n, Bi j ∈ Cn×s and Ci ∈ Cm×s. Choose arbitrary initial matrices

X1(1),X2(1), . . . ,Xp(1) ∈HRCn×n, symmetric orthogonal matrix R ∈ Rn×n, and a parameter µ as

0 < µ <
2

p∑
i=1

p∑
j=1
‖Ai j‖

2‖Bi j‖
2

; (4)

Step 2: Compute

Ri(1) = Ci −
p∑

j=1
Ai jX j(1)Bi j, i = 1, 2, . . . , p;

Step 3: For k = 1, 2, . . ., compute

X j(k+1) = X j(k)+ µ
4 [

p∑
i=1

AH
ij Ri(k)BH

ij +
p∑

i=1
Bi jRH

i (k)Ai j +
p∑

i=1
RAH

ij Ri(k)BH
ij R+

p∑
i=1

RBi jRH
i (k)Ai jR], j = 1, 2, . . . , p,

Ri(k + 1) = Ci −
p∑

j=1
Ai jX j(k + 1)Bi j, i = 1, 2, . . . , p.

Obviously, it can be seen that X1(k),X2(k), . . . ,Xp(k) ∈HRCn×n for k = 1, 2, . . .. Next, we review a defini-
tion and then prove the convergence of Algorithm 2.1.

Definition 2.1. [47] In the space Cm×n over the field R, an inner product can be defined as

〈A,B〉 = Re
[
tr(AHB)

]
for A,B ∈ Cm×n. This inner product space is defined as (Cm×n,R, 〈·, ·〉).

From Definition 2.1, we can find that the inner product space (Cm×n,R, 〈·, ·〉) is 2mn-dimensional. It is
known that for any matrices A and B with suitable dimensions, Re

[
tr(AB)

]
= Re

[
tr(AB)

]
= Re

[
tr(BA)

]
=

Re
[
tr(ATBT)

]
= Re

[
tr(AHBH)

]
. In addition, it is easy to get that ‖A‖2 = tr(AHA) = Re

[
tr(AHA)

]
.
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Theorem 2.2. If the matrix equations (1) have a unique Hermitian R-conjugate solution group (X∗1,X
∗

2, . . . ,X
∗
p),

then the iterative solution group (X1(k),X2(k), . . . ,Xp(k)) generated by Algorithm 2.1 converges to (X∗1,X
∗

2, . . . ,X
∗
p)

for any initial Hermitian R-conjugate matrix group (X1(1),X2(1), . . . ,Xp(1)), that is,

lim
k→∞

X j(k) = X∗j, j = 1, 2, . . . , p. (5)

Proof. First, we define the error matrices as

X̃ j(k) := X j(k) − X∗j, j = 1, 2, . . . , p. (6)

It is obvious that X̃ j(k) ∈HRCn×n, j = 1, 2, . . . , p. Then we have

Ri(k) = Ci −

p∑
j=1

Ai jX j(k)Bi j = −

p∑
j=1

Ai jX̃ j(k)Bi j, i = 1, 2, . . . , p.

For simplicity, we use the following notations:

∆i(k) = −Ri(k) =

p∑
j=1

Ai jX̃ j(k)Bi j, i = 1, 2, . . . , p. (7)

Therefore, by Algorithm 2.1, for j = 1, 2, . . . , p, we can obtain

X̃ j(k + 1) = X̃ j(k) − µ
4 [

p∑
i=1

AH
ij ∆i(k)BH

ij +
p∑

i=1
Bi j∆

H
i (k)Ai j

+
p∑

i=1
RAH

ij ∆i(k)BH
ij R +

p∑
i=1

RBi j∆
H
i (k)Ai jR].

(8)

Since ‖RAR‖ = ‖A‖ = ‖A‖, ‖A + B‖ ≤ ‖A‖ + ‖B‖ for any appropriately dimensioned matrices A, B, from (8)
we can get

‖X̃ j(k + 1)‖2 = Re
[
tr
(
X̃H

j (k + 1)X̃ j(k + 1)
)]

= ‖X̃ j(k)‖2 − µ
2 Re

[
tr
(
X̃H

j (k)(
p∑

i=1
AH

ij ∆i(k)BH
ij +

p∑
i=1

Bi j∆
H
i (k)Ai j

+
p∑

i=1
RAH

ij ∆i(k)BH
ij R +

p∑
i=1

RBi j∆
H
i (k)Ai jR)

)]
+
µ2

16 ‖
p∑

i=1
AH

ij ∆i(k)BH
ij +

p∑
i=1

Bi j∆
H
i (k)Ai j +

p∑
i=1

RAH
ij ∆i(k)BH

ij R +
p∑

i=1
RBi j∆

H
i (k)Ai jR‖2

≤ ‖X̃ j(k)‖2 − µ
2 Re

[
tr
( p∑

i=1
Bi j∆i(k)HAi jX̃ j(k) +

p∑
i=1

AH
ij ∆i(k)BH

ij X̃ j(k)

+
p∑

i=1
RBi j∆

H
i (k)Ai jRX̃ j(k) +

p∑
i=1

RA
H
ij ∆i(k)B

H
ij RX̃ j(k)

)]
+
µ2

16

(
‖

p∑
i=1

AH
ij ∆i(k)BH

ij ‖ + ‖
p∑

i=1
Bi j∆

H
i (k)Ai j‖ + ‖

p∑
i=1

RAH
ij ∆i(k)BH

ij R‖ + ‖
p∑

i=1
RBi j∆

H
i (k)Ai jR‖

)2

≤ ‖X̃ j(k)‖2 − µ
2 Re

[
tr
( p∑

i=1
Ai jX̃ j(k)Bi j∆

H
i (k) +

p∑
i=1

BH
ij X̃ j(k)AH

ij ∆i(k)

+
p∑

i=1
Ai jRX̃ j(k)RBi j∆

H
i (k) +

p∑
i=1

B
H
ij RX̃ j(k)RA

H
ij ∆i(k)

)]
+ µ2
‖

p∑
i=1

AH
ij ∆i(k)BH

ij ‖
2

≤ ‖X̃ j(k)‖2 − 2µRe
[
tr
( p∑

i=1
Ai jX̃ j(k)Bi j∆

H
i (k)

)]
+ µ2

p∑
i=1

(‖Ai j‖
2
‖Bi j‖

2)
p∑

i=1
‖∆i(k)‖2.

(9)
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Now, we define the nonnegative function Z̃(k) by

Z̃(k) =

p∑
j=1

‖X̃ j(k)‖2. (10)

It follows that

Z̃(k + 1) =
p∑

j=1
‖X̃ j(k + 1)‖2

≤

p∑
j=1
‖X̃ j(k)‖2 − 2µ

p∑
j=1

Re
[
tr
( p∑

i=1
Ai jX̃ j(k)Bi j∆

H
i (k)

)]
+ µ2

p∑
j=1

[ p∑
i=1

(‖Ai j‖
2
‖Bi j‖

2)
p∑

i=1
‖∆i(k)‖2

]
= Z̃(k) − 2µ

p∑
i=1

Re
[
tr
(
(

p∑
j=1

Ai jX̃ j(k)Bi j)∆H
i (k)

)]
+ µ2(

p∑
i=1
‖∆i(k)‖2)

p∑
j=1

p∑
i=1

(‖Ai j‖
2
‖Bi j‖

2)

= Z̃(k) − 2µ
p∑

i=1
Re

[
tr
(
∆i(k)∆H

i (k)
)]

+ µ2(
p∑

i=1
‖∆i(k)‖2)

p∑
i=1

p∑
j=1

(‖Ai j‖
2
‖Bi j‖

2)

= Z̃(k) − 2µ
p∑

i=1
‖∆i(k)‖2 + µ2(

p∑
i=1
‖∆i(k)‖2)

p∑
i=1

p∑
j=1

(‖Ai j‖
2
‖Bi j‖

2)

= Z̃(k) − 2µ
[
1 − µ

2

p∑
i=1

p∑
j=1

(‖Ai j‖
2
‖Bi j‖

2)
] p∑

i=1
‖∆i(k)‖2

≤ Z̃(1) − 2µ
[
1 − µ

2

p∑
i=1

p∑
j=1

(‖Ai j‖
2
‖Bi j‖

2)
] k∑

m=1
(

p∑
i=1
‖∆i(m)‖2).

According to

0 < µ <
2

p∑
i=1

p∑
j=1
‖Ai j‖

2‖Bi j‖
2

,

we have
∞∑

m=1

(
p∑

i=1

‖∆i(m)‖2) < ∞.

For the necessary condition of the series convergence, we have

lim
m→∞

∆i(m) = lim
m→∞

p∑
j=1

Ai jX̃ j(m)Bi j = 0, i = 1, 2, . . . , p.

According to Theorem 2.1, we can get

lim
m→∞

X̃ j(m) = 0, j = 1, 2, . . . , p.

The proof is completed. �

Remark 2.1. In practical operation, we can choose a relatively large µ, and even do not meet the inequal-
ity (4), which may also converge to the Hermitian R-conjugate solutions. This is because that the control
inequality (4) is only a sufficient condition but not a necessary condition and we magnify the inequality too
large during the proof. This will be demonstrated in Example 3.1 given later.

Next, we discuss the optimal choice of the factor µ. Submitting (7) into (8), we have

X̃ j(k + 1) = X̃ j(k) − µ
4 [

p∑
i=1

AH
ij (

p∑
j=1

Ai jX̃ j(k)Bi j)BH
ij +

p∑
i=1

Bi j(
p∑

j=1
Ai jX̃ j(k)Bi j)HAi j

+
p∑

i=1
RAH

ij (
p∑

j=1
Ai jX̃ j(k)Bi j)BH

ij R +
p∑

i=1
RBi j(

p∑
j=1

Ai jX̃ j(k)Bi j)HAi jR].
(11)
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By employing Kronecker product and vectorization operator, it is not difficult to obtain
vec(X̃1(k + 1))
vec(X̃2(k + 1))

...

vec(X̃p(k + 1))

 = (Ipn2 −
µ
4 Φ)


vec(X̃1(k))
vec(X̃2(k))

...

vec(X̃p(k))

 , (12)

with

Φ =


φ11 φ12 · · · φ1p
φ21 φ22 · · · φ2p
...

...
...

...
φp1 φp2 · · · φpp

 , (13)

where

φst =

p∑
i=1

(BisBH
it ⊗ AH

is Ait + AH
is Ait ⊗ BisBH

it + RBisBH
it R ⊗ RAH

is AitR + RAH
is AitR ⊗ RBisBH

it R). (14)

Obviously, the matrix Φ = MHM is a Hermitian matrix where matrix M is defined as (3). According
to Theorem 2.1, if the matrix equations (1) have a unique Hermitian R-conjugate solution group, then the
matrix Φ is also positive definite.

Lemma 2.2. Suppose the matrix equations (1) have a unique Hermitian R-conjugate solution group. Then
Algorithm 2.1 converges for any initial Hermitian R-conjugate matrix group if and only if the convergent factor µ
satisfies the following condition

0 < µ <
8

λmax(Φ)
. (15)

Proof. Since Φ is a Hermitian positive definite matrix, the iterative matrix Ipn2 −
µ
4 Φ is Hermitian too.

Then the spectral radius of the iterative matrix Ipn2 −
µ
4 Φ is identical to max{|1 − µλmin(Φ)

4 |, |1 − µλmax(Φ)
4 |}.

From ρ(Ipn2 −
µ
4 Φ) < 1, i.e.,

max{|1 −
µλmin(Φ)

4
|, |1 −

µλmax(Φ)
4

|} < 1,

we have

0 <
µλmin(Φ)

4
< 2 and 0 <

µλmax(Φ)
4

< 2.

Thus
0 < µ <

8
λmax(Φ)

,

and the proof is completed. �

It should be noted that when the matrix M is a column reduced-rank matrix, i.e., MHM is singular, the
proposed method is also available, and the semi-convergence can be obtained by the analogous strategy
applied in [40].

Lemma 2.3. [48] Let a, b ∈ R and µ > 0, then we have
(a) If b > a > 0, then min

0<µ<2/b
{max{|1 − µa|, |1 − µb|}} = b−a

b+a , and the minimizer can be reached at the point µ = 2
a+b ;



S.K. Li / Filomat 31:7 (2017), 2061–2072 2068

(b) If b > 0 > a, then min
0<µ
{max{|1 − µa|, |1 − µb|}} > 1, and for any µ > 0 we have max{|1 − µa|, |1 − µb|} > 1;

(c) If a < b < 0, then min
0<µ
{max{|1 − µa|, |1 − µb|}} > 1, and for any µ > 0 we have max{|1 − µa|, |1 − µb|} > 1.

Theorem 2.3. Suppose the matrix equations (1) have a unique Hermitian R-conjugate solution group. When
0 < µ < 8

λmax(Φ) , Algorithm 2.1 converges and the optimal convergent factor should be

µopt =
8

λmin(Φ) + λmax(Φ)
. (16)

Moreover, if µ is chosen as (16), then∥∥∥∥∥∥∥∥∥∥∥∥∥
vec(X̃1(k + 1))
vec(X̃2(k + 1))

...

vec(X̃p(k + 1))

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤

(
cond(Φ)−1
cond(Φ)+1

)k

∥∥∥∥∥∥∥∥∥∥∥∥∥
vec(X̃1(1))
vec(X̃2(1))

...

vec(X̃p(1))

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

. (17)

Proof. According to (12), we can see that the optimal convergent factorµ should been chosen to minimize
the spectral radius ρ(Ipn2 −

µ
4 Φ). As Φ is Hermitian positive definite, we have λmin(Φ) > 0 and λmax(Φ) > 0.

Then by Lemma 2.3, the optimal convergent factor can be taken as

µopt =
8

λmin(Φ) + λmax(Φ)
.

Moreover,

ρ(Ipn2 −
µopt

4
Φ) =

λmax(Φ) − λmin(Φ)
λmax(Φ) + λmin(Φ)

=
cond(Φ) − 1
cond(Φ) + 1

,

and (17) holds. �

3. Numerical Experiments

In this section, we give two examples to illustrate the effectiveness of the proposed algorithm.

Example 3.1 Consider the Hermitian R-conjugate solutions of the following generalized coupled
Sylvester matrix equations{

A11X1B11 + A12X2B12 = C1

A21X1B21 + A22X2B22 = C2
, (18)

with

A11 =

(
1 + i 1

i −1

)
, B11 =

(
1 i
2 1 − i

)
, A12 =

(
2 − i 0

1 i

)
,B12 =

(
1 i
2 1

)
,

A21 =

(
i 1
i −i

)
, B21 =

(
1 −i
0 1 + i

)
, A22 =

(
−i 1 + i
1 i

)
, B22 =

(
1 + i −i

i 1

)
,

C1 =

(
10i 4 + 8i

−2 + 14i −4 + 10i

)
, C2 =

(
4i 0

−6 + 2i −2 + 4i

)
.

Let R be as follows:

R =

(
−1 0
0 1

)
.
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The Hermitian R-conjugate solutions of the matrix equations (18) can be obtained as follows

X∗1 =

(
0 2i
−2i 0

)
, X∗2 =

(
0 2i
−2i 4

)
.

According to (13) and (14), the matrix

Φ =



40 −2i −2i 4 −4 −18i −18i 0
2i 60 12 −4i −14i 4 6 −4i
2i 12 60 −4i −14i 6 4 −4i
4 4i 4i 64 0 −16i −16i −8
−4 14i 14i 0 72 20i 20i 8
18i 4 6 16i −20i 90 −16 8i
18i 6 4 16i −20i −16 90 8i
0 4i 4i −8 8 −8i −8i 44


.

From Theorem 2.3, we can get µopt = 0.0584 and 8
λmax(Φ) = 0.0662, which are more than

2
‖A11‖

2‖B11‖
2+‖A12‖

2‖B12‖
2+‖A21‖

2‖B21‖
2+‖A22‖

2‖B22‖
2 = 0.0154. Take the initial Hermitian R-conjugate matrix pair (X1(1),X2(1)) =

0 and µ = 0.0284, 0.0384, 0.0484, 0.0584, 0.0650, respectively. Applying Algorithm 2.1 to compute
(X1(k),X2(k)), the iterative errors r(k) = lo110

√
‖R1(k)‖2 + ‖R2(k)‖2 versus k are shown in Fig. 1. Accord-

ing to Fig. 1, it is clear that the larger the convergent factor µ, the faster the convergent rate and when the
convergent factor µ is taken to be 0.0584, the convergent rate is the fastest. However, when the convergent
factor µ is greater than 0.0584 but less than 0.0662, the convergent rate becomes slow. Also, in Fig. 2, we
plot the relationship of the iterative number k versus µ, which further verifies the theoretical findings.
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Figure 1: r(k) versus k with different µ for Example 3.1.
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Figure 2: Iterative number k versus µ for Example 3.1.

Example 3.2 Consider the Hermitian R-conjugate solutions of the matrix equations (18) with

rand(′state′, 0),

A11 = tril(rand(p, p), 1) ∗ i − dia1(2 + dia1(rand(p))),

B11 = tril(rand(p, p), 1) + dia1(dia1(rand(p))) ∗ i,

A12 = tril(rand(p, p), 1) − dia1(2 + dia1(rand(p))) ∗ i,

B12 = triu(rand(p, p), 1) − dia1(1.5 + dia1(rand(p))) ∗ i,

A21 = tril(rand(p, p), 1) ∗ i + dia1(2 + dia1(rand(p))),

B21 = tril(rand(p, p), 1) + dia1(2 + dia1(rand(p))) ∗ i,

A22 = tril(rand(p, p), 1) − dia1(1 + dia1(rand(p))) ∗ i,

B22 = triu(rand(p, p), 1) + dia1(2 + dia1(rand(p))) ∗ i.

Here, the C1,C2 are chosen such that the Hermitian Toeplitz matrices X∗1 = tridiag(i, 2,−i), X∗2 = tridiag(1+
i, 2, 1 − i) are the Hermitian R-conjugate solutions with respect to R = fliplr(eye(p)). When p = 10, the
sequences pair (X1(k),X2(k)) are obtained with µopt = 0.0027 and the initial matrix pair (X1(1),X2(1)) = 0.
We show the numerical results in Fig. 3, where

δ(k) = lo110

√
‖X1(k) − X∗1‖

2 + ‖X2(k) − X∗2‖
2

‖X∗1‖
2 + ‖X∗2‖

2 .

Obviously, both r(k) and δ(k) decrease and converge to zero as k increases.
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Figure 3: r(k) and δ(k) versus k for Example 3.2.

4. Conclusions

In this paper, we have constructed an iterative method to solve the general coupled Sylvester matrix
equations over Hermitian R-conjugate matrices. When the considered coupled matrix equations have a
unique Hermitian R-conjugate solution group, some conditions have been established to guarantee the
convergence of the proposed method. The optimal convergent factor has been also derived. Finally, the
efficiency of the proposed method is verified by two numerical experiments.

Acknowledgements
The author would like to thank the referees and editor for their constructive comments and helpful

suggestions which would greatly improve this paper.

References

[1] R. D. Hill, R. G. Bates, S. R. Waters, On centrohermitian matrices, SIAM J. Matrix Anal. Appl. 11 (1990) 128–133.
[2] R. D. Hill, S. R. Waters, On K-real and K-hermitian matrices, Linear Algebra Appl. 169 (1992) 17–29.
[3] D. M. Wilkes, S. D. Morgera, F. Noor, M. H. Hayes, A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitz-plus-Hankel

matrix, IEEE Trans. Signl Process. 39 (1991) 2146–2148.
[4] R. Kouassi, P. Gouton, M. Paindavoine, Approximation of the Karhunen-Loeve tranformation and its application to colour

images, Signal Process.: Image Commun. 16 (2001) 541–551.
[5] W. F. Trench, Characterization and problems of (R,S)-symmetric, (R,S)-skew symmetric, (R,S)-conjugate matrices, SIAM J. Matrix

Anal. Appl. 26 (2005) 748–757.
[6] H. X. Chang, Q. W. Wang, G. J. Song, (R,S)-conjugate solution to a pair of linear matrix equations, Appl. Math. Comput. 217

(2010) 73–82.
[7] C. Z. Dong, Q. W. Wang, Y. P. Zhang, On the hermitian R-conjugate solution of a system of matrix equations, J. Appl. Math.

Volume 2012, Article ID 398085, 14 pages, doi:10.1155/2012/398085.
[8] H. X. Chang, X. F. Duan, Q. W. Wang, The hermitian R-conjugate procrustes problem, Abstr. Appl. Anal. Volume 2013, Article

ID 423605, 9 pages, http://dx.doi.org/10.1155/2013/423605.
[9] I. Borno, Z. Gajic, Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems,

Comput. Math. Appl. 30 (1995) 1–4.
[10] I. Borno, Parallel computation of the solutions of coupled algebraic Lyapunov equations, Automatica 31 (1995) 1345–1347.
[11] T. Chen, B. A. Francis, Optimal Sampled-data Control Systems, Springer, London, 1995.
[12] B. Kagstrom, A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A, B), in:

M.S. Moonen, G.H. Golub, B.L.R. De moore (eds.), Linear Algebra for Large Scale and Real-time Application, Kluwer Academic
Publishers, Amsterdam, (1993) 195–218.

[13] B. Kagstrom, P. Van Dooren, A generalized state-space approach for the additive decomposition of a transfer matrix, Numer.
Linear Algebra Appl. 1 (1992) 165–181.



S.K. Li / Filomat 31:7 (2017), 2061–2072 2072

[14] M. Dehghan, M. Hajarian, An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations
and its optimal approximation, Appl. Math. Comput. 202 (2008) 571–588.

[15] M. Dehghan, M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized
bisymmetric matices, Appl. Math. Model. 34 (2010) 639–654.

[16] Y. J. Xie, N. Huang, C. F. Ma, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over
reflexive or anti-reflexive matrix, Comput. Math. Appl. 67 (2014) 2071–2084.

[17] N. Huang, C. F. Ma, The modified conjugate gradient methods for solving a class of generalized coupled Sylvester-transpose
matrix equations, Comput. Math. Appl. 67 (2014) 1545–1558.

[18] M. Dehghan, M. Hajarian, Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of
general coupled matrix equations, Eng. Computation. 29 (2012) 528–560.

[19] X. Wang, W. H. Wu, A finite iterative algorithm for solving the generalized (P,Q)-reflexive solution of the linear systems of matrix
equations, Math. Comput. Model. 54 (2011) 2117–2131.

[20] M. Dehghan, M. Hajarian, The general coupled matrix equations over generalized bisymmetric matrices, Linear Alg. Appl. 432
(2010) 1531–1552.

[21] M. Dehghan, M. Hajarian, An efficient algorithm for solving general coupled matrix equations and its application, Math. Comput.
Model. 51 (2010) 1118–1134.

[22] C. Q. Song, J. E. Feng, X. D. Wang, J. L. Zhao, Finite iterative method for solving coupled Sylvester-transpose matrix equations,
J. Appl. Math. Comput. 46 (2014) 351–372.

[23] F. P. A. Beik, D. K. Salkuyeh, The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices, Int.
J. Comput. Math. 90 (2013) 1546–1566.

[24] A. G. Wu, B. Li, Y. Zhang, G. R. Duan, Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Appl. Math.
Model. 35 (2011) 1065–1080.

[25] F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control 50
(2005) 1216–1221.

[26] F. Ding, T. Chen, Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett. 54 (2005) 95–107.
[27] F. Ding, T. Chen, On iterative solution of general coupled matrix equations, SIAM J. Control Optim. 44 (2006) 2269–2284.
[28] B. Zhou, G. R. Duan, Z. Y. Li, Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett. 58

(2009) 327–333.
[29] B. Zhou, Z. Y. Li, G. R. Duan, Y. Wang, Weighted least squares solutions to general coupled Sylvester matrix equations, J. Comput.

Appl. Math. 224 (2009) 759–776.
[30] Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equations, Asian J. Control 13 (2011) 461–464.
[31] X. Wang, L. Dai, D. Liao, A modified gradient based algorithm for solving Sylvester equations, Appl. Math. Comput. 218 (2012)

5620–5628.
[32] M. Hajarian, A gradient-based iterative algorithm for generalized coupled sylvester matrix equations over generalized centro-

symmetric matrices, Trans. Inst. Meas. Control 36 (2014) 252–259.
[33] M. Dehghan, M. Hajarian, Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. 10

(2012) 905–912.
[34] F. P. A. Beik, D. K. Salkuyeh, M. M. Moghadam, Gradient-based iterative algorithm for solving the generalized coupled Sylvester-

transpose and conjugate matrix equations over reflexive (anti-reflexive) matrices, Trans. Inst. Meas. Control 36 (2014) 99–110.
[35] A. G. Wu, G. Feng, G. R. Duan, W. J. Wu, Iterative solutions to coupled Sylvester-conjugate matrix equations, Comput. Math.

Appl. 60 (2010) 54–66.
[36] C. Q. Song, G. L. Chen, L. L. Zhao, Iterative solutions to coupled Sylvester-transpose matrix equations, Appl. Math. Model. 35

(2011) 4675–4683.
[37] J. J. Zhang, A note on the iterative solutions of general coupled matrix equation, Appl. Math. Comput. 217 (2011) 9380–9386.
[38] F. P. A. Beik, D. K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equations, Comput.

Math. Appl. 62 (2011) 4605–4613.
[39] S. K. Li, T. Z. Huang, LSQR iterative method for generalized coupled Sylvester matrix equations, Appl. Math. Model. 36 (2012)

3545–3554.
[40] D. K. Salkuyeh, F. P. A. Beik, On the gradient-based algorithm for solving the general coupled matrix equations, Trans. Inst.

Meas. Control 36 (2014) 375–381.
[41] F. P. A. Beik, A modified iterative algorithm for the (Hermitian) reflexive solution of the generalized Sylvester matrix equation,

Trans. Inst. Meas. Control 36 (2014) 815–827.
[42] M. Hajarian, Matrix form of the Bi-CGSTAB method for solving the coupled sylvester matrix equations, IET Control Theory

Appl. 7 (2013) 1828–1833.
[43] M. Hajarian, Matrix form of the CGS method for solving general coupled matrix equations, Appl. Math. Lett. 34 (2014) 37–42.
[44] M. Hajarian, Matrix GPBiCG algorithms for solving the general coupled matrix equations, IET Control Theory Appl. 9 (2015)

74–81.
[45] M. Hajarian, Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations,

Appl. Math. Model. 39 (2015) 6073–6084.
[46] A. Dmytryshyn, B. Kågström, Coupled Sylvester-type matrix equations and block diagonalization, SIAM J. Matrix Anal. Appl.

36 (2015) 580–593.
[47] L. J. Zhao, X. Y. Hu, L. Zhang, Linear restriction problem of Hermitian reflexive matrices and its approximation, Appl. Math.

Comput. 200 (2008) 341–351.
[48] X. Wang, D. Liao, The optimal convergence factor of the gradient based iterative algorithm for linear matrix equations, Filomat

26 (2012) 607–613.


