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Abstract. We introduce a new concept which is called a regularly weighted generated sequence for
sequences of real numbers. Moreover, we obtain some Tauberian conditions in terms of regularly weighted
generated sequences for the power series method of summability, and generalize some classical Tauberian
theorems given by Tietz [Acta Sci. Math. 54 (3-4) 355–365 (1990)].

1. Introduction

Let u = (un) be a real sequence. Let co and `∞ denote the space of sequences converging to 0 and bounded
sequences, respectively. Let B> denote the set of all sequences α = (αn) such that for every (αn) ∈ B> there
exists C > 0 such that αn ≥ −C.

Assume that p = (pn) be a sequence of nonnegative numbers with p0 > 0, that

Pn :=
n∑

k=0

pk →∞ as n→∞,

and that

p(x) =

∞∑
k=0

pkxk < ∞ for 0 ≤ x < 1.

The n-th weighted mean of (un) is defined by

σ(1)
n,p(u) :=

1
Pn

n∑
k=0

pkuk.

A sequence (un) is said to be summable by the weighted mean method determined by the sequence p,
in short, (N, p) summable to a finite number s if

lim
n→∞

σ(1)
n,p(u) = s. (1)
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If pn = 1 for all nonnegative n, then (N, p) summability method reduces to Cesàro summability method.
If

∑
∞

k=0 pkukxk is convergent for 0 ≤ x < 1, and

lim
x→1−

1
p(x)

∞∑
k=0

pkukxk = s, (2)

we say that (un) is summable to s by the power series method (J, p), and we write un → s (J, p).
If pn = 1 for all nonnegative n, then the (J, p) summability method reduces to Abel summability method.
The sequence ∆u = (∆un), which is the backward difference of (un), is defined by ∆un = un − un−1 for

n ≥ 1 and ∆u0 = u0.
For any nonnegative integer m, we define ∆mun = ∆(∆m−1un) = ∆m−1(∆un) with ∆0un = un.
A sequence (µn) of real numbers is called totally monotone if ∆mµn ≥ 0 for all nonnegative integers m

and n.
Baron and Tietz [1] proved that if (un) is (J, p) summable to s and ( pn

Pn
) is totally monotone, then (σ(1)

n,p(u))
is (J, p) summable to s.

The difference between un and σ(1)
n,p(u), which is called the weighted Kronecker identity [2], is given by

un − σ
(1)
n,p(u) = V(0)

n,p(∆u) (3)

where V(0)
n,p(∆u) = 1

Pn

∑n
k=1 Pk−1∆uk.

For each integer m ≥ 0, we define σ(m)
n,p (u) and V(m)

n,p (∆u) by

σ(m)
n,p (u) =


1

Pn

n∑
k=0

pkσ
(m−1)
k,p (u) ,m ≥ 1

un ,m = 0

and

V(m)
n,p (∆u) =


1

Pn

n∑
k=0

pkV(m−1)
k,p (∆u) ,m ≥ 1

V(0)
n,p(∆u) ,m = 0

respectively.
The weighted classical control modulo of (un) is defined by ω(0)

n,p(u) = Pn−1
pn

∆un and the weighted general

control modulo of integer order m ≥ 1 of (un) is defined by ω(m)
n,p (u) = ω(m−1)

n,p (u) − σ(1)
n,p(ωm−1(u)) (see [2]).

For a sequence (un) and any integer m ≥ 1, the identities

Pn−1

pn
∆σ(m)

n,p (u) = V(m−1)
n,p (∆u),

and

σ(1)
n,p

(
Pn−1

pn
∆V(m−1)

n,p (∆u)
)

=
Pn−1

pn
∆V(m)

n,p (∆u),

and
V(m−1)

n,p (∆u) − V(m)
n,p (∆u) =

Pn−1

pn
∆V(m)

n,p (∆u)

are given in [8].
A sequence (un) is called slowly oscillating [6] if

(um − un) ∈ c0, for
Pm

Pn
→ 1, (m > n→∞).
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Denote by SO the class of all slowly oscillating sequences.
If (ω(0)

n,p(u)) ∈ `∞ with the condition

1 ≤
Pm

Pn
→ 1 when 1 <

m
n
→ 1 (n→∞). (4)

holds, then (un) ∈ SO. Indeed, (ω(0)
n,p(u)) ∈ `∞ implies that

∣∣∣∣Pn−1
pn

∆un

∣∣∣∣ ≤ C, for some C > 0. Therefore,

|um − un| ≤ C
m∑

j=n+1

p j

P j−1
≤ C

(Pm

Pn
− 1

)
, for m > n.

A sequence (un) is said to be slowly decreasing if

lim inf
n→∞

(um − un) ≥ 0, for
Pm

Pn
→ 1.

Denote by SD the class of all slowly decreasing sequences.
If (ω(0)

n,p(u)) ∈ B> with the condition (4) holds, then (un) ∈ SD. Indeed, (ω(0)
n,p(u)) ∈ B> implies that(

Pn−1
pn

∆un

)
≥ −C, for some C > 0. Therefore,

um − un ≥ −C
m∑

j=n+1

p j

P j−1
≥ C

(Pm

Pn
− 1

)
, for m > n.

In the classical Tauberian theory, the convergence retrieval problem of the sequence (un) out of the
existence of a generalized limit, such as (1) and (2) with some conditions, so-called Tauberian conditions,
on (un) reduces to proving that

lim
n→∞

un = s. (5)

Hardy’s theorem [5] asserts that if the limit (1) exists and (ω(0)
n,p(u)) ∈ `∞, then (5) holds. Çanak and

Totur [2] obtained a one-sided Tauberian theorem that if the limit (1) exists and (ω(1)
n,p(u)) ∈ B> with certain

conditions on (pn), then (5) holds. Çanak and Totur [3] introduced a Tauberian condition of slowly oscillating
type for the power series method (J, p).

Tietz [7] gave some significant generalizations of Hardy’s theorem and obtained some classical Tauberian
theorems which are analogous to Hardy-Littlewood’s theorem [4] and Schmidt’s theorem [6] for the power
series method of summability.

Theorem 1.1. [7, Theorem 4.1] Let the condition (4) be satisfied. If (un) is (J, p) summable to s and
(
ω(0)

n,p(u)
)
∈ B>,

then (un) converges to s.

Theorem 1.2. [7, Theorem 3.9] Let the condition (4) be satisfied. If (un) is (J, p) summable to s and (un) ∈ SD , then
(un) converges to s.

Notice that Theorem 1.1 generalizes Theorem 1.2.

2. Regularly Weighted Generated Sequences

Now, we introduce a new concept for sequences of real numbers.
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Definition 2.1. Let L be any linear space of sequences. If there exists a subclassA of L such that

un = αn +

n∑
k=1

pk

Pk−1
αk + u0

for some (αn) ∈ A and for all nonnegative integers n, then we say that the sequence (un) is regularly weighted
generated by the sequence (αn), and (αn) is called a weighted generator of (un).

The class of all sequences which are regularly weighted generated by (αn) inA is denoted by U(A).

Notice that since σ(1)
n,p(u) = u0 +

∑n
k=1

pk
Pk−1

V(0)
k,p(∆u), the identity (3) can be rewritten as

un = V(0)
n,p(∆u) +

n∑
k=1

pk

Pk−1
V(0)

k,p(∆u) + u0. (6)

We see by (6) that the sequence (V(0)
n,p(∆u)) is a weighted generator of (un).

Example 2.2.

(a) IfA is the class of all bounded and slowly oscillating sequences, then U(A) is the class of all slowly oscillating
sequences with the condition (4).

(b) IfA is the class of one-sided bounded sequences, then U(A) is the class of all slowly decreasing sequences with
the condition (4).

The representation (6) of the sequence (un) suggests that we set conditions on the weighted generator
sequence (V(0)

n,p(∆u)) of (un) rather than the sequence (un) itself to obtain some classical Tauberian conditions.
Furthermore, the representation (6) of (un) reveals some information about the structure of the sequences
on which we should impose Tauberian conditions to get convergence of the sequence (un) out of the power
series method of summability of (un).

3. Main Results

Our first result is the following theorem similar to classical Tauberian theorems.

Theorem 3.1. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s and

(un) ∈ U(SD), then (un) converges to s.

Proof. Since (un) ∈ U(SD), un = αn +
∑n

k=1
pn

Pn−1
αk + u0, for some (αn) ∈ SD. Hence we have

Pn−1

pn
∆un − σ

(1)
n,p

(
Pn−1

pn
∆un

)
=

Pn−1

pn
∆αn.

It follows from the identity

Pn−1

pn
∆un −

Pn−1

pn
∆σ(1)

n,p(u) =
Pn−1

pn
∆V(0)

n,p(∆u), (7)

that we get Pn−1
pn

∆V(0)
n,p(∆u) = Pn−1

pn
∆αn. Taking the weighted means of (7), we have

Pn−1

pn
∆V(1)

n,p(∆u) = V(0)
n,p(∆α).

Since (αn) ∈ SD, by Example 2.2, it follows (V(0)
n,p(∆α)) ∈ B>.
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Therefore,(
Pn−1

pn
∆V(1)

n,p(∆u)
)
∈ B>. (8)

Since (un) is (J, p) summable to s and
( pn

Pn

)
is totally monotone, (V(1)

n,p(∆u)) is (J, p) summable to 0 by the
weighted Kronecker identity. Hence, by (8), Theorem 1.1 yields

(V(1)
n,p(∆u)) ∈ c0. (9)

Since (V(0)
n,p(∆α)) ∈ B>, it follows from the identity

Pn−1

pn
∆V(1)

n,p(∆u) = V(0)
n,p(∆u) − V(1)

n,p(∆u)

that we obtain (V(0)
n,p(∆u)) ∈ B>, by (8) and (9). Thus,

(σ(1)
n,p(u)) ∈ SD. (10)

On the other hand, since (un) ∈ U(SD), we have

(V(0)
n,p(∆u)) ∈ SD (11)

from the identity (6). It follows by (10) and (11) that (un) ∈ SD. Consequently, the proof is completed by
Theorem 1.2.

Corollary 3.2. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and(

ω(0)
n,p(u)

)
∈ U(B>), then (un) converges to s.

Proof. Since
(
ω(0)

n,p(u)
)
∈ U(B>), ω(0)

n,p(u) = αn +
∑n

k=1
pn

Pn−1
αk + u0, for some (αn) ∈ B>. Hence we have

Pn−1

pn
∆ω(0)

n,p(u) =
Pn−1

pn
∆αn + αn.

It follows from the identity Pn−1
pn

∆V(0)
n,p(∆u) = αn that(

Pn−1

pn
∆V(0)

n,p(∆u)
)
∈ B>. (12)

The condition (12) implies that
(
V(0)

n,p(∆u)
)
∈ SD. Hence, it follows from the identity (6) that (un) ∈

U (SD).

Corollary 3.3. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and

(un) ∈ U(SO), then (un) converges to s.

Corollary 3.4. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and

(un) ∈ SO, then (un) converges to s.

Proof. Since (un) ∈ SO, then
(
V(0)

n (∆u)
)
∈ SO. Hence, it follows from the identity (6) that (un) ∈ U (SO).

Theorem 3.5. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s and

(V(0)
n,p(∆u)) ∈ U(SD), then (un) converges to s.
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Proof. Since
(
V(0)

n,p(∆u)
)
∈ U(SD), V(0)

n,p(∆u) = αn +
∑n

k=1
pn

Pn−1
αk + V(0)

n,p(∆u), for some (αn) ∈ SD. Hence, we

have Pn−1
pn

∆V(0)
n,p(∆u) − σ(1)

n,p( Pn−1
pn

∆V(0)
n,p(∆u)) = Pn−1

pn
∆αn. That is,

Pn−1

pn
∆V(0)

n,p(∆u) −
Pn−1

pn
∆V(1)

n,p(∆u) =
Pn−1

pn
∆(V(0)

n,p(∆u) − V(1)
n,p(∆u)) =

Pn−1

pn
∆αn. (13)

Taking the weighted means of (13), we have Pn−1
pn

∆(V(1)
n,p(∆u) − V(2)

n,p(∆u)) = V(0)
n,p(∆α). Since (αn) ∈ SD, by

Example 2.2,
(
V(0)

n,p(∆α)
)
∈ B>. Therefore,(

Pn−1

pn
∆(V(1)

n,p(∆u) − V(2)
n,p(∆u))

)
∈ B>. (14)

Since (un) is (J, p) summable to s, then it follows from the identity

Pn−1

pn
∆V(2)

n,p(∆u) = V(1)
n,p(∆u) − V(2)

n,p(∆u)

that
(

Pn−1
pn

∆V(2)
n,p(∆u)

)
is (J, p) summable to 0.

Hence from (14), by Theorem 1.1, we obtain(
Pn−1

pn
∆V(2)

n,p(∆u)
)
∈ c0. (15)

From (14), we have
(

Pn−1
pn

∆V(1)
n,p(∆u)

)
∈ B>. It from the (J, p) summability of (un) follows that

(
V(1)

n,p(∆u)
)

is (J, p)
summable to 0, then we have(

V(1)
n,p(∆u)

)
∈ c0, (16)

by Theorem 1.1. It follows from the identity

Pn−1

pn
∆V(1)

n,p(∆u) = V(0)
n,p(∆u) − V(1)

n,p(∆u)

that

(V(0)
n,p(∆u)) ∈ B> and (σ(1)

n,p(u)) ∈ SD. (17)

On the other hand, since (V(0)
n,p(∆u)) ∈ U(SD), we have(

Pn−1

pn
∆V(1)

n,p(∆u)
)
∈ SD (18)

by the identity (6). Thus, from (16) and (18), we obtain (V(0)
n,p(∆u)) ∈ SD. From (17), we have (un) ∈ SD by

the weighted Kronecker identity. Consequently, the proof is completed by Theorem 1.2.

Corollary 3.6. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and(

ω(1)
n,p(u)

)
∈ U(B>), then (un) converges to s.

Proof. Since
(
ω(1)

n,p(u)
)
∈ U(B>), ω(1)

n,p(u) = αn +
∑n

k=1
pn

Pn−1
αk + u0, for some (αn) ∈ B>. Hence we have

Pn−1

pn
∆ω(1)

n,p(u) =
Pn−1

pn
∆αn + αn.
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It follows from the identity Pn−1
pn

∆
(

Pn−1
pn

∆V(1)
n,p(∆u)

)
= αn, that we get

Pn−1

pn
∆

(
Pn−1

pn
∆V(1)

n,p(∆u)
)
∈ B>. (19)

The condition (19) implies that
(

Pn−1
pn

∆V(1)
n,p(∆u)

)
∈ SD. Hence, it follows from the identity (6) that

(
V(0)

n,p(∆u)
)
∈

U (SD).

Corollary 3.7. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and

(V(0)
n,p(∆u)) ∈ U(SO), then (un) converges to s.

Corollary 3.8. Let (pn) satisfy the condition (4), and let
( pn

Pn

)
be totally monotone. If (un) is (J, p) summable to s, and

(V(0)
n,p(∆u)) ∈ SO, then (un) converges to s.

Proof. Since (V(0)
n,p(∆u)) ∈ SO, then

(
Pn−1
pn

∆V(1)
n,p(∆u)

)
∈ SO. Hence, it follows from the identity (6) that(

V(0)
n,p(∆u)

)
∈ U (SO).
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